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Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk 
Factor of Neurodegenerative Diseases 
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Abstract: Background: Neurodegenerative diseases, such as Alzheimer's disease patients (AD), Hun-
tington's disease (HD) and Parkinson’s disease (PD), are common causes of morbidity, mortality, and 
cognitive impairment in older adults.  
Objective: We aimed to understand the transcriptome characteristics of the cortex of neurodegenera-
tive diseases and to provide an insight into the target genes of differently expressed microRNAs in the 
occurrence and development of neurodegenerative diseases.  
Methods: The Limma package of R software was used to analyze GSE33000, GSE157239, GSE64977 
and GSE72962 datasets to identify the differentially expressed genes (DEGs) and microRNAs in the 
cortex of neurodegenerative diseases. Bioinformatics methods, such as GO enrichment analysis, 
KEGG enrichment analysis and gene interaction network analysis, were used to explore the biological 
functions of DEGs. Weighted gene co-expression network analysis (WGCNA) was used to cluster 
DEGs into modules. RNA22, miRDB, miRNet 2.0 and TargetScan7 databases were performed to pre-
dict the target genes of microRNAs. 
Results: Among 310 Alzheimer's disease (AD) patients, 157 Huntington's disease (HD) patients and 
157 non-demented control (Con) individuals, 214 co-DEGs were identified. Those co-DEGs were fil-
tered into 2 different interaction network complexes, representing immune-related genes and synapse-
related genes. The WGCNA results identified five modules: yellow, blue, green, turquoise, and brown. 
Most of the co-DEGs were clustered into the turquoise module and blue module, which respectively 
regulated synapse-related function and immune-related function. In addition, human microRNA-4433 
(hsa-miR-4443), which targets 18 co-DEGs, was the only 1 co-up-regulated microRNA identified in 
the cortex of neurodegenerative diseases. 
Conclusion: 214 DEGs and 5 modules regulate the immune-related and synapse-related function of 
the cortex in neurodegenerative diseases. Hsa-miR-4443 targets 18 co-DEGs and may be a potential 
molecular mechanism in neurodegenerative diseases' occurrence and development. 
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1. INTRODUCTION

Neurodegenerative diseases, such as Alzheimer's disease
patients (AD), Huntington's disease (HD) and Parkinson’s 
disease (PD), are common causes of morbidity, mortality, 
and cognitive impairment in older adults [1]. The increasing 
prevalence of neurodegenerative diseases brings excellent 
social and economic burdens and has become a global prob-
lem [2]. Therefore, the pathology and therapy of neuro-
degenerative diseases urgently need to be studied. 

Cortex atrophy and dysfunction are common pathological 
characteristics of neurodegenerative diseases and are associ- 
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Xuzhou Medical University, Xuzhou, 209 Tong-Shan Road, Xuzhou, Jiang-
su, 221002, China; Tel: +86-516-83262650;
Fax: +86-516-83262650; E-mail: lichunxu2002@163.com.

ated with behavioral and emotional symptoms [3, 4]. The 
development of high throughput sequencing and bioinfor-
matics technology provides new ideas for the transcriptome 
of cortex in neurodegenerative diseases to study molecular 
mechanisms and therapeutic targets of neurodegenerative 
diseases [5-7]. Weighted gene co-expression network analy-
sis (WGCNA) is an efficient statistical method to describe 
the correlation patterns of expressed genes to find highly 
correlated gene clusters, known as modules, and to identify 
the characteristics of gene modules to find the molecular 
mechanisms involved in the occurrence and development of 
diseases and to screen biomarkers or potential therapeutic 
targets [8].  

MicroRNAs, small RNA molecules, are associated with 
numerous neurodegenerative diseases with their role in regu-
lating gene expressions by binding to target mRNAs [9]. 
Therefore, microRNAs and their target genes are intensely 
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studied as candidates for diagnostic and prognostic bi-
omarkers, as predictors of drug response and as therapeutic 
agents of diseases, including neurodegenerative diseases 
[10]. For instance, miR-101 [11], miR-153 [12] and miR-
339-5p [13] inhibit the expression of amyloid-β precursor 
protein. MicroRNA-346 upregulated amyloid-β precursor 
protein [14]. Prediction of target genes of differentially ex-
pressed microRNAs in neurodegenerative diseases could be 
performed by several databases, such as RNA22 
(https://cm.jefferson.edu/rna22/Precomputed/) [15], miRDB 
(http://mirdb.org/) [16, 17], miRNet 2.0 (https://www.mirnet. 
ca/miRNet/home.xhtml) [18] and TargetScan7 (http://www. 
cuilab.cn/transmir) [19].  

Here, in the present study, GSE33000, GSE157239, 
GSE64977 and GSE72962 datasets were analyzed to obtain 
more insight into the mRNA and microRNA transcriptome 
characteristics of the cortex of neurodegenerative diseases. 
GO and KEGG enrichment analyses, gene interaction net-
work analysis and WGCNA were performed on the differen-
tially expressed genes (DEGs) to profile functional and mo-
lecular mechanisms in the occurrence and development of 
neurodegenerative diseases. RNA22, miRDB, miRNet 2.0 
and TargetScan7 databases were accustomed to recognize 
the target genes of differently expressed microRNAs to find 
biomarkers or potential therapeutic targets of neurodegenera-
tive diseases. 

2. MATERIALS AND METHODS 

2.1. Data Set 

The data discussed in this publication were deposited in 
NCBI’s Gene Expression Omnibus and accessible through 
GEO Series accession numbers GSE33000, GSE157239, 
GSE64977 and GSE72962 (https://www.ncbi.nlm.nih.gov/ 
geo). GSE33000 dataset, including 310 AD patients, 157 HD 
patients, and 157 non-demented control (Con) individuals, 
was a gene expression dataset of human prefrontal cortex 
brain tissues [5]. The GSE157239 dataset was a microRNA 
expression dataset from the post-mortem temporal cortex of 
8 AD patients and 8 non-demented Con individuals [20]. 
GSE64977 dataset was a microRNA-seq expression from 28 
HD patients and 36 normal human (Con) post-mortem pre-
frontal cortex brain samples [21]. The GSE72962 dataset 
was microRNA profiles in 29 PD patients and 33 non-
demented Con individuals [22]. 

2.2. DEGs Analysis 

The Limma package of R language was applied to identi-
fy the DEGs and differential expressed microRNAs [23]. 
The mRNA and microRNA meeting |FC| > 2 and P-value < 
0.05 were the required data. The heat map and volcano plot 
were plotted using pheatmap and ggplot2 packages. 

2.3. Functional and Pathway Enrichment Analyses 

Both GO and KEGG pathways were the biological se-
quence analysis methods that could effectively cluster func-
tional genes into different biological processes, mainly used 
to study DNA and protein-related issues [24]. Next, the 
DAVID database (https://david.ncifcrf.gov/tools.jsp) took 
advantage of by performing GO and KEGG analyses on dif-

ferential expression genes. These analyses were mapped with 
Bioinformatics (http://www.bioinformatics.com.cn/). The P-
value and false discovery rate (FDR) were controlled at the 
0.05 threshold. 

2.4. Gene Interaction Network Analysis  

The gene interaction networks were analyzed by the 
STRING database version 11.0 (http://string-db.org) [25]. 
The interaction networks of differential expression genes 
were visualized by Cytoscape 3.6.0 software (http://www. 
cytoscape.org/). 

2.5. Weighted Gene Co-Expression Network Analysis 

The WGCNA package of R language was applied to per-
form weighted gene co-expression network analysis on the 
differential expression genes. In this study, 214 co-
differentially expressed genes were included in the weighted 
gene co-expression network model. The optimal soft thresh-
old (power) was selected as 10 and the min Module Size was 
[5]. The interaction networks of intramodular genes were 
visualized by Cytoscape 3.6.0 software. 

2.6. Prediction of Target Genes of Differentially Ex-
pressed microRNAs 

RNA22 (https://cm.jefferson.edu/rna22/Precomputed/) 
[15], miRDB (http://mirdb.org/) [16, 17], miRNet2.0 
(https://www.mirnet.ca/miRNet/home.xhtml) [18] and Tar-
getScan7 (http://www.cuilab.cn/transmir) [19] databases 
were accustomed to recognize the target genes of mi-
croRNAs. 

2.7. Statistics 

R 3.5.1 was used for statistical analysis. P values less 
than 0.05 were considered statistically significant. 

3. RESULTS 

3.1. DEGs in Prefrontal Cortex of Neurodegenerative 
Diseases 

The GSE33000 dataset included three groups of samples: 
310 AD patients, 157 HD patients and 157 non-demented 
Con individuals. Compared with the Con group, 571 DEGs 
were identified in the prefrontal cortex of the AD group, 
including 315 up-regulated genes and 256 down-regulated 
genes (Fig. 1A). In the HD group, 308 DEGs were identified 
compared with the Con group, including 177 up-regulated 
and 131 down-regulated genes (Fig. 1B). Among the total 
214 co-DEGs in AD and HD (Fig. 1C), 128 co-up-regulated 
genes (Fig. 1D) and 86 co-down-regulated genes (Fig. 1E) 
were found to represent the effect of gene expressions on 
neurodegenerative diseases. These 214 co-DEGs, functional 
and pathway enrichment analyses, gene interaction network 
analyses and WGCNA were further performed. 

3.2. Functional, Pathway enrichment and Gene Interac-
tion Network Analyses of DEGs in Neurodegenerative 
Diseases 

GO and KEGG analyses were performed to summarize 
the functional and pathway enrichment of the co-DEGs. In 
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Fig. (1). The differentially expressed genes in Alzheimer's disease and Huntington's disease. (A) The volcano plot of AD group compared 
with control group. (B) The volcano plot of HD group compared with control group. (C) The fold change of co-GEGs. (D) The Veen diagram 
of up-regulated genes. (E) The Veen diagram of down-regulated genes. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
Abbreviations: AD: Alzheimer's disease group. HD: Huntington's disease group. Con: control group. FC: fold change.  
 
GO analyses, co-DEGs were enriched in 80 biological pro-
cesses (BP) terms, [25] cellular component (CC) terms and 
[17] molecular function (MF) terms (Fig. S1). Among the 
BP terms, immune-related biological processes, such as in-
nate immune response, immune response and complement 
activation, and synapse-related biological processes, such as 
synapse, synaptic vesicle, presynaptic membrane and synap-
tic vesicle membrane, were enriched. Enrichment analysis of 
the KEGG pathway showed that co-DEGs were mainly re-
lated to 19 pathways (Fig. S2), such as the MAPK signaling 
pathway, staphylococcus aureus infection, and epithelial cell 
signaling in Helicobacter pylori infection. 

In the interactions network analyses, the 214 co-DEGs 
were filtered into 2 different interaction network complexes, 
containing 119 nodes and 349 edges (Fig. 2A and Table S1). 
The two different interaction network complexes were im-
mune-related genes and synapse-related genes. In addition, 
C1QB, CD14, FCER1G, GAD1, GFAP, SNAP25, TLR2 and 
TYROBP interacted with at least 16 co-DEGs, and were 
defined as the hub genes. The immune-related BP terms in 
GO analysis, such as defense response to fungus, response to 
interferon-gamma, and lipopolysaccharide-mediated signal-

ing pathway, are presented in Fig. (2B). The synapse-related 
GO terms, such as long-term synaptic potentiation, chemical 
synaptic transmission, synaptic vesicle membrane, and pre-
synaptic membrane, are presented in Fig. (2C). 

3.3. WGCNA of DEGs in Neurodegenerative Diseases  

According to the expression trend of genes between the 
AD, HD and Con groups, 214 co-DEGs were included in the 
weighted gene co-expression network model. In this study, 
the optimal soft threshold (power) was selected as 10 and the 
min Module Size as 5. By average linkage hierarchical clus-
tering, five modules were identified and represented in dif-
ferent colors, including yellow module, blue module, green 
module, turquoise module and brown module (Fig. 3A). 
Based on the WGCNA results, the interaction network of 
intramodular genes is presented in Figs. (3B-F). Most DEGs 
were clustered among the modules into turquoise and blue 
modules. The turquoise module was associated with the syn-
apse-related function (Fig. 3B and Table S2). The Blue 
module was associated with the immune-related function 
(Fig. 3C and Table S2). Besides, the brown module negative 
regulated growth (Fig. 3D), the yellow module was associat-
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Fig. (2). Gene interaction network analyses and functional enrichment of the co-differentially expressed genes (co-DEGs) in neurodegenera-
tive disease. (A) Gene interaction network analyses of co-DEGs. (B) Functional enrichment of the immune related co-DEGs. (C) Functional 
enrichment of the synapse related co-DEGs. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 
Abbreviations: AD: Alzheimer's disease group. HD: Huntington's disease group. Con: Control group. CC: Cell component. BP: Biological 
process. 
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Fig. (3). Weighted gene co-expression network analysis of the co-differentially expressed genes in in neurodegenerative disease. (A) Cluster 
dendrogram of co-differentially expressed genes. (B) Interaction network of intramodular genes in turquoise module. (C) Interaction network 
of intramodular genes in blue module. (D) Interaction network of intramodular genes in brown module. (E) Interaction network of intramodu-
lar genes in yellow module. (F) Interaction network of intramodular genes in green module. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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ed with the ribosome (Fig. 3E), and the green module regu-
lated MAPK signaling pathway (Fig. 3F). 

3.4. Hsa-miR-4443 Increased in Cortex of Neurodegener-
ative Diseases and Target 18 DEGs. 

The GSE157239 dataset included 8 AD patients and 8 
non-demented Con individuals. Compared with the Con 
group, 74 differentially expressed microRNAs were identi-
fied in the cortex of the AD group, including 32 up-regulated 
microRNAs and 32 down-regulated microRNAs (Fig. 4A). 
In GSE64977 dataset, 28 HD patients and 36 non-demented 
Con individuals were included. Compared with the Con 
group, 141 differentially expressed microRNAs were identi-
fied in the prefrontal cortex of the HD group, including 70 
up-regulated microRNAs and 71 down-regulated mi-
croRNAs (Fig. 4B). The GSE72962 dataset included 29 PD 
patients and 33 non-demented Con individuals. 173 differen-
tially expressed microRNAs were identified in the prefrontal 
cortex of the PD group, including 94 up-regulated mi-
croRNAs and 79 down-regulated microRNAs (Fig. 4C). 
Among the differentially expressed microRNAs, only 1 co-
up-regulated microRNA, human microRNA-4433 (hsa-miR-
4443), and no co-down-regulated microRNA were identified 
in neurodegenerative diseases (Figs. 4D and E). The present 
study was performed to predict the target genes of hsa-miR-
4443, RNA22, miRDB, miRNet 2.0 and TargetScan7 data-
bases. 18 co-DEGs were regulated by hsa-miR-4443 (Fig. 
4F). Among the 18 target DEGs, 13 genes were up-
regulated, and 5 genes were down-regulated in neurodegen-
erative diseases (Fig. 4G). 

4. DISCUSSION 

In the present study, GSE33000 dataset was analyzed to 
get more insight into the transcriptome characteristics of the 
cortex of neurodegenerative diseases. Among 310 AD pa-
tients, 157 HD patients and 157 non-demented Con individ-
uals, 214 co-DEGs, including 128 co-up-regulated genes and 
86 co-down-regulated genes, were identified. Those co-
DEGs were enriched into 80 biological processes (BP) 
terms, 25 cellular component (CC) terms, 17 molecular func-
tion (MF) terms and 19 KEGG pathways. In the interaction 
network analysis, the 214 co-DEGs were filtered into 2 dif-
ferent interaction network complexes, which represented 
immune-related genes and synapse-related genes. Based on 
the WGCNA results, a total of five modules, including yel-
low module, blue module, green module, turquoise module 
and brown module, were identified. Most co-DEGs were 
clustered into turquoise and blue modules, which respective-
ly regulated synapse-related and immune-related functions. 
In addition, GSE157239, GSE64977 and GSE72962 datasets 
were analyzed to identify the differentially expressed mi-
croRNAs in neurodegenerative diseases. Only 1 co-up-
regulated microRNA hsa-miR-4443 and no co-down-
regulated microRNA were identified in neurodegenerative 
diseases. Predicted by RNA22, miRDB, miRNet 2.0 and 
TargetScan7 databases, 18 co-DEGs were regulated by hsa-
miR-4443. 

Neurodegenerative diseases are classified according to 
primary clinical features (e.g., dementia, parkinsonism, or 
motor neuron disease), anatomic distribution of neurodegen-

eration (e.g., frontotemporal degenerations, extrapyramidal 
disorders, or spinocerebellar degenerations), or principal 
molecular abnormality [26]. In the present study, three prev-
alent neurodegenerative diseases, AD, HD and Parkinson's 
syndrome, were included. 128 co-up-regulated genes and 86 
co-down-regulated genes were identified in neurodegenera-
tive diseases. Based on the functional enrichment and gene 
interaction network analyses, immune-related and synapse-
related function was enriched by DEGs of neurodegenerative 
diseases. Interestingly, most immune-related DEGs were 
increased, and synapse-related DEGs were enriched in this 
study, indicating the serious neuroinflammation and synaptic 
impairments of the cortex in neurodegenerative diseases. The 
immune system is inextricably involved in shaping the brain 
during development by not only mediating damage but also 
regeneration and repair. The growing awareness has stimu-
lated therapeutic approaches to modulate the immune system 
in neurodegenerative diseases [27]. In gene interaction net-
work analyses, close connections were found between the 
immune-related DEGs and synapse-related DEGs. Then, 
implied neuroinflammation induces synaptic impairments to 
aggravate behavioral and emotional symptoms of neuro-
degenerative diseases. 

Supplement to bioinformatics analysis which mainly fo-
cuses on strong effect genes and genes with known func-
tions, WGCNA is to observe the function of genes with simi-
lar expression trend and weak effect genes [28]. WGCNA 
has been successfully applied in AD [29], Parkinson's syn-
drome [30], cancer [31], ischemic stroke [32] and other dis-
eases [33] to find the molecular mechanisms involved in the 
occurrence and development of diseases and to screen bi-
omarkers or potential therapeutic targets. In this study, five 
modules, including yellow, blue, green, turquoise, and 
brown, were identified based on the WGCNA results. Simi-
larly, with gene interaction network analyses, most of the co-
DEGs were clustered into synapse-related module (turquoise 
module) and immune-related module (blue module), which 
might be as a whole as the characteristic targets of neuro-
degenerative diseases. 

MicroRNAs and their target genes are intensely studied 
as candidates for diagnostic and prognostic biomarkers. For 
instance, miR-146a and miR-155 are involved in brain de-
velopment and neurodegeneration, and dysregulation of the-
se two miRNAs in AD is a potential therapeutical implica-
tion [34]. In addition, down-regulation of MiR-107 worsens 
spatial memory through suppression of the NF-κB signaling 
pathway and SYK in AD model mice [35]. In the present 
study, hsa-miR-4443 (miRbase accession MI0016786, 
http://www.mirbase.org/cgibin/mirna_entry.pl?acc=MI0016
786) was the only 1 co-differently expressed microRNA 
identified in this study. Hsa-miR-4443 was reported to be 
involved in several types of cancer and in the biology of the 
immune system, such as participating in the malignancy of 
breast cancer [36, 37], tumors of glial origin [38, 39] and 
head and neck squamous cell carcinoma [40], suppressing 
invasiveness of ovarian cancer [41] and colon cancer [42], 
promoting the resistance of non-small cell lung cancer cells 
to epirubicin [43, 44], downregulated in hepatocellular carci-
noma [45] peripheral blood mononuclear cells of non-
segmental vitiligo (NSV) patients [46] and acute Kawasaki 
disease [47, 48], and regulating T cell-mediated inflammato-
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Fig. (4). The differentially expressed microRNAs in neurodegenerative disease and the target DEGs of hsa-miR-4443. (A) The volcano plot 
of microRNAs in AD group compared with control group. (B) The volcano plot of microRNAs in HD group compared with control group. 
(C) The volcano plot of microRNAs in PD group compared with control group. (D) The Veen diagram of up-regulated microRNAs in neuro-
degenerative disease. (E) The Veen diagram of down-regulated microRNAs in neurodegenerative disease. (F) The Veen diagram of the target 
genes of hsa-miR-4443. (G) Heatmap of DEGs as target gene of hsa-miR-4443 by at least in two predct software. (A higher resolution / col-
our version of this figure is available in the electronic copy of the article). 
Abbreviations: AD: Alzheimer's disease group. HD: Huntington's disease group. PD: Parkinson’s disease. Con: control group. FC: fold 
change.  
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ry processes [49] and monocyte activation [50]. Although no 
studies on the roles of hsa-miR-4443 in neurodegenerative 
diseases have been reported yet, the effects of hsa-miR-4443 
on tumors of glial origin [38, 39] and immune cells [49, 50] 
indicated hsa-miR-4443 regulating glial cells and neuroim-
munity to participate in occurrence of neurodegenerative 
diseases.  

Among the 18 target DEGs, EMP1 [51], FKBP5 [52, 53], 
FPR1 [54, 55], GPR4 [56], MAFF [57], NFKBIA [58], 
S100A9 [59, 60], SLC14A1 [61], SLC7A2 [62], 
TNFRSF11B [63], LMO3 [64], NEFL [65], RGS4 [66], and 
SYT1 [67] were reported associated with neurodegenerative 
diseases. In a previous study, EMP1, the A2-astrocytes 
marker, was significantly decreased in Aβ-activated micro-
glia conditioned medium-treated astrocytes, indicating Aβ 
could indirectly activate A1 astrocytes by Aβ-activated mi-
croglia [68]. FKBP5, the FKB506 binding protein 51 gene, is 
a critical regulator of glucocorticoid receptor activity and 
HPA function. FKBP5 has been found regulative for tau oli-
gomerisation and Aβ toxicity [69]. While, lowering the lev-
els of FKBP5 reduced HTT in HD models both in vitro and 
in vivo [70]. FKBP5 knockout AD models exhibit few phe-
notypic changes or behavioral alterations [71, 72] and, tau 
levels were reduced throughout the brains of Fkbp5-/- mice 
[73, 74]. These results supported the modulation of FKBP5 
as a therapeutic target for neurological diseases. FPR1/2 was 
strongly increased in the cortex and hippocampus of 
APP/PS1 transgenic mice [75]. While, the FPR1/2 antago-
nist Boc2-treatment significantly improved spatial memory 
performance, reduced neuronal pathology, induced the ex-
pression of homeostatic growth factors, ameliorated micro-
glia reactivity and reduced the elevated levels of amyloid 
plaques in the hippocampus [54]. The expression of MAFF 
was increased in the hippocampus of AD patients and signif-
icantly increased in patients with Braak stage V-VI com-
pared to those with Braak stage III-IV. While, MAFF 
knockdown suppressed the increase of glutathione induced 
by Aβ, suggesting MAFF as a potential therapeutic target in 
AD [76]. NFKBIA, nuclear factor-κB inhibitor alpha, is the 
primary negative regulator of NF-κB, an important transcrip-
tion factor that has been suggested to have a role in synaptic 
plasticity by affecting LTP and neuronal health [77-79]. 
NFKBIA was reported upregulated in AD patients and could 
be used as a potential biomarker for AD [80, 81]. Previous 
studies found the pro-inflammatory protein S100A9 was 
correlated with Aβ(1-42) levels in cerebrospinal fluid sam-
ples of stable mild cognitive impairment individuals [82]. 
While, knockdown of S100A9 increased spatial reference 
memory in the Morris water maze task and Y-maze task, 
decreased Aβ neuropathology and phosphorylated tau, in-
creased expression of anti-inflammatory IL-10, and also de-
creased expression of inflammatory IL-6 and TNF-α in AD 
model mice [82, 83]. In a study of RNA-sequencing on stria-
tal tissue from a cohort of 5-y-old OVT73-line sheep ex-
pressing a human CAG-expansion HTT cDNA transgene, 
the levels of the urea transporter SLC14A1 significantly in-
creased in the OVT73 striatum, indicating that aberrant urea 
metabolism could be the primary biochemical disruption 
initiating neuropathogenesis in HD [84]. RGS4 was reported 
as a biomarker of schizophrenia [85]. Overexpression of  
 

RGS4 caused a comparable reduction in tau [86]. Neurofil-
ament light (NEFL) and synaptotagmin 1 (SYT1) were all 
significantly reduced in the hippocampus of 12-month-old 
AD mice, which expressed mutant (V717I) AβPP [87]. 
NEFL is also an established biomarker of early neuronal 
injury and axonal degeneration in preclinical AD [88] and 
correlated with tau inclusion formation at transcriptomic and 
proteomic levels [89]. While, NEFL deficiency significantly 
increased neocortical DN pathology, Aβ deposition, synapse 
vulnerability, and microgliosis in APP/PS1 mice. Thus, 
EEFL may have a role in protecting neurites from dystrophy 
and regulating cellular pathways related to the generation of 
Aβ plaques [90]. SYT1 have a regulatory role in membrane 
interactions during synaptic vesicle trafficking in the active 
synapse zone [91]. SYT1 positive correlated with the hippo-
campal expression of BDNF [92], and could regulate synap-
tic Aβ, Aβ level, and the Aβ42/40 ratio [93].  

Besides, HIF3A, PRELP, SCIN and DIRAS2 were novel 
discovered genes that also played an important role in the 
occurrence and development of neurodegenerative diseases. 
Future research should focus on the potential mechanisms of 
those genes in neuron cells, gail cells, C.elegans or mice 
models to identify therapeutic targets for reducing the risk of 
neurodegenerative diseases. 

In the present study, the DEGs were analyzed from the 
prefrontal cortex brain tissues of 310 AD patients, 157 HD 
patients, and 157 Con individuals. The differentially ex-
pressed microRNAs were identified from the temporal cor-
tex of 8 AD patients compared to 8 non-demented Con indi-
viduals, the prefrontal cortex of 28 HD patients compared to 
36 Con individuals, and the prefrontal cortex of 29 PD pa-
tients compared to 33 non-demented Con individuals. Alt-
hough all those diseases presented cortex atrophy, and the 
sub-regional atrophy differed [94]. Therefore, spatial tran-
scriptomics should be used in future studies [95]. Besides, 
we cannot confirm the cell type of the DEGs in the present 
study. Single-cell sequencing could be an effective method 
to find disease-related genes and RNA signatures of single 
cell type in the brain [96]. 

CONCLUSION 

In conclusion, 214 differentially expressed genes and 5 
modules regulate the immune-related and synapse-related 
function of the cortex in neurodegenerative diseases. Hsa-
miR-4443 targeting 18 co-DEGs may be a potential molecu-
lar mechanism in the occurrence and development of neuro-
degenerative diseases. Our results contribute to a better un-
derstanding of the molecular events of neurodegenerative 
diseases. Future research should focus on the potential 
mechanisms of Hsa-miR-4443 and the target genes to identi-
fy therapeutic targets for neurodegenerative diseases. 

LIST OF ABBREVIATIONS 

Hsa-miR-4443 = Human microRNA-4433 
AD = Alzheimer's Disease 
HD = Huntington's Disease 
PD = Parkinson’s Disease 
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DEGs = Differentially Expressed Genes 
WGCNA = Weighted Gene Co-expression Network 

Analysis 
FDR = False Discovery Rate 
CC = Cellular Component 
MF = Molecular Function 
BP = Biological Processes 
NSV = Non-segmental Vitiligo 
NEFL = Neurofilament Light 
SYT1 = Synaptotagmin 1 
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