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A B S T R A C T   

Tobacco smoking is the major cause of non-small-cell-lung cancer (NSCLC). However, it is barely known how 
smoking impact the tumor immune environment (TIME) of lung cancer. 

We integrated single-cell RNA-seq and bulk RNA-seq data from several studies to systematically study the 
impact of smoking on T cells in treatment naïve NSCLC patients. We defined a set of smoking-induced differ
entially expressed genes (SIDEGs) in different cells in TIME.. Specifically, we defined a smoking-related tumor- 
specific Treg subset, ADAM12+ CTLA4+ Tregs according to the trajectory analysis and highly express genes in 
cell adhesion pathways and lipid metabolism. Using independent datasets from treatment naïve patients, we 
found that the fraction of ADAM12+ CTLA4+ Tregs are significantly increased in patients with smoking history. 
Moreover, the fraction of ADAM12+ CTLA4+ Tregs are positively correlated with the fraction of exhausted T 
cells. Additionally, we reconstructed the spatial organization of the tumor immune microenvironment and found 
that ADAM12+ CTLA4+ Tregs more actively communicate with LAYN+CD8+ exhausted T cells compared with 
ADAM12− CTLA4+ Tregs. 

Our data demonstrate that smoking induced a unique subset of tumor-specific activated Tregs which interact 
with exhausted T cells in the TIME. Our findings not only explained how smoking impact the TIME but also 
provide new targets and biomarkers for precision immunotherapy of lung cancer.   

Introduction 

Non-small-cell lung cancer (NSCLC) accounts for ~85% of lung 
cancers and is the major cause of cancer-death [1]. Smoking is the top 
risk factor of NSCLC and contributes higher mortality [2]. It is reported 
that cigarette smoke exposure significantly increased the numbers of 
lung metastases following tumor challenge [3]. Moreover, in utero 
exposure to components of cigarette smoke increases the life-long risk of 
cancer in human, and this is replicated in mouse models [4]. The 
mechanism underlying smoking increasing the risk of cancer has been 
studied extensively. The main theory is that the carcinogens of cigarette 
smoke, such as benzo[a]pyrene (BP), causes extensive genomic alter
ations [5], in particular, a large number of C-to-A somatic mutations in 
human and forms “smoking mutational signature” [6]. In turn, the 

somatic mutations can result in loss-of-function mutation in tumor 
suppressor P53 [7] and gain-of-function in oncogene KRAS [8]. More 
importantly, high mutational burdens caused by smoking in tumor can 
yield large amount of neoantigens, and reshape the tumor immune 
microenvironment [9].Besides, a high mutational burden was related to 
better response to immune checkpoint blockade [10]. 

Cancer immunotherapies have shown sustained clinical responses in 
treating NSCLC, but efficacy varies. Studies shown that smoking status 
influence the response of PD-1 immunotherapies probably due to the 
somatic mutational burden elicited by smoking [6]. Epidemiologic 
studies also showed that NSCLC patients with smoking history experi
ence a higher overall response rate (ORR) of immunotherapy than 
non-smokers [11,12]. However, the mechanism underlying the differ
ence between smoker patients and non-smoker patients remains 
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undetermined. We suspect that smoking status influences the composi
tion and properties of tumor-infiltrating lymphocytes (TILs) since the 
amount and properties of TILs are known to affect the efficacy of 
immunotherapy [10,13,14]. However, how smoking status affects 
intra-tumoral heterogeneity, especially the composition of the tumor 
microenvironment of the lung cancer is largely unknown. It is critical to 
understand the dynamics and diversity of TILs influenced by smoking 
since the diversity of TILs contributes to diverse response to cancer 
immunotherapies. Among TILs, regulatory T cells (Tregs) are one of the 
most important T cell subsets in the tumor microenvironment. Tregs are 
a sub group of CD4 T cells and have a strong immunosuppressive 
function. Infiltration of Treg cells into the tumor immune microenvi
ronment (TIME) occurs in multiple cancer types [15]. Tregs directly 
suppress anti-tumor immune response and promote the occurrence and 
development of tumors [16]. The role of Tregs in TME includes secreting 
inhibitory cytokines, killing effector cells by granulase and perforin, 
interfering with effector cells’ metabolism and affecting DCs and mac
rophages [17]. Depletion of Tregs in tumors is arising as an attractive 
strategy for tumor immunotherapies [18]. In this study, we further 
characterized the subsets of Tregs in TIME and discovered potential 
targets for Tregs interference. 

The conventional bulk RNA-seq technologies have been widely used 
to study gene expression patterns at population level to identify novel 
therapeutic targets and diagnostic markers of lung cancer in the past 
decade [19–21]. However, the traditional transcriptomic investigation 
is based on mixture cellular populations, which lacks sufficient resolu
tion in the identification of specific cellular types and is unable to 
determine the intra-tumoral heterogeneity as well as the complexity and 
diversity of the TIME and its influence on response to therapies [22,23]. 
The advent of single-cell RNA sequencing (scRNA-seq) provides un
precedented opportunities for exploring gene expression profile at the 
single-cell level and has become a promising choice for exploring the key 
questions of intra-tumoral heterogeneity [24–26] and the cellular 
cross-talk within the TIME [27–29]. 

Several single-cell RNA sequencing (RNA-seq) studies have revealed 
diverse subsets and functions of T cells in various cancer types [22,25, 
30,31] including NSCLC [22,23]. Single-cell studies have shown that 
smoking can alter the cellular composition and epithelial function in 
tracheal epithelium [32] and bronchial epithelium [33], and peripheral 
blood [34]. However, so far, there are no single-cell studies focusing on 
smoking-induced aberrant TIME in lung cancer. Therefore, in this study, 
we determine to depict the impact of smoking on the landscape of the 
composition, spatial interactions and functions of TILs in NSCLC. Here 
we performed an integrated analysis of single-cell RNA seq [22,23] and 
bulk-RNA seq data [35] of total 109 treatment-naïve NSCLC patients 
with smoking history to decipher the impact of smoking induced aber
rant microenvironment in primary tumor, distant metastases, adjacent 
normal tissues and peripheral blood from treatment-naïve NSCLC pa
tients, including 106 adenocarcinomas and 3 squamous cell carcinomas. 

Materials and methods 

Data source 

We downloaded processed single-cell transcriptome data (accession 
number: GSE99254, GSE131907 and GSE138867) from the Gene Expres
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Bulk 
RNA-seq dataset of 51 NSCLC patients with 51 tumor tissues and matched 
49 normal tissues are downloaded from Cell,2020 [35] (https://ars.els-cdn. 
com/content/image/1-s2.0-S0092867420306760-mmc3.xlsx). The sum
marized data information is in Supplementary Table 1 and Fig.1a. Clinical 
data are summarized in Supplementary Table 2 which include age, gender, 
smoking status, Tumor stage. We only include treatment naïve patients 
since the tumor immune microenvironments are known to change after 
targeted or immunotherapies. The RNA-seq datasets were classified into 
primary tumor, normal, blood, distant metastases groups (Supplementary 

Table 2). For GSE99254 dataset, we analyzed 9055 T cells of the 16 clusters 
from 14 patients, including 7 for conventional CD4+ T cells, 7 for CD8+ T 
cells, and 2 for regulatory T cells. For GSE131907 dataset, we selected T 
lymphocytes cells (203,298 cells) from the original study and annotated 
them according to GSE99254 and performed further analysis. 

Single cell gene differential expression and gene ontology enrichment 
analysis 

To investigate the impact of the smoking status on blood, normal 
lung and tumor tissue immune microenvironment, we performed a 
generalized linear regression using the T cell expression data from Guo 
et al. study to study the smoking-induced differentially expressed genes 
(SIDEGs) in blood, normal and tumor tissues in male and female, 
respectively. We first stratified the data by sex and tissue and we, then, 
used the “fitModel” function from Monocle 3 [36–38] to identify SIDEGs 
by performing a generalized linear model (Negative Binomial). Briefly, 
we used gene expression (the expressed genes with the average count >
1) as the dependent variable and smoking status as the independent 
variable while accounting for confounders including age, cancer stage 
and histology. and 

In detail, the gene expression matrix Y with N gene × P cells, 

Yi =
[
yj
]

i 

For a given gene i ∈ {1,2,⋯,N} across cells j ∈ {1, 2,⋯, P}, yi,j are 
assumed to follow negative binomial distribution. 

yi,j ∼ NB
(
μi,j,ϕi.

)

log
(
μi,j

)
= ηi,j  

ηi,j =
∑m

k=1
βkxjk = βxT

j  

where NB(μi,j,ϕi.) denotes a negative binomial generalized additive 
model (NB-GAM) with gene-specific dispersion parameters ϕi. and 
μi,j denotes cell and gene-specific means. In addition, β =

{β1, β2,⋯, βm}
T, which are m-dimensional unknown regression param

eters; xT
j = {xj1, xj1, ⋯, xjm}, which are covariates including smoking 

status, age, cancer stage and histology for all the expressed genes with 
the average count > 1. The model is stratified by sex and tissue. 
Furthermore, P values were adjusted following Benjamini & Hochberg 
protocol. We define a SIDEG when the absolute coefficient |β| > 1, Q- 
value < 0.01. 

Impute cell fractions with CIBERSORTx 

We first prepared and uploaded the single-cell reference sample file 
from GSE99254 scRNA-seq sequencing data to build a signature matrix 
with cell type identifiers according to the CIBERSORTx tutorial(htt 
ps://cibersortx.stanford.edu/) using default parameters. Then, we pre
pared and uploaded the mixture datasets of tumor and normal groups 
obtained from Cell, 2020 (https://ars.els-cdn.com/content/image/1-s2. 
0-S0092867420306760-mmc3.xlsx)according to the CIBERSORTx 
tutorial. Since scRNA data was derived from Smart-seq2, we selected “B- 
mode” for batch correction. Other parameters are remained default. 
After running “CIBERSORTx”, we inferred the cell fractions of T cell 
clusters in each sample with P-value measuring the confidence of the 
results for the deconvolution from the bulk RNA-seq. Samples with P <
0.05 were included for a further study. 

Markers identification and cell type annotation 

We used the marker genes identified in Guo et al’s study to identify 
Tregs and other type of T cells. The marker gene list was publicly 
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available and was appended to Supplementary Table 3. 
ADAM12+ CTLA4+Tregs was separated from CTLA4+ CD4+ Tregs 

based on the bimodal expression distribution of ADAM12. We listed the 
marker genes for ADAM12+ CTLA4+ Tregs that we identified in our 
study in supplementary Table 7. We then identified 46 DEGs between 
ADAM12-positive (log(scaled-expression) > − 3) and negative (log 
(scaled-expression) < − 3) populations of CTLA4+ CD4+ Tregs (See 
supplementary Table 8). 

Then we annotated T cells using SingleR [39] based on T cell an
notations of GSE99254 dataset.    First, we generated a predictive model 
by randomly sampling 75% cells from 9055 T cells with known labels, 
and chose marker genes of each cell cluster as reference set to train the 
SingleR classifiers using the “trainSingleR” function. Then, we used 
“classifySingleR” to predict cell types from a query data set. The top 50 
most significant differential expression genes were identified using 
“pairwiseTTests”. “getTopMarkers” function is used to define marker 
genes. As a result, a total of 1013 genes were selected as marker genes 
for 17 clusters. The rest of 25% cells were used as a validation set. The 
model accuracy is 75.49%. Then we used the trained model to annotate 
the cell types in GSE131907 dataset and annotated total 42,106 cells 
into 17 cell clusters (Supplementary Table 4). The expression values 
were the normalized counts. 

Development trajectory reconstruction by monocle 

Monocle (2.18.0) was used to reconstruct the pseudotime trajectory 
to demonstrate the developmental process of different cell types. “dif
ferentialGeneTest” was performed to extract the signature genes and 
distinguish different cell types in all CD4 T cells and ADAM12+/− cells in 
CTLA4+ Tregs. The top 2000 significant genes were selected as the 
ordering genes for downstream analysis. Using “reduceDimension” and 
“orderCells” functions, we reconstructed the trajectories of all CD4+ T 
cells and ADAM12+/− CTLA4+ Tregs and pseudotime for each cell. 

Cell-Cell interaction analysis by CSOmap 

To illustrate the cell-cell interaction potential of cells we used CSO
map [40] to construct a 3D pseudo space and calculate the significant 
interaction among T cell types. To investigate the interaction potentials 
of the cell types, we used two indexes, connection maps and normalized 
connections. We also plot the 3D interaction space to visualize the 
location of the cells. If two cell types are located close with each other in 
the 3D space, which indicates that they are more likely to interact with 
each other. To further investigate the interaction between different cell 
types. For a cluster pair, normalized connection was calculated as 
dividing its corresponding connection value by the product of their 
respective cell numbers. Normalized connections were then multiplied 
by 10,000. Meanwhile, to highlight the key ligand-receptor pairs func
tion in the interaction, we also examine the contribution output by 
CSOmap. 

Survival analysis 

The TCGA LUAD data were used to evaluate the prognostic effect of 
individual genes or gene sets derived from specific cell clusters. The gene 
expression data and the clinical data were downloaded from UCSC Xena 
(http://xena.ucsc.edu/). Then,  we used expression levels of (FOXP3 +
CTLA4 + ADAM12) / (CD3D + CD3E + CD3G), to estimate the relative 
content of ADAM12+ CTLA4+ Tregs. As a control, we also estimated the 
relative content of CTLA4+ Tregs as a background using the formula 
(FOXP3 + CTLA4) / (CD3D + CD3E + CD3G). Patient cohorts were 
stratified into high and low expression groups by the median value of the 
normalized average expression of selected genes. 

Results 

Smoking induces gene expression aberration of t cells in peripheral blood, 
normal lung and tumors 

We used single-cell RNA seq [22,23] and bulk-RNA seq data [35] of 
total 109 treatment-naïve NSCLC patients with smoking history to 
analyze the effect of smoking on primary tumor, distant metastases, 
adjacent normal tissues and peripheral blood (Fig. 1a, Supplementary 
Tables 1 and 2). We adopted the T cell annotation (16 T cell types) and 
performed a generalized linear regression using the T cell expression 
data from Guo et al. [22] to study the smoking-induced differentially 
expressed genes (SIDEGs) in blood, normal and tumor tissues in both 
sexes while adjusted the confounding factors including age and histol
ogy and stage (See methods). As results, we found that the effects of 
smoking on T cells in male and female patients are different. In normal 
tissues and blood, the common DEGs (|β| > 1, Q-value < 0.01) between 
male and female patients only accounted for 1.2% and 1.9% of all 
SIDEGs (Supplementary Fig. 1a and Supplementary Table 5). The 
common SIDEGs of T cells in tumor tissue between both sexes was higher 
than those in normal and blood, accounted for 7.6% (Supplementary 
Fig. 1a and Supplementary Table 5). 

We further looked at the tissue specific smoking effects in both 
genders. We found that in male patients, up-SIDEGs are mainly genes 
related to DNA binding and repair (HIST2H2AC, HIST1H4C, TCFL5) 
(Fig. 1b). The number of tumor-specific SIDEGs in male (N = 106, 
57.3%) are much higher than those in females (N = 28, 6.5%). And we 
see the Type I interferon response in multiple T cell types from tumor 
tissue of male patients (Fig. 1b). 

On the other hand, in female patients, the most up-SIDEGs are also 
the common DEGs (N = 25) in multiple T cell types across normal, blood 
and tumor tissues, which are mostly interferon-induced genes and some 
antiapoptotic and ATP metabolic process genes (Supplementary Fig.1b). 
Since the number of smoking female patients is limited, we also include 
another single-cell RNA seq data which study the smoking’s effect on the 
lymphocyte in peripheral blood of normal people [34], the results of 
which are similar with the SIDEGs in the female blood in our study 
(Supplementary Table 6). 

These results suggest that smoking causes systemic immune response 
and tumor-site specific immune response in both genders with different 
effects. 

Finally, we looked at cell-type-specific gene expression change 
induced by smoking. We adopted the T cell annotation (16 T cell types) 
from Guo et al’s [22] for our study. Briefly, CD4-C1-CCR7 represents a 
cluster of CD4 naïve T cells; CD4-C3-CXCL13 indicates a cluster of CD4 
exhausted T cells; CD4-C3-GNLY serves to represent a cluster of CD4 
effector T cells. And LAYN is a known exhausted marker, therefore a 
cluster of CD8 exhausted T cells is indicated by CD8-C6-LAYN. Finally, 
Treg cells circulating in blood are indicated by CD4-C8-FOXP3 and 
tumor-specific Treg cells are represented by CD4-C9-CTLA4. CTLA4 is 
specifically expressed by Tregs in cancer [18], and mediates the down
regulation of T cell induced immune responses [41], thereby, is usually 
considered as an marker of activated Tregs in cancer [22,42]. Therefore, 
we inherited the use of CD4-C9-CTLA4 in Guo et al’s study [22] to 
represent tumor-specific Tregs. 

Then, we looked at cell-type-specific gene expression change 
induced by smoking. Intriguingly, there are several genes displayed cell- 
type-specific expression change according to the smoking status in male 
patients, such as ADAM12 and FANK1 are significantly up-regulated in 
CD4-C9-CTLA4 cells (tumor-specific Tregs) in male patients with 
smoking history (Fig. 1c). This finding led us to speculate that smoking 
may have a specific effect on tumor-specific Tregs. 
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Smoking induced a subset of Tregs (ADAM12+ CTLA4+ Tregs) in tumor 
microenvironment 

Since we see a significant up-regulation of ADAM12 expression in 
tumor-enriched CTLA4+ Tregs (CD4-C9-CTLA4) in male patients with 
smoking history, we hypothesize that smoking can induce a tumor- 
specific Treg subset with ADAM12 as one of the marker genes. 
ADAM12 is a disintegrin and metalloprotease and plays an important 
role in cell-cell adhesion as a sub unit of the complex with syndecans and 
integrins [43]. It was reported that ADAM12 is specifically expressed in 
both Tregs and Th17 cells in vitro, and can regulate the differentiation of 
Th17 cells [44]. But there are no studies to clarify the character of 
ADAM12+ Treg neither from bulk-RNA seq analysis nor at single-cell 
level analysis in tumor samples. We first looked at the expression dis
tribution of ADAM12. Indeed, ADAM12 exhibits a striking bimodal 
expression distribution within CD4-C9-CTLA4 cells (Fig. 2a). This in
dicates that we can classify CTLA4+ Tregs into two subgroups: 

ADAM12− CTLA4+ Tregs and ADAM12+ CTLA4+Tregs according to the 
expression level of ADAM12. We first obtained the top 100 marker genes 
of ADAM12+ CTLA4+ Tregs by comparing the gene expression profile of 
this subset of Tregs with all other T cell types (Q < 0.01, log2(fold 
change) ≥ 0.1, Supplementary Table 7). To further characterize the 
feature of ADAM12+ CTLA4+ Tregs, we compared ADAM12+ CTLA4+

Tregs with ADAM12− CTLA4+ Tregs, and obtained a set of 46 DEGs 
which further defined the unique character of ADAM12+ CTLA4+ Tregs 
(Supplementary Table 8) including genes enriched in pathways like 
leukocyte adhesion and migration, such as ADAM12, SDC4, GCNT1, 
PIKFYVE, SLC16A1, IL1R1, CD177 and lipid metabolic process such as 
ACSL1, ACSL4, HACD1, LPIN1, SPTLC2, SACM1L, BDH2 (Fig. 2b and c). 
These results indicate the aberrantly active lipid metabolic process and 
tumor tissue-resident characteristics in ADAM12+ CTLA4+Tregs. In 
addition, we also looked at another marker gene FANK1 expression 
pattern, and in deed, FANK1 displays similar expression pattern as 
ADAM12. For example, FANK1 also shows bimodal expression 

Fig. 1. Overview of datasets and analysis 
used in this study.(a) Description of the clin
ical and data information of the 109 patients, 
including sex, stages, treatment, tissue types, 
smoking history and sequencing platforms; (b) 
Venn diagram of smoking-induced up-DEGs in 
blood, normal and tumor sites from male pa
tients. This plot involved 4059 cells from 6 male 
patients (adenocarcinoma, n = 4, squamous cell 
carcinoma, n = 2;Stage I, n = 3;Stage III, n = 3); 
(c) The expression levels of ADAM12 and 
FANK1 in 16 T cell types from the tumor sites of 
male patients stratified by smoking status. This 
plot involved 2243 cells from 6 male patients 
(adenocarcinoma, n = 4, squamous cell carci
noma, n = 2;Stage I, n = 3;Stage III, n = 3). *, P 
<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001.   
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distribution in CTLA4+ Tregs just like ADAM12 in Fig. 2a (Supple
mentary Fig.2) And the expression pattern of FANK1 in trajectory 
analysis of CTLA4+ Tregs is also similar as the expression levels of 
ADAM12. (Supplementary Fig.2) 

To demonstrate the origin of ADAM12+ CTLA4+ Tregs, we used 
Monocle [45–47] to reconstruct the pseudo time trajectory of CD4+ T 
cells (Fig. 2d). CD4+ T cells displayed clear developmental trajectory 
from naïve CD4+ T cells (CD4-C1-CCR7) to three endpoints: exhausted 
CD4+T cells (CD4-C3-CXCL13), effector CD4+T cells (CD4-C3-GNLY) 
and activated regulatory T cells (CD4-C9-CTLA4) (Fig. 2d). More 
importantly, we can see that ADAM12+ CTLA4+ Tregs 
(CD4-C9-CTLA4-ADAM12+) are located at branch endpoint and further 
away from the naïve CD4+ T cells than CD4-C8-FOXP3 (circulating 
Tregs) and ADAM12− CTLA4+ Tregs (CD4-C9-CTLA4-ADAM12− ) 
(Fig. 2d), indicating that ADAM12+ CTLA4+ Tregs are at the end of 
CD4+ T cells differentiation and derived from ADAM12− CTLA4+ Tregs. 
To further characterize the tumor-specific ADAM12+ CTLA4+ Tregs, we 

reconstructed the developmental trajectory of CTLA4+ Tregs 
(CD4-C9-CTLA4) alone. We noticed that the expression level of ADAM12 
increased gradually with the development of pseudo time. TNFRSF9 is a 
well-defined activation marker on Tregs, highly associated with their 
suppressive functions. We chose TNFRSF9 as an activation indicator to 
reflect the level of the suppressive functions of Tregs [48,49] and we 
found that TNFRSF9 exhibits the similar co-expression pattern along the 
pseudo time trajectory as ADAM12 (Fig. 2e) suggesting ADAM12+

CTLA4+ Tregs as the endpoint of the evolution of the pseudo time tra
jectory and its enhanced immunosuppressive activity. Moreover, SDC4 
and ITGAE were reported as the interactors of ADAM12 on cell mem
brane. ADAM12 can form a complex with SDC4 or ITGAE to regulate cell 
migration and adhesion [43]. We also observed the co- expression 
pattern of SDC4 (ADAM12 binding partner) and ITGAE (immune cell 
tissue resident marker) in pseudo time trajectory, i.e. increased 
expression levels along the trajectory (Fig. 2e). ADAM12, SDC4 and 
ITGAE can form a complex to fix cells in the extra cellular matrix (ECM) 

Fig. 2. Characterization of ADAM12+ CTLA4+ Tregs. (a) The histogram of the expression distribution of ADAM12 in CTLA4+ Tregs. 225 cells from 9 patients 
(adenocarcinoma, n = 11; squamous cell carcinoma, n = 3;Stage I, n = 9;Stage III, n = 4;Stage IV, n = 1) with adenocarcinoma (110 cells) and 3 patients with 
squamous cell carcinoma (115 cells) were identified as ADAM12+ CTLA4+ Tregs from 9055 T cells. (b) The expression distribution of the representative marker genes 
of ADAM12+ CTLA4+ Tregs in 17 T cell clusters. (c) GO-BP pathway enrichment analysis of 46 DEGs of ADAM12+ CTLA4+ Tregs. (d) The branched trajectory of 
CD4+ T cell state transition in a two-dimensional state-space inferred by Monocle 2. Each dot corresponds to one single cell, and is colored according to the cell types. 
Arrows indicate the transition directions.939 CTLA4+ Tregs from all 14 patients were involved in the pseudo time analysis. (e) CTLA4+ Tregs differentiation direction 
inferred by Monocle 2. The expression levels of ADAM12, TNFRSF9, SDC4 and ITGAE are shown along inferred trajectories. 
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[50], which suggest a possible mechanism underlying the 
tumor-resident characteristic of ADAM12+ CTLA4+ Tregs. Taken 
together, smoking-induced ADAM12+ CTLA4+ Tregs are activated Tregs 
which displayed tumor tissue resident and abnormal lipid metabolism 
features. 

Validation of the correlation between smoking and ADAM12+ CTLA4+

Tregs and exploration of its biological functions 

To further verify the clinical relevance and investigate possible 
biological functions of the tumor-specific ADAM12+ CTLA4+ Tregs, we 
used the bulk RNA sequencing dataset of a larger patient population 
[35], which contains 51 treatment naïve NSCLC patients. We first 
inferred the fraction of 17 T cell clusters in these 51 patients using the 

expression data of bulk-RNA seq by CIBERSORTx based on the single cell 
type annotation of Guo et al.’s cell type annotation [22].We first 
compared the fraction of ADAM12+ CTLA4+ Tregs between smokers and 
non-smokers and found that the fraction of ADAM12+ CTLA4+ Tregs 
(CD4-C9-CTLA4-ADAM12+) is significantly increased in smokers both in 
all patients (P = 0.010, Wilcoxon test) and in male patients (P = 0.040, 
Wilcoxon test) (Fig. 3a, Supplementary Fig.3). Again, the number of 
female smokers is too small (N = 1) to obtain significant results but the 
similar trend is observed. On the other hand, ADAM12− CTLA4+ Tregs 
(CD4-C9-CTLA4-ADAM12− ) did not show such trend or even displayed 
an opposite pattern between smokers and non-smokers (Fig. 3a). These 
results further validated our hypothesis that smoking induces a specific 
subset of ADAM12+ CTLA4+ Tregs in tumor sites. Interestingly, we 
observed that the fractions of CD8-C6-LAYN (exhausted CD8+ T cells) 

Fig. 3. The relation between smoking status and the fractions of different T cell types and the correlations among T cell types in tumor microenvironment. (a) The 
difference in the fractions of ADAM12+ CTLA4+ Tregs, ADAM12− CTLA4+Tregs, LAYN+CD8+ T cells and CXCL13+CD4+ T cells in the primary tumor sites between 
smokers (All patients: 11 tumor sample, 10 normal samples; Male patients: 10 tumor sample, 9 normal samples) and non-smokers (All patients: 40 tumor samples, 39 
normal samples; Male patients: 7 tumor sample, 7 normal samples.). (b) The correlations between LAYN+CD8+ T cells and ADAM12+/− CTLA4+Tregs (Spearman 
correlation). (c) The correlations between CXCL13+CD4 T cells and ADAM12+/− CTLA4+Tregs (Spearman correlation). 
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and CD4-C7-CXCL13 (exhausted CD4+ T cells) are significantly or 
borderline significantly increased in the tumor sites in smokers (P =
0.014 and P = 0.092, Wilcoxon test) (Fig. 3a). For male patients, the 
fractions of CD8-C6-LAYN cells are significantly increased in smokers (P 
= 0.014, Wilcoxon test) while the fraction of CD4-C7-CXCL13 cells are 
not significant but show similar trend (P = 0.310, Wilcoxon test) 
(Fig. 3a). The number of female patients with smoking history is too 
small (N = 1). Therefore, we cannot obtain significant results in female 
patients (Supplementary Fig.3). These results suggest that ADAM12+

CTLA4+ Tregs may function through interreacting with two sets of 
exhausted T cell clusters, CD8-C6-LAYN or CD4-C7-CXCL13 clusters. 

Therefore, we next sought to investigate the fraction correlations 
among clusters regardless of smoking status since the cell fractions are 
the outcome of smoking status. As expected, the fraction of ADAM12+

CTLA4+ Tregs are significantly positively correlated with the fraction of 
CD8-C6-LAYN (Fig. 3b) in all patients (rho = 0.45, P = 0.00087, 
Spearmen correlation), male patients (rho = 0.50, P = 0.043) and female 

patients (rho = 0.36, P = 0.036). On the contrary, ADAM12− CTLA4+

Tregs displayed no such correlation, or even opposite correlations with 
CD8-C6-LAYN in the tumor sites of all patients (rho = − 0.27, P = 0.059), 
male patients (rho = − 0.57, P = 0.018) and female patients (rho = - 
0.015, P = 0.93) (Fig. 3b). Similarly, the fraction of ADAM12+ CTLA4+

Tregs are also positively correlated with the fraction of CD4-C7-CXCL13 
in all patients (rho = 0.40, P = 0.0034, Spearmen correlation), male 
patients (rho = 0.52, P = 0.034) and female patients (rho = 0.32, P =
0.068) (Fig. 3c). On the contrary, ADAM12− CTLA4+ Tregs displayed 
opposite correlations with CD4-C7-CXCL13 in the tumor microenvi
ronment of all patients (rho =− 0.75, P = 2.7 × 10− 10), male patients 
(rho = − 0.75, P = 7.0 × 10− 4) and female patients (rho = − 0.74, P =
5.3 × 10− 7) (Fig. 3c). These results suggest that ADAM12+ CTLA4+

Tregs but not ADAM12− CTLA4+ Tregs promote more effector T cells 
into exhausted T cells. 

Fig. 4. Spatial reconstruction of the cell-cell communication maps of T cells in the tumor microenvironment. (a) Cell-cell communication maps of different T 
cells in primary tumor sites(4143 cells from Guo et al’s study and 2345 cells from Kim et al’s study) and metastatic lymph nodes(962 cells from Kim et al’s study) 
from different studies. The size of the dot represents the number of communications, red dot represents the significant enrichment of intercellular communication, 
blue dot represents the significant depletion, and green dot represents other, ie, neither enriched or depleted (Permutation Test). (b) Normalized cell-cell connection 
number of each tumor-enriched cell cluster in primary tumor sites and metastatic lymph nodes. (c) CSOmap reconstruction of the spatial distance of CD8-C6-LAYN 
and ADAM12+/− CTLA4+Tregs in primary tumor sites and metastatic lymph nodes. (d) GO-BP pathway enrichment analysis of all significant ligand-receptor pairs 
between CD8-C6-LAYN and ADAM12+ CTLA4+ Tregs. (e) Comparison of the contribution of gene paired related to cell-cell adhesion among different cell pairs. 
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Single cell space reconstruction of T cell interaction network in tumor 
microenvironment by CSOmap 

In order to further investigate the mechanism underlying these cor
relations, we performed CSOmap to reconstruct the 3-dimensional 
pseudo-space via ligand-receptor-mediated cell-cell interactions using 
single-cell RNA sequencing data [40]. Consistent with the correlation 
analysis, ADAM12+CTLA4+ Tregs showed significant interactions with 
CD8-C6-LAYN by random permutation-based statistical testing in 
treatment naïve primary tumor and metastatic lymph nodes from both 
Guo et al’s and Kim et al’s studies (Fig. 4a). ADAM12+CTLA4+ Tregs 
showed significant interactions with CXCL13+CD4+ T cells in treatment 
naïve primary tumor from Kim et al’s studies (Fig. 4a). Moreover, 
ADAM12+CTLA4+ Tregs have more normalized connections than 
ADAM12− CTLA4+Tregs suggesting ADAM12+CTLA4+ Tregs are more 
actively communicate with other cell types than ADAM12− CTLA4+

Tregs (Fig. 4b). Importantly, ADAM12+CTLA4+ Tregs locate physically 
closer to CD8-C6-LAYN than ADAM12− CTLA4+ Tregs in both primary 
tumor sites and metastatic lymph nodes according to the 3D-space 
reconstruction (Fig. 4c). Similarly, ADAM12+ CTLA4+ Tregs also 
locate closer to CD4-C7-CXCL13 than ADAM12− CTLA4+Tregs in the 
primary tumor sites from both Guo’s and Kim’s studies but not in met
astatic lymph nodes (Supplementary Fig. 4), which may probably due to 
the less connections of CD4-C7-CXCL13 than CD8-C6-LAYN (Fig. 4b) or 
the limited number of CD4-C7-CXCL13 detected in metastatic lymph 
nodes. (Supplementary Fig.4) In addition, we also looked at the cell-cell 
interaction maps in male and female patients, respectively. As a result, 
the significant interaction between ADAM12+CTLA4+ Tregs and 
CD8-C6-LAYN is conserved in both genders (Supplementary Fig.5). 

By analyzing the dominant ligand-receptor pairs contributing to this 
spatial organization, we identified 119 significant ligand-receptor pairs 
that contribute to the interaction between ADAM12+CTLA4+ Tregs and 
CD8-C6-LAYN (Supplementary Fig.6). These interaction pairs include 
KLRD1-HLA-B, CD8A-LCK, KLRD1-HLA-E, CCL5-CXCR3, CCL5-SDC4, 
ADAM12-ITGB1 pairs, and are enriched in pathways such as regula
tion of immune response and cell-cell adhesion (Fig. 4d). We further 
analyzed the cell-cell adhesion pairs and found that the CCL5-SDC4 and 
ITGB1-ADAM12 ligand-receptor interactions contribute most in CD8- 
C6-LAYN and ADAM12+CTLA4+ Tregs pairs, compared with other cell 
pairs (Fig. 4e), further supporting the hypothesis that ADAM12+CTLA4+

Tregs induce exhaustion of effector T cells through cell-cell adhesion by 
ADAM12-ITGB1 and SDC4-CCL5 interaction. 

ADAM12+ CTLA4+ Tregs predicts overall survival of NSCLC patients 

Tregs promote tumor progression by direct inhibition of antitumor 
effector CD4+ and CD8+ T cells and are correlated with a poor prognosis 
[51]. In order to investigate if ADAM12+CTLA4+ Tregs are more 

pro-tumor than ADAM12− CTLA4+ Tregs, we took advantage of the 
survival information from lung adenocarcinoma (LUAD) dataset from 
TCGA to evaluate the prognostic value of ADAM12+CTLA4+ Tregs. We 
first estimated the relative content of ADAM12+CTLA4+ Tregs or 
CTLA4+ Tregs by the median value of the normalized average expression 
of selected genes (See Methods). Patient cohorts were grouped into high 
and low expression groups. As a result, patient group with expression of 
ADAM12+ CTLA4+ FOXP3+signature genes showed significantly worse 
overall survival (P = 0.014, Log-Rank test, Fig. 5a). As a background 
comparison, patient group with expression of CTLA4+ FOXP3+signature 
genes showed worse but not significant overall survival (P = 0.06, 
Log-Rank test, Fig. 5b). These results suggest that compared to tradi
tional tumor-infiltration Tregs (CTLA4+ FOXP3+), ADAM12+CTLA4+

Tregs showed increased predictive power and deserve further investi
gation for clinical applications. Of note, the treatment information such 
as chemotherapy, radiation therapy or immunotherapy is largely un
known for the TCGA cohort. The survival outcome is the integrated 
outcome from all those treatments. Hence, although the treatment varies 
among patients, the predicative power of ADAM12+CTLA4+ Tregs is 
consistent. 

Discussion 

The relationship between smoking and immune systems has been 
investigated extensively [52,53].Cigarette smoke has both 
pro-inflammatory and immune-suppressive effects on the immune sys
tem [54]. However, it is not clear if smoking can impact the TIME in the 
settings of lung cancer at a single cell resolution. 

In this study, we integrated single-cell RNA-seq and bulk RNA-seq 
data from several studies to investigate smoking’s impact on treatment 
naïve non-small cell lung cancer patients and found that smoking 
induced ADAM12 upregulation in tumor-specific Treg cells. These 
ADAM12+Tregs highly express Treg active marker TNFRSF9, and 
actively interact with exhausted T cells. 

One limitation in our study is the limited number of female patients. 
Although we observed ISGs up-regulation in multiple T cell types across 
blood, normal tissue and tumor tissue of one female smoker patient, we 
cannot draw any conclusive results from only one female patient. On the 
other hand, we observed Type I interferon responses specifically in 
tumor tissues of male smoker patients. We hypothesize that the differ
ences that we observed from male and female patients are probably due 
to two reasons. First, smoking can induce both acute effects and chronic 
effects on the immune system and has both pro-inflammatory and 
immunosuppressive effects [54]. Therefore, the systematic Type I 
interferon responses in this one female patient are probably due to the 
acute effects of smoking. Second, sex difference contributes to the im
mune responses against infection and antitumor immunity [55]. Women 
have an enhance immune reactivity compared to men which makes 

Fig. 5. Survival Analysis of TCGA LUAD patients (n = 288, male=164, female =124) with different expression levels of Treg signature genes. (a) The Kaplan–Meier 
overall survival curves of TCGA LUAD patients grouped by the gene signature of ADAM12+ CTLA4+ Tregs. P value was calculated by log-rank test. (b) The 
Kaplan–Meier overall survival curves of TCGA LUAD patients grouped by the gene signature of CTLA4+ Tregs. P value was calculated by log-rank test. 
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them have higher immune responses to smoking than men do [56]. 
However, due to the limited number of female smoker patients, we 
cannot draw confident conclusions from our analysis of female patients. 
In order to obtain any conclusive results, we have to include more fe
male smoker patients in the further study. 

Another limitation in our study is that the term of “Smoker” in our 
study is defined according to the published studies and no detailed 
smoking history is available. Therefore, we cannot further characterize 
the effect of smoking history on gene expression changes in different 
immune cell types. It has been recognized that smoking-induced 
genomic and epigenomic aberrations are related to the smoking dose 
and duration [8]. However, in this current study, we are unable to 
analyze the dose and duration effect of smoking on the tumor 
microenvironment. 

Through ligand-receptor analysis, we deduce that ADAM12- 
Syndecan-Integrin complex between ADAM12+ CTLA4+ Tregs and 
LAYN+ CD8 T cells is probably the cause of their physical interaction. 
Thus, our hypothesis is that smoking induced CTLA4+ Tregs tumor tis
sue residency and interacting more actively with exhausted T cells. This 
is an important clue for immune checkpoint blockade therapy in lung 
cancer patient with smoking history. It has been recognized that 
smokers with non-small cell lung cancer (NSCLC) respond better to the 
inhibition of programmed cell death-1 (PD-1) with pembrolizumab than 
non-smokers do [6]. Liu et al. showed that smoking impact the prog
nostic value of circulating Tregs in advance NSCLC patients [57]. 
However, the mechanism is not clear. In our study, we suggested a 
possible mechanism that smoking induced a tumor-resident and more 
activated Tregs with aberrant lipid metabolism which leads to increased 
inhibition of effector cells and increased load of exhausted T cells. 
Therefore, in patients with smoking history, more exhausted T cells can 
be reinvigorated to effector T cells by PD-1 blockade. In turn, these 
smoking patients showed better response rate of immune checkpoint 
blockade therapy. 

Conclusion 

We found smoking induced specific expression of ADAM12 in tumor- 
specific Tregs in treatment naïve NSCLC patients. These ADAM12+ Tregs 
highly express Treg active marker TNFRSF9 and have enhanced activity 
in lipid metabolism and cell adhesion pathways. ADAM12+ Tregs also 
show an abnormal interaction activity with exhausted T cells compared 
with ADAM12− Tregs.In addition, patients with signature of ADAM12+

Tregs is associated with poor prognosis in TCGA LUAD cohort. Our 
findings demonstrated that smoking impact the tumor microenviron
ment induced a subset of Tregs with enhanced immunosuppression ac
tivity. Our findings suggested possible mechanism underlying the 
heterogeneity of NSCLC patients. Moreover, we provide a potential 
biomarker and therapeutic target, ADAM12, for precision immuno
therapy of lung cancer patients with smoking history. 

Author contribution 

The project was conceived and directed by Ying Zhou and Qiyuan Li. 
Data analysis was performed by Yudi Hu and Chaoqun Xu, with assis
tance from Yuanyuan Zeng, Fengyang Cao and Hongkun Fang. Single 
cell annotation was carried out by Chaoqun Xu, Xu, Hongkun Fang, 
Jintao Guoand Jun Ren. The trajectory analysis was performed by Yudi 
Hu. The manuscript was written by Ying Zhou, Yudi Hu and Qiyuan Li. 
All authors read and approved the final manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We would like to thank Yaning Hu, Huanhuan Liu, Zhiyu You and 
Qinwei Chen for constructive discussions. 

Funding 

This research is supported by the Young Scientists Fund of the Na
tional Natural Science Foundation of China to Ying Zhou [Grant no. 
81802823] and the Fundamental Research Funds for the Chinese Cen
tral Universities to Qiyuan Li [Grant no.20720190101]. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.tranon.2021.101261. 

References 

[1] R.S. Herbst, J.V. Heymach, S.M. Lippman, Lung Cancer, N. Engl. J. Med. 359 
(2008) 1367–1380, https://doi.org/10.1056/NEJMra0802714, https://doi.org/. 

[2] S.J. Lee, J. Lee, Y.S. Park, C.-.H. Lee, S.-.M. Lee, J.-.J. Yim, et al., Impact of smoking 
on mortality of patients with non-small cell lung cancer, Thorac Cancer 5 (2014) 
43–49, https://doi.org/10.1111/1759-7714.12051, https://doi.org/. 

[3] L-M Lu, C.C.J. Zavitz, B. Chen, S. Kianpour, Y. Wan, M.R. Stämpfli, Cigarette smoke 
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