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Abstract
Schistosomiasis is a serious but neglected tropical infectious disease, afflicting
more than 240 million people in 78 countries. Lack of an effective vaccine and
obscuring disease mechanism could be the main hurdles to effectively control
and eradicate this disease. A better understanding of the host–schistosome
interaction is the key to clearing these hurdles. Recently, accumulating
evidence shows that alarmin cytokines and microRNAs (miRNAs) are crucial
regulators in the host–schistosome interaction. Alarmin cytokines are proven to
be potent mechanisms driving type 2 immunity, which is the central disease
mechanism of schistosomiasis. MiRNA deregulation is a hallmark of a variety of
human diseases, including schistosomiasis. In this review, we summarize the
research advances on the role of alarmin cytokines and miRNAs in the
host–schistosome interaction.
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Schistosomiasis is one of the most prevalent, but neglected, 
tropical infectious diseases, afflicting more than 240 million 
people in 78 countries, including children and young adults1. 
It is caused by trematode parasites of the genus schistosoma, of 
which three are known to cause severe disease in humans, namely 
Schistosoma mansoni (S. mansoni), Schistosoma japonicum, 
and Schistosoma haematobium. S. mansoni and S. japonicum 
result in intestinal schistosomiasis, whereas S. haematobium is 
responsible for urinary schistosomiasis. Current strategies to  
control this disease rely heavily on the administration of 
praziquantel2. However, its widespread use may result in the  
development of drug resistance3. Vaccination is a good strat-
egy to control or eradicate this disease; however, an effective  
vaccine is still lacking because of our limited knowledge of  
the immunological mechanisms associated with the elimination  
of the pathogen4. In addition, hepatic fibrosis is the primary  
cause of morbidity and mortality from schistosomiasis, 
but the disease mechanism remains elusive, and effective  
intervention is lacking1. A better understanding of the  
mechanism of the host–schistosome interaction is the key to  
solving these problems. Accumulating evidence shows that  
alarmin cytokines and microRNAs (miRNAs) are crucial  
regulators in the host–schistosome interaction. In this review, we 
summarize the research advances in these fields.

Role of alarmin cytokines in the host–schistosome 
interaction
Schistosomiasis is an immune pathological disease. The type 
2 immune response, characterized by the T helper 2 (Th2)  
cell-associated cytokines, such as interleukin 4 (IL-4) and IL-13, 
is the central regulator of disease progression in schistosomiasis5.  
However, the signals that drive the type 2 immune response 
after infection remain largely unknown6. Numerous studies have  
highlighted that tissue damage, which induces the release of 
alarmin cytokines, including IL-25, IL-33, and thymic stromal  
lymphopoietin (TSLP), is a potent mechanism driving type 2 
immunity7, particularly in the context of helminth infection8.  
TSLP regulates dendritic cells, basophils, mast cells,  
monocytes, natural killer T cells, and type 2 innate lymphoid 
cells (ILC2s)9, whereas IL-25 and IL-33 exhibit similar  
Th2-promoting activity largely by stimulating ILC2s, basophils, 
mast cells, and eosinophils10,11. The role of alarmin cytokines in  
schistosomiasis has been intensively studied; however, published  
results have been inconsistent12–15.

Serum IL-33 was observed to be markedly increased in patients 
infected with S. japonicum16, whereas serum IL-33 and intrac-
ellular IL-13 in eosinophils were elevated in patients infected 
with S. haematobium after chemotherapy17. In addition, serum 
soluble ST2, a decoy receptor of IL-33, was significantly  
elevated in patients with end-stage S. japonica infection, whereas  
membrane ST2 expression was obviously increased in the fibrotic 
liver tissues18. In addition, ST2 genetic variants were strongly  
associated with serum soluble ST2 levels18. In a mouse model 
of schistosomiasis, ST2 deficiency or blockade of IL-33 using  
soluble ST2 treatment or neutralizing antibodies showed  
significantly less Th2-mediated pathology, including marked 
decreases in granuloma and fibrosis formation, or Th2 cytokine 

production12,13,19. Decreased pulmonary collagen deposition 
and granuloma size were also observed in mice deficient in 
IL-25 or its receptor following S. mansoni egg challenge14. 
In addition, IL-33 regulated hepatic type 2 pathology after  
schistosome infection by promoting the production of type 2  
macrophages (M2)20. Our group found that hepatic stellate 
cells (HSCs) were the primary source of IL-33 and that ILC2s 
were the primary source of IL-13 in the infected mouse livers21. 
However, two other groups proved that IL-33– or IL-25– 
deficient mice exposed to schistosome eggs or cercariae showed  
no significant differences in granuloma size and collagen  
deposition15,22. Instead, marked reductions in granuloma size 
and fibrosis extent were observed when IL-25, IL-33, and TSLP 
were simultaneously disrupted15. In addition, primary, but not 
secondary, granulomatous inflammation in the lungs challenged 
with eggs was reduced in TSLP receptor–deficient mice, and  
hepatic fibrosis instead of granuloma was reduced in these mice23.

These studies seemed to imply that the roles of TSLP, IL-25, and 
IL-33 in the initiation of type 2 immunity induced by schistosome 
infection were redundant, and single alarmin cytokine had little 
impact on the course of schistosome infection. Given the poten-
tial therapeutic value of these alarmin cytokines in controlling 
Th2 pathology, further research is needed to determine their roles 
in schistosomiasis. It appears that the inconsistency in the pub-
lished results might be caused by the differences in intervention 
time, especially for IL-33. When IL-33 was depleted in the embryo 
stage, the role of IL-33 might be compensated for by other factors;  
however, when IL-33 was neutralized during disease progression, 
the role of IL-33 in disease progression became more obvious.

Role of microRNAs in the host–schistosome 
interaction
Over the last decade, miRNAs have emerged as important  
regulators of human diseases24. MiRNAs are endogenous, small 
non-coding RNAs that negatively regulate post-transcriptional 
gene expression through binding with partial complementarity 
to their target mRNA sequences25. In schistosomiasis, miRNAs  
have been increasingly studied for their potential roles in host– 
parasite interactions.

Host microRNA deregulation during infection
MiRNA deregulation is a hallmark of a variety of human  
diseases, including infectious diseases. Identification of host-
deregulated miRNA during infection may uncover novel disease 
mechanisms or potential therapeutic targets. Alterations in host 
miRNAs following schistosome infection have been studied 
extensively. Hepatic fibrosis is the primary cause of morbid-
ity and mortality from human schistosomiasis, and HSCs are the  
main effector cells for hepatic fibrosis26. Via a miRNA micro-
array, a series of host miRNAs have been identified that were 
deregulated during the progression of hepatic fibrosis in a 
mouse model of S. japonicum infection. Importantly, adeno-
associated virus 8 (AAV8)-mediated inhibition of those host  
miRNAs, such as miR-21 and miR-351, or elevation of miR-
203 significantly protected hosts from lethal schistosomiasis  
via attenuation of hepatic fibrosis21,27,28. HSCs were target cells of 
these three crucial host miRNAs. In HSCs, miR-21 was induced 
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by transforming growth factor-beta 1 (TGF-β1) and IL-13, the 
primary cytokines responsible for fibrosis induced by schisto-
some infection29. In addition, elevated miR-21 prompted TGF-
β1/SMAD and IL-13/SMAD signaling to induce fibrogenic 
effects by relieving the inhibitory effect of SMAD7 in the  
SMAD pathway. MiR-351 levels are elevated during the infec-
tion and the increased miR-351 promoted the activation of 
HSCs by targeting the vitamin D receptor, a newly identified  
negative regulator of the SMAD pathway30. Moreover, the  
schistosome infection downregulated miR-203 expression, which 
relieved the inhibition of IL-33, and sequentially elevated levels  
of IL-33 were released into the liver tissue, which stimu-
lated the proliferation and IL-13 production of hepatic ILC2s 
(Figure 1A). In addition, Zhu et al. found that miR-454 pro-
moted the activation of HSCs after infection by targeting  
SMAD431. Importantly, there is evidence that host miRNAs 
played an important role in regulating hepatic fibrosis in humans  
infected with S. japonicum32.

Schistosomiasis is an immune pathological disease, and vari-
ous types of immune cells, especially macrophages and 
T cells, play an important role in disease progression. We 
found that elevated miR-146b inhibited the interferon-gamma  

(IFN-γ)-induced differentiation of macrophages into M1 cells 
by targeting STAT1 (Figure 1B)33. Kelada et al. showed that  
miR-182 critically prevented IL-2 production in Th2-associated  
regulatory T (Treg) cells34. These studies highlighted that  
miRNAs are crucial regulators in the initiation and progression  
of schistosomiasis, and targeting the deregulated miRNA is a  
potential therapeutic intervention for this chronic disease.

Regulation of host microRNA expression by schistosome 
infection
The interplay among various cytokines, including both Th1 
and Th2 cytokines, has a crucial role in the initiation and pro-
gression of schistosomiasis. IL-13 and TGF-β1 are the effector 
cytokines of hepatic fibrosis induced by schistosome, whereas 
IFN-γ has anti-fibrotic activity in this disease29. IL-4 is respon-
sible for the formation of egg granuloma, and IL-10 is the main 
negative regulator of pathology6. Interestingly, these cytokines 
also play a crucial role in the regulation of host miRNA  
expression during schistosomiasis. IL-13 and TGF-β1 addi-
tively upregulated the expression of miR-21 in HSCs by  
activating SMAD proteins, which promotes the maturation 
of miR-2127. IFN-γ inhibited the expression of miR-351 in 
HSCs through a pathway dependent on the transcription factor 

Figure 1. Role and regulation of host microRNAs in hepatic schistosomiasis. (A) Transforming growth factor-beta 1 (TGF-β1) and 
interleukin-13 (IL-13) are the primary cytokines responsible for fibrosis induced by schistosome infection by activation of SMAD pathway. 
In hepatic stellate cells, miR-21, induced by TGF-β1 and IL-13, prompted TGF-β1/SMAD and IL-13/SMAD signaling to induce fibrogenic 
effects by relieving the inhibitory effect of SMAD7 in the SMAD pathway. MiR-351 was negatively regulated by interferon-gamma (IFN-γ) via 
activation of the STAT1 pathway and promoted fibrogenesis by targeting vitamin D receptor (VDR), a newly identified negative regulator of 
the SMAD pathway. Moreover, infection-induced downregulation of miR-203 expression resulted in hepatic fibrosis by relieving the inhibition 
of IL-33, which elevated the expression of IL-13. (B) In hepatic macrophages, various T helper 2 (Th2) cytokines, such as IL-4, IL-13, and 
IL-10, promoted the transcription of miR-146b by activating STAT3/6, and elevated miR-146b inhibited the IFN-γ–induced differentiation of 
macrophages into M1 cells by targeting STAT1. iNOS, inducible nitric oxide synthase.
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STAT1 to induce the expression of interferon regulatory factor 
2 (IRF2), which binds to the promoter of pre-miR-351 to inhibit 
its transcription28 (Figure 1A). Various Th2 cytokines, includ-
ing IL-4, IL-10, and IL-13, could induce macrophages to express  
miR-146b by activating STAT3/6, which bind to the promoter 
of the pre-miR-146b gene and initiate its transcription33  
(Figure 1B). In Treg cells, IL-4 regulated miR-182 by induc-
ing cMaf, an IL-4–regulated transcription factor34. These studies 
uncovered the mechanisms by which cytokines regulate disease  
progression and further highlighted their crucial roles in this  
disease.

Schistosome microRNAs and their cross-species 
regulation of host genes
The availability of parasite genome sequences, combined with 
advances in RNA sequencing, has paved the way to identify 
novel miRNAs in schistosomes. The presence of miRNAs in 
S. japonicum was first reported by our group through cloning 
and sequencing a small (18- to 26-nucleotide) RNA cDNA 
library from adult worms35. Subsequently, detailed information 
of miRNA expression in this parasite was generated through the  
analysis of small RNA libraries from particular developmen-
tal stages36. As of 25 June 2018, a search for S. japonicum 
and S. mansoni indicated that 171 pre-miRNAs are currently  
annotated in miRBase (www.mirbase.org/search.shtml). The 
expression of many of these parasite miRNAs is stage-, gender-, 
or cell type-specific, implying their crucial roles in parasite 
development and sex maturation37. Targeting these miRNAs and  
their regulated genes or pathways should be a novel strategy  
for disease control, but it is difficult to implement this strat-
egy because of limited genetic manipulation for the parasite38. 
However, miRNAs are a highly conserved group of small RNA  
molecules, expressed by most organisms, and have similar 
mechanisms of miRNA function. Recent studies showed that  
miRNAs could be released from pathogens, such as bacteria and 
parasites, living in the hosts39–41. These cell-free miRNAs are  
very stable in the host body fluids and can be absorbed by  
distant host recipient cells, which suggest that pathogen-derived 

miRNAs can regulate the function of host cells in a cross-species  
manner. This new manner of host–parasite interaction has been 
validated in an animal model infected with Heligmosomoides 
polygyrus42. The miRNAs contained in parasite exosomes  
suppressed type 2 innate immunity in mice. Accumulating  
evidence shows that all stages of the schistosome could secrete 
exosome-like vesicles that contain numerous parasite miRNAs 
and that these vesicles could transport their cargo miRNAs to host 
cells, where the parasite-derived miRNAs regulated host gene 
expression, thereby exerting their effects on the occurrence and  
progression of host disease during infection43–45.

Conclusions
The type 2 immune response is the central regulator of disease 
progression in schistosomiasis. The role of alarmin cytokines 
in schistosomiasis has been intensively studied; however, the 
results from different studies have been inconsistent. Further 
research is needed to address these inconsistences. Host  
miRNAs are crucial regulators of disease progression and tar-
geting host-dysregulated miRNAs is a potential strategy to treat 
this chronic disease. Parasite infection induces the expression of  
certain cytokines that regulate the expression of host  
miRNAs through various signaling pathways, which contribute 
to modulating the occurrence and progression of host diseases.  
Parasite-derived miRNA-mediated cross-species regulation of 
host genes might promote various disease processes or strengthen 
host resistance to the diseases. These studies have already broad-
ened our understanding of the mechanisms of host–schistosome  
interaction and may be translated into new therapeutic targets.
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