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INTRODUCTION

Recently, analytical methods for measuring volatile organic 
compounds (VOCs) in exhaled air with high resolution 
and high throughput have been extensively developed. 
Yet, the application of machine learning methods for 
fingerprinting VOC profiles in the breathomics is still in 
its infancy. A recent literature suggests that the potential 
utility of breath analysis is an alternative noninvasive 
methodology.

In clinical medicine, reaching a conclusion about a patient’s 
symptoms, when presented with complex and sometimes 
contradictory clinical information, is really difficult. 
A clinician usually makes decisions based on a set of 
measurements and observations about a patient and 
evaluates all the factors subjectively to reach a diagnosis. 
However, it is obvious that clinicians may have great 
difficulty in analyzing enormous amount of clinical and 
histopathological data. Therefore, more sophisticated 
quantitative techniques are needed to help clinicians 
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Breathomics is the metabolomics study of exhaled air. It is a powerful emerging metabolomics research field that mainly focuses on 
health-related volatile organic compounds (VOCs). Since the quantity of these compounds varies with health status, breathomics assures 
to deliver noninvasive diagnostic tools. Thus, the main aim of breathomics is to discover patterns of VOCs related to abnormal metabolic 
processes occurring in the human body. Classification systems, however, are not designed for cost-sensitive classification domains. 
Therefore, they do not work on the gastric carcinoma (GC) domain where the benefit of correct classification of early stages is more than 
that of later stages, and also the cost of wrong classification is different for all pairs of predicted and actual classes. The aim of this work 
is to demonstrate the basic principles for the breathomics to classify the GC, for that the determination of VOCs such as acetone, carbon 
disulfide, 2-propanol, ethyl alcohol, and ethyl acetate in exhaled air and stomach tissue emission for the detection of GC has been analyzed. 
The breath of 49 GC and 30 gastric ulcer patients were collected for the study to distinguish the normal, suspected, and positive cases using 
back-propagation neural network (BPN) and produced the accuracy of 93%, sensitivity of 94.38%, and specificity of 89.93%. This study 
carries out the comparative study of the result obtained by the single- and multi-layer cascade-forward and feed-forward BPN with different 
activation functions. From this study, the multilayer cascade-forward outperforms the classification of GC from normal and benign cases.
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consider all the data and make better diagnoses. Some 
sophisticated quantitative techniques are proposed to the 
doctors by computer scientists through machine-learning 
techniques to help in this decision-making process.[1]

Breath diagnostics, the measurement of volatile chemicals 
in human breath, is currently receiving attention as a 
technique for the detection of disease which, being 
noninvasive in nature, is particularly suited to screening 
for presymptomatic disease in healthy populations.[2] An 
entirely noninvasive methodology, breath analysis, has the 
potential to deliver accurate and reproducible diagnostic 
tests without risk to the patient, making it ideal for 
population-based health screening as well as individual 
testing in response to symptom occurrence. Breath analysis 
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relies on the fact that disease states alter cellular metabolite 
levels, these being transferred to the bloodstream and, for 
volatile compounds, subsequently discerned in the breath.[3]

Gastric carcinoma (GC) is the second most common cause of 
cancer-related deaths among Indian men and women.[4] GC 
ranks among the five most common cancer among young 
Indian men and women (aged 15–44 years) based on a study 
from Karnataka.[5] It has been estimated that the number of 
new GC cases is about 34,000 (with a male predominance 
ratio of 1:2) with a progressive increase postulated such 
that by the year 2020, there would be approximately 
50,000 new GC cases annually in India.[6]

The Gastric Carcinoma Domain

GC is a disease in which cancer (malignant) cells are found 
in the tissues of the stomach. The stomach is a J-shaped 
organ in the upper abdomen where the food is digested. 
Food reaches the stomach through a tube called the 
esophagus that connects the mouth to the stomach. After 
leaving the stomach, partially digested food passes into the 
duodenum then the small intestine and then into the large 
intestine called the colon. Sometimes, cancer can be in the 
stomach for a long time and can grow very large before it 
causes any symptom. In the early stages of the stomach 
cancer, a patient may have indigestion and stomach 
discomfort, a bloated feeling after eating, mild nausea, 
loss of appetite, or heartburn. In more advanced stages of 
cancer of the stomach, the patient may have blood in stool 
and vomiting, weight loss, or pain in the stomach. Some 
factors that increase the chances of getting stomach cancer 
are a stomach disorder, called atrophic gastritis, disorder 
of the blood, called anemia, or a hereditary condition of 
growths, called polyps, in the large intestine. Stomach 
cancer is difficult to detect in its early stages because its 
early symptoms are absent or mild. Unfortunately, this is a 
highly aggressive cancer and the overall survival rate is very 
low. The chance of recovery (prognosis) and the choice of 
treatment depend on the stage of cancer, whether it is just 
in the stomach or it has spread to other places, and the 
patient’s general state of health.[1]

Classification of Gastric Carcinoma

If there are symptoms of cancer, a physician will usually 
order an upper gastrointestinal X-ray or he may also 
look inside the stomach with a thin, lighted tube called 
a gastroscope. This procedure is called gastroscopy, and 
it is useful in the detection of most stomach cancer. For 
this test, the gastroscope is inserted through the mouth 
and guided into the stomach and the stomach mucosa is 
examined. According to the Gastroenterological Endoscopy 
Society, based on the visual inspection of the mucosal 
surface of the patient’s stomach, GC is classified mainly into 
three categories: early GC (EGC) and advanced GC (AGC) 

and the remaining ones which cannot be included in these 
categories.[7]

EGC is defined as GC confined to the mucosa or submucosa, 
regardless of the presence or absence of lymph node.[8] On 
the other hand, in AGC, as defined by Bormann, the tumor is 
invaded into the proper muscle layer beyond the stomach.[9] 
Moreover, knowledge of these types permits a preliminary 
assessment of tumor spread in stomach.

Chemical	analysis	of	the	breath	samples	showed	that	five	VOCs	
(2-propenenitrile, 2-butoxyethanol, furfural and 6-methyl-
5-hepten-2-one and isoprene) were significantly elevated 
in patients with GC and/or peptic ulcer as compared with 
less severe gastric conditions. The encouraging preliminary 
results presented here have initiated a multicenter clinical 
trial with considerably increased sample size to confirm the 
observed breath prints.

This study has been organized into five sections. Section  2 
presents the experimental setup of Breath analysis. 
Section 3 elaborates the methodology of collecting Breath 
samples from the volunteers. Section 4 discusses the 
experimental method and materials. Section 5 presents the 
experimental analysis results. In Section 6, conclusion and 
further research scope are presented.

EXPERIMENTAL SETUP

Study Design

The primary aim of this study was to distinguish GC 
patients from patients with benign gastric conditions who 
may present similar clinical symptoms. The secondary 
aim was to distinguish subpopulations in the malignant 
and nonmalignant study groups. This study with a limited 
patient group of 161 (out of 236 patients after application 
of the exclusion criteria) was designed as a feasibility test of 
a nonmaterial-based breath test for GC, with a more realistic 
ration of malignant to nonmalignant gastric conditions.

Sensor Array

Three screen-printed commercially available metal oxide 
semiconductor gas sensor arrays are used to construct the 
proposed Breath analyzer. The gas sensors are manufactured 
and commercialized by Figaro USA Inc. The resulting array, 
populated by sensor devices tagged by the manufacturer as 
TGS813, TGS822, and TGS2620, is placed into a test chamber. 
The obtained sensor element is mounted onto a stainless 
steel substrate with head of chlorinated polyvinyl chloride, 
and then connected by lead wires to the pins of the sensor 
package. To generate the required dataset, connect the said 
test chamber to a data acquisition card (DAQ), which provides 
versatility for conveying the chemical compounds of interest 
at the desired concentrations to the sensing chamber. The 
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response of the gas sensor array was measured when the 
operating temperature of sensors which, according to the 
deterministic one-to-one look-up table provided by the 
manufacturer (Figaro USA Inc., http://www.figarosensor.
com), is attained through a built-in heater that is driven by an 
external	DC	voltage	source	set	at	5V.	The	sensor	response	is	
read-out in the form of the resistance across the active layer of 
each sensor; hence, each measurement produces a 6-channel 
time series sequence. The DAQ collects data from the gas 
sensors and controls the analog voltage signal to every sensor 
heater. The experimental setup is shown in Figure 1.

COLLECTION OF BREATH SAMPLES

Exhaled alveolar breath was collected in a controlled 
manner, none of the volunteers consumed food, tobacco, 
or alcohol during an (overnight) 12 h interval before the 
breath collection. All volunteers were asked to rest for 1 
h before the breath sampling and did not perform heavy 
physical exercise 24 h before taking the breath sample. 
All breath samples were collected in the same clinical 
environment and in duplicates (for the dual analysis) from 
each volunteer. The breath samples were characterization 
of the breath samples with an array of sensors, combined 
with a statistical pattern recognition algorithm, with the 
aim of identifying specific patterns (the so-called breath 
prints) for GC and nonmalignant gastric conditions.

Samples are collected through stainless steel chamber 
of 140 ml volume which is standardized. Samples could 
be collected even from the elderly or bedridden patients 
without causing discomfort. The collection period was 
1.5 min at 0.5 per 1 min, and the dead space of samples 
is	 removed	 by	 setting	 the	 system	 timer.	 Volunteers	 are	
from various hospitals and dispensary in and around the 
Tirunelveli district, Tamil Nadu, India. All subject samples 
were collected in random order, sample collection from 
subject volunteer is shown in Figure 2.

Breath samples were collected after written informed 
consent from 270 volunteers, aged 21–73 years, at the 
CSI Jayaraj Annapackiam Mission Hospital and CSI Bell 
Pins Inndrani Chelladurai Mission Hospital, Palayamkottai, 
Tirunelveli. All volunteers underwent upper digestive 
endoscopy after recruitment according to the hospital’s 
routine clinical protocol. Biopsy samples were taken for 
histopathology if lesions (including ulceration of the 
stomach lining) were visually observed.

The following exclusion criteria were applied before 
sample collection: patients who have undergone gastric 
resection in the past; patients who were found to suffer 
from endoscopically detectable precancerous conditions 
(e.g., mucosal atrophy); and patients who took medication 
affecting gastric acid secretion (e.g., proton pump inhibitors) 
and/or antibiotics during an interval of 1 month before the 
breath test. The reason for the latter exclusion criterion 
for this study was that previous medication could strongly 
affect the composition of the exhaled breath.

After excluding, we employed the breath samples of 161 
patients were analyzed for this study: 49 GC patients, 
19 patients with benign gastric ulcers, and 11 patients 
with less severe gastric conditions are shown in Table 1. 
The less severe stomach conditions cases included with 
no endoscopic abnormalities (82) and with endoscopic 
abnormalities without ulceration (11).

Ethical approval was obtained from the Ethics Committee of 
Periyar University, Salem, Tamil Nadu, India, and the clinical 
trial was registered. The treatment decisions were based 
solely on the conventional diagnosis described above. 

Table 1: Composition of the subject database
Type of subject Number Gender 

(male/female)
Age Diagnosis

Healthy 82 34/48 20‑32
Abnormalities 
without ulceration

11 9/2 24‑35 Endoscopy 
only

Gastric ulcer 19 11/8 45‑58 Endoscopy 
with BiopsyGastric cancer 49 25/24 38‑55

Figure 1: Electronic‑nose system using data acquisition card Figure 2: Collection of breath samples from cancer volunteers
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Neither the patients nor their treating physicians were 
informed of the results of the breath tests.

EXPERIMENTAL RESULTS

Data Sampling

The dataset consists of experimentally obtained 
161 observations. The dataset was divided into ten disjoint 
subsets, namely, training set containing 145 observations 
(90% of total observations) and test set comprising 
16 observations (10% of total observations). The overall 
acceptability was used as output parameter for developing 
the artificial intelligence tool.

Artificial Neural Networks

Cascade-forward back-propagation (CFBP) and feed-forward 
back-propagation (FFBP) artificial intelligence models [Figures 

3-6] were trained with the breath sampled dataset. Different 
combinations of several internal parameters, i.e., data 
preprocessing, data partitioning approach, number of hidden 
layers, number of neurons in each hidden layer, transfer 
function, error goal, etc., were attempted. Different variants 
of the back-propagation algorithm were tried here: Levenberg-
Marquardt (LM), Bayesian regularization, BFGS Quasi-Newton, 
Resilient (RP), scaled conjugate gradient, conjugate gradient 
with Powell/Beale restarts, conjugate gradient with Fletcher-
Powell, conjugate gradient with Polak-Ribiére, one step 
secant, variable learning rate gradient descent, gradient 
descent with momentum, gradient descent shown in Tables 
2-5 with different activation functions such as radial basis, 
normalized radial basis, triangular basis, hyperbolic tangent 
sigmoid, Elliot symmetric sigmoid, Elliot 2 symmetric sigmoid, 
hard-limit, symmetric hard-limit, competitive, soft max shown 
in Tables 6-9. RP algorithm produced better results, during 
training of single- and multi-layer FFBP neural network as 
shown in Figures 7-12; however, during training of multilayer 

Figure 3: Network diagram of single‑layer feed‑forward neural network classifiers

Figure 4: Network diagram of multilayer feed‑forward neural network classifiers

Figure 5: Network diagram of single‑layer cascade‑forward neural network classifiers

Figure 6: Network diagram of multilayer cascade‑forward neural network classifiers
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Table 2: Classification accuracy of single‑layer feed‑forward 
neural network
Training algorithm Percentage MSE MAE SSE SAE

LM 90.14 0.124 0.235 1.867 3.758
BR 90.47 0.096 0.192 1.543 3.062
BFG 92.39 0.09 0.185 1.253 2.975
RP 92.54 0.086 0.203 1.378 3.252
SCG 91.3 0.089 0.208 1.422 3.326
CGB 91.58 0.087 0.209 1.387 3.341
CGF 91.25 0.09 0.211 1.442 3.379
CGP 91.17 0.09 0.209 1.43 3.356
OSS 92.01 0.098 0.198 1.325 3.188
GDX 90.43 0.108 0.226 1.628 3.616
GDM 85.39 0.226 0.332 3.623 5.317
GD 91.09 0.09 0.214 1.443 3.418
Average 90.81 0.095 0.198 1.489 3.185
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 3: Classification accuracy of multilayer feed‑forward 
neural network
Training algorithm Percentage MSE MAE SSE SAE

LM 91.42 0.094 0.186 1.503 2.974
BFG 93.04 0.071 0.161 1.136 2.581
RP 93.17 0.077 0.153 1.111 2.444
SCG 92.09 0.083 0.197 1.325 3.104
CGB 92.94 0.072 0.173 1.158 2.763
CGF 92.03 0.083 0.19 1.33 3.038
CGP 92.41 0.076 0.176 1.224 2.822
OSS 92.36 0.079 0.181 1.27 2.892
GDX 91.24 0.093 0.21 1.484 3.357
GDM 87.83 0.161 0.289 2.583 4.621
GD 91.58 0.085 17.21 1.372 3.185
Average 91.83 0.088 0.33 1.408 3.071
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 4: Classification accuracy of single‑layer cascade‑forward 
neural network
Training algorithm Percentage MSE MAE SSE SAE

LM 92.25 0.1 0.228 1.604 3.655
BR 92.39 0.087 0.186 1.185 2.969
BFG 92.26 0.092 0.222 1.465 3.569
RP 92.49 0.104 0.244 1.67 3.897
SCG 92.06 0.093 0.23 1.486 3.687
CGB 92.3 0.089 0.222 1.436 3.547
CGF 92.16 0.098 0.224 1.459 3.59
CGP 92.1 0.089 0.222 1.418 3.551
OSS 91.78 0.099 0.236 1.586 3.773
GDX 92.14 0.092 0.224 1.452 3.584
GDM 82.88 0.919 0.638 14.71 10.21
GD 92.03 0.096 0.231 1.539 3.693
Average 91.4 0.168 0.261 2.673 4.188
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 5: Classification accuracy of multilayer cascade‑forward 
neural network
Training algorithm Percentage MSE MAE SSE SAE

LM 92.62 0.089 0.213 1.432 3.433
BFG 92.35 0.086 0.213 1.381 3.405
RP 92.38 0.114 0.25 1.816 4.009
SCG 92.21 0.097 0.223 1.419 3.571
CGB 92.34 0.091 0.22 1.454 3.518
CGF 92.29 0.09 0.224 1.412 3.567
CGP 92.18 0.09 0.225 1.446 3.599
OSS 91.99 0.095 0.23 1.512 3.68
GDX 92.13 0.098 0.238 1.562 3.805
GDM 91.91 0.281 0.309 4.823 5.099
GD 91.91 0.093 0.227 1.491 3.629
Average 92.21 0.111 0.233 1.795 3.755
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton
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Figure 7: Resilient back‑propagation training algorithm outperformance: 
good in classification accuracy of single‑layer feed‑forward neural network

0

1

2

3

4

5

6

LM B
R

B
FG R

P

S
C

G

C
G

B

C
G

F

C
G

P

O
S

S

G
D

X

G
D

M

G
D

E
rr

or
 R

at
e

Training Algorithms

MSE

MAE

SSE

SAE

Figure 8: Resilient back‑propagation training algorithm outperformance: 
good in error rate of single‑layer feed‑forward neural network
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Figure 9: Resilient back‑propagation training algorithm outperformance: 
good in classification accuracy of multilayer feed‑forward neural network

Table 6: Classification accuracy of single‑layer feed‑forward 
neural network based on activation functions
Activation function Percentage MSE MAE SSE SAE

RBN 90.8 0.107 0.22 1.537 3.514
NRBN 90 0.106 0.226 1.688 3.599
TBN 90.97 0.1 0.218 1.605 3.52
HTSN 90.88 0.1 0.217 1.587 3.465
ESSN 90.76 0.1 0.217 1.594 3.477
E2SSN 91.03 0.124 0.224 1.903 3.587
HLN 90.85 0.108 0.219 1.633 3.504
SHLN 91.71 0.093 0.203 1.433 3.246
CN 90.45 0.113 0.219 1.661 3.508
SMN 90.68 0.113 0.223 1.808 3.571
Average 90.81 0.106 0.219 1.645 3.499
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 7: Classification accuracy of multilayer feed‑forward 
neural network based on activation functions
Activation function Percentage MSE MAE SSE SAE

RBN 92.09 0.084 0.173 1.255 2.77
NRBN 92.15 0.077 0.172 1.23 2.754
TBN 91.84 0.082 0.179 1.304 2.864
sHTSN 91.62 0.081 0.176 1.293 2.823
ESSN 91.58 0.081 0.179 1.299 2.82
E2SSN 91.83 0.079 0.177 1.257 2.832
HLN 91.75 0.081 0.175 1.292 2.8
SHLN 91.77 0.08 0.175 1.277 2.798
CN 91.79 0.094 0.187 1.498 2.996
SMN 90.68 0.113 0.223 1.808 3.571
Average 91.82 0.082 0.182 1.291 2.815
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 8: Classification accuracy of single‑layer cascade‑forward 
neural network based on activation functions
Activation function Percentage MSE MAE SSE SAE

RBN 91.33 0.19 0.271 3.023 4.339
NRBN 91.49 0.154 0.254 2.38 4.059
TBN 91.35 0.151 0.256 2.414 4.098
HTSN 91.36 0.123 0.249 1.963 3.98
ESSN 91.56 0.211 0.269 3.366 4.297
E2SSN 91.24 0.19 0.266 2.926 4.255
HLN 91.4 0.146 0.254 2.329 4.061
SHLN 91.5 0.137 0.248 2.181 3.963
CN 91.26 0.162 22.08 2.585 4.188
SMN 91.56 0.168 0.262 2.672 4.198
Average 91.40 0.163 2.441 2.584 4.144
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 9: Classification accuracy of multilayer cascade‑forward 
neural network based on activation functions
Activation function Percentage MSE MAE SSE SAE

RBN 92.24 0.087 0.204 1.658 3.378
NRBN 92.05 0.094 0.214 1.501 3.417
TBN 92.27 0.153 0.234 2.446 3.749
HTSN 92.2 0.088 0.211 1.408 3.373
ESSN 92.23 0.098 0.216 1.46 3.454
E2SSN 92.32 0.119 0.217 1.895 3.478
HLN 92.15 0.088 0.208 1.395 3.322
SHLN 92.18 0.119 0.218 1.896 3.506
CN 92.36 0.085 0.207 1.33 3.306
SMN 92.11 0.092 0.215 1.467 3.447
Average 92.21 0.102 0.214 1.646 3.443
MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network
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Figure 10: Resilient back‑propagation training algorithm outperformance: 
good in error rate of multilayer feed‑forward neural network

CFBP neural network, LM produces better results as shown in 
Figures 13 and 14. Normalized radial basis, symmetric hard-
limit, competitive, soft max activation function supports to 

the algorithms outperformance are  shown in Figures 15-22. 
There is no generalized method to determine the optimum 
values for number of hidden layers, neurons in each hidden 
layer, etc., as they are working of expected intelligence.
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Figure 11: Resilient back‑propagation training algorithm outperformance: 
good in classification accuracy of single‑layer cascade‑forward neural network
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Figure 12: Resilient back‑propagation training algorithm outperformance: 
good in error rate of single‑layer cascade‑forward neural network
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Figure 13: Levenberg‑Marquardt back‑propagation training algorithm 
outperformance: good in classification accuracy of multilayer cascade‑
forward neural network
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Figure 14: Levenberg‑Marquardt back‑propagation training algorithm 
outperformance: good in error rate of multilayer cascade‑forward neural 
network
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Figure 15: Symmetric hard‑limit activation function outperformance: good 
in classification accuracy of single‑layer feed‑forward neural network
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Figure 16: Symmetric hard‑limit activation function outperformance: good 
in error rate of single‑layer feed‑forward neural networkInitially, the reduced feature set selected from the feature 

selection methods is normalized between zero and one. 
That is each value in the feature set is divided by the 
maximum value from the set. These normalized values are 
assigned to the input neurons.

The number of hidden neurons is greater than or equal to 
the number of input neurons. Moreover, there is only one 
output neuron. Initial weights are assigned randomly. The 

output from each hidden neuron is calculated using the 
sigmoid function:

S
e1

1
1

=
+ −x , where λ = 1 and x w k

i

=∑ ih i  (1)

where wih is the weight assigned between input and 
hidden layer and k is the input value. The output 
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Figure 17: Normalized radial basis activation function outperformance: 
good in classification accuracy of multilayer feed‑forward neural network
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Figure 18: Normalized radial basis activation function outperformance: 
good in error rate of multilayer feed‑forward neural network
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Figure 19: Elliot symmetric sigmoid and soft max activation function 
outperformance: good in classification accuracy of single‑layer cascade‑
forward neural network
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Figure 20: Elliot symmetric sigmoid and soft max activation function 
outperformance: good in error rate of single layer cascade‑forward neural 
network
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Figure 21: Competitive activation function outperformance: good in 
classification accuracy of multilayer cascade‑forward neural network
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Figure 22: Competitive activation function outperformance: good in error 
rate of multilayer cascade‑forward neural network

from the output layer is calculated using the sigmoid 
function.

S
e2

1
1

=
+ −x , where λ = 1 and x w S

i

=∑ ho i  (2)

where who is the weight assigned between hidden and 
output layer and Si is the output value from hidden 
neurons. S2 is subtracted from the desired output. 

Using this error (e) value, the updating of weight is 
performed as:

δ = −eS S2 21( )  (3)

The weights assigned between the input and the hidden 
layer and the hidden and output layer are updated as:
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w w n Sho ho= + ( )δ 1  (4)

w w n kiih ih= + ( )δ  (5)

where n is the learning rate and k is the input value. Again the 
output is calculated from the hidden and output neurons. Then, 
the error (e) value is checked and the weights get updated.[2] 
This procedure is repeated till the target output is equal to the 
desired output. The algorithm of back-propagation classifier 
for classification is shown below.[10]

Back‑propagation neural network (C, D)
 C, Conditional features; D, Decision feature

1. Normalize the feature between 0 and 1 and assigned to input neurons
2. Initialize random weight

3. Compute each hidden neuron,
 
S

e1

1
1

=
+ −λx , x w k

i

=∑ ih i

4. Compute output layer, S
e2

1
1

=
+ −λ x ,

 
x w S

i

=∑ ho i

5.  Subtract S2 from the desired output. Using error (e) value, compute 
weight as: δ = eS2(1-S2)

6. Update the weights using this δ value
7. who = who + (nδ S1)
8. wih = wih + (nδ k1)
Perform steps 4 to 8 with the updated weights, till the target output is 
equal to the desired output

Feed-forward back-propagation model
FFBP artificial intelligence model consists of input, hidden, and 
output layers. Back-propagation learning algorithm was used 
for learning these networks. During training this network, 
calculations were carried out from input layer of network 
toward output layer, and error values were then propagated to 
prior layers. Feed-forward networks often have one or more 
hidden layers of sigmoid neurons followed by an output layer 
of linear neurons. Multiple layers of neurons with nonlinear 
transfer functions allow the network to learn nonlinear and 
linear relationships between input and output vectors. The 
linear output layer lets the network produce values outside 
the range –1 to +1. On the other hand, outputs of a network 
such as between 0 and 1 are produced, then the output layer 
should use a sigmoid transfer function.[11]

Cascade-forward back-propagation model
CFBP models are similar to feed-forward networks but 
include a weight connection from the input to each layer 
and from each layer to the successive layers. While two-layer 
feed-forward networks can potentially learn virtually any 
input-output relationship, feed-forward networks with 
more layers might learn complex relationships more quickly. 
For example, a three-layer network has connections from 
layer 1 to layer 2, layer 2 to layer 3, and layer 1 to layer 3. 
The three-layer network also has connections from the 
input to all three layers. The additional connections might 
improve the speed at which the network learns the desired 
relationship.[12] CFBP artificial intelligence model is similar 
to FFBP neural network in using the back-propagation 
algorithm for weights updating, but the main symptom 
of this network is that each layer of neurons related to all 
previous layer of neurons.[11]

The performance of CFBP and FFBP were evaluated using 
mean squared normalized error, mean absolute error, sum 
squared error, and sum absolute error technique.

The functionality of 12 different training algorithms, which 
are used in this work, is synopsized in Table 10. A short 
description of all training algorithms is presented in Table 

Table 10: Description of artificial neural networks training 
algorithms
Description

Levenberg‑Marquardt algorithm[13,14]

Bayesian regularization[15]

BFGS Quasi‑Newton[16]

Resilient[17]

Scaled conjugate[18]

Conjugate gradient with Powell/Beale restarts[19‑21]

Conjugate gradient with Fletcher‑Powell[19,22]

Conjugate gradient with Polak‑Ribiére[19,21]

One step secant[23]

Variable learning rate gradient descent[24]

Gradient descent with momentum[24]

Gradient descent[24]

SLFF MLFF SLCF MLCF

SAE 3.185 3.071 4.188 3.755

SSE 1.489 1.408 2.673 1.795

MAE 0.198 0.33 0.261 0.233

MSE 0.095 0.088 0.168 0.111

Accuracy 90.81 91.82 91.4 92.21
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Figure 23: Classification accuracy outperformance in different neural 
network based on algorithms

SLFF MLFF SLCF MLCF

SAE 3.499 2.815 4.144 3.443

SSE 1.645 1.291 2.584 1.646

MAE 0.219 0.182 2.441 0.214

MSE 0.106 0.082 0.163 0.102

Accuracy 90.81 91.82 91.4 92.21
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Figure 24: Classification accuracy outperformance in different neural 
network based on activation function
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10[25] while more analytical representations are shown 
in Table 10.[13-24] The basic steps of the back-propagation 
algorithm have been described in several textbooks.[26,27] 
The functionality of ten different activation functions, 
which are used in this work, is synopsized in Table 11.[28,29] 
The overall performance of the neural network based on 
the algorithm and activation functions are shown in Figures 
23 and 24.

CONCLUSION

In this study, neural network has been used to classify the 
GC as malignant or benign or normal. Based on the obtained 
results, the RP algorithm produced, up to the mark of 
classification accuracy (92.54%, 93.17%, and 92.49%), during 

training of single- and multi-layer FFBP neural network; 
however, by multilayer CFBP neural network, LM (92.62%) 
produces better classification accuracy. Normalized 
radial basis (92.15%), symmetric hard-limit (91.71%), Elliot 
symmetric sigmoid (91.56%), competitive (92.36%), soft 
max (91.56%) activation function supports the algorithms 
performance  for the better classification. It was also 
observed that in general, multi hidden layer network 
provided the better classification accuracy compared 
to the single hidden layer network to classify the breath 
samples of GC. In the near future, we need to standardize 
the procedures and develop a learning system widely 
acceptable by breath analysts worldwide. In this way, we 
will be able to reduce deaths due to GC, the second leading 
cause of cancer deaths worldwide.

Table 11: Description of artificial neural networks activation functions
Activation function Input/output relation Icon

Radial basis exp (−n2)
Normalized radial basis exp (−n2)/sum (exp [−n2])

Triangular basis 1 ‑ abs (n), if−1≤ n ≤1
0, otherwise

Hyperbolic tangent sigmoid 2/(1+exp [−2 × n]) − 1
(x × n)/(1 + |x × n|)
n × 1/([1 + |x × n|] × [1 + |x × n|])

Elliot symmetric sigmoid
Elliot 2 symmetric sigmoid

Hard‑limit 1, if n ≥
0, otherwise

Symmetric hard‑limit 1 if n ≥
0, −1 otherwise

Competitive 1, neuron with max n
0, all other neurons

Soft max exp (n)/sum (exp [n])
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