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Supplementary Fig. 1: Ferritin-NP-preS1 vaccine is efficient and bio-safe.   10 

a, Naïve WT C57BL/6 mice (n=5) were subcutaneously immunized with 500 pmol 11 

ferritin-NP-preS1 or equimolar SC-preS1 subcutaneously with or without 30 g CpG-12 

1826 adjuvant at day 0 and 14. Anti-preS1 response was detected at day 21. b, Naïve 13 

WT C57BL/6 mice (n=5) were subcutaneously immunized with 500 pmol or 4 nmol 14 

ferritin-NP-preS1 or equimolar SC-preS1 soluble antigen with 30 g CpG-1826 15 

adjuvant at day 0 and 14. Anti-preS1 response was detected at day21. c, 500 pmol SC-16 

preS1 or preS1 were subcutaneously immunized with 30 g CpG-1826 adjuvant at day 17 

0 and 14 (n=4). Anti-preS1 response was detected at day21. d, Anti-preS1 response at 18 

day 21 upon immunization with 500 pmol SC-preS1 (n=7), equimolar Pf ferritin-NP-19 

preS1 (n=9) or mouse ferritin-NP-preS1 vaccine (n=7) were detected. e, Naïve WT 20 

BALB/c mice (n=5) were subcutaneously immunized with 500 pmol ferritin-NP-preS1 21 

or equimolar SC-preS1 soluble antigen with 30 g CpG-1826 adjuvant at day 0 and 14. 22 

Anti-preS1 response was detected at day 21. f, Antibody response against Pf ferritin and 23 
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mouse ferritin in SC-preS1 (n=6) or Pf ferritin NP vaccine (n=10) immunized mice at 24 

day 21. g, ALT and AST in sera collected at day 21 from vaccine immunized mice were 25 

measured (n=8). h, The iron content in ferritin NP (n=3).   a-f are representative results 26 

of three independent experiments. g and h are representative results of two independent 27 

experiments. Data are shown as mean ± SEM. In a-e, statistical significance was 28 

determined by unpaired two-tailed t-test.  29 

   30 
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 31 

Supplementary Fig. 2: The therapeutic effect of ferritin-NP-preS1 vaccine 32 

depends on IFN-γ.  33 

a, Stable HBV carrier mice (n=6) were vaccinated with ferritin-NP-preS1 vaccine or 34 

equimolar SC-preS1 soluble antigen regularly as in Fig. 3. Mice were sacrificed on the 35 

last day (day147), and 5×105 lymphocytes from LNs, spleen and liver were collected. 36 

Then, cells were stimulated with preS1 polypeptide for 48h. PreS1 specific IFN 37 

secretion was measured by ELISPOT assay. Data are representative results of two 38 

independent experiments. b, C57BL/6 mice (n=6) were inoculated with 1×1010 vg AAV-39 

HBV1.3 virus intravenously. After 5 weeks, stable HBV carrier mice were vaccinated 40 

with 500 pmol ferritin-NP-preS1 vaccine with 30 g CpG-1826 adjuvant for 4 times 41 

every 2 weeks as in Fig. 3. The IFN-γ blocking antibody (XMG1.2) or Rat IgG was 42 

administrated i.p. for 4 times the day before each vaccination. c, Immunological 43 

histological chemistry (IHC) staining for HBcAg in hepatocytes at day 147. Positive 44 

cells were counted by ImageJ software (n=16 section fields). Scale bar, 100 μm.  Data 45 

are representative results of three independent experiments. In a and c, data are shown 46 

as mean ± SEM, statistical significance was determined by unpaired two-tailed t-test. 47 
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 48 

Supplementary Fig. 3: Ferritin-NP targets SIGNR1+ APCs. 49 

a, Inguinal LNs were digested into single cells, CD19-B220- non-B cells were identified 50 

into three distinct populations: resident DC (rDC, CD11chiMHCII+), migratory DC 51 

(miDC, CD11c+MHCIIhi) and non-DC. Surface expression of SIGNR1 and CD11b by 52 

these three populations were analyzed. Among the non-DC population, SIGNR1+ and 53 

SIGNR1- cells were analyzed by anti-F4/80 and anti-CD169 further. Numbers adjacent 54 

to the outlined areas indicate percent of each gate. The data show representative results 55 

of at least three independent experiments. b, C57BL/6 mice were subcutaneously 56 

injected with 2 nmol ferritin-NP-preS1-FITC. 4h after injection, cryo-sections of 57 

inguinal LNs were obtained. The section was stained with anti-SIGNR1 (red) and DAPI 58 

(blue).  The data are representative results of three independent experiments. c,d, 59 
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C57BL/6 mice (n=4) were subcutaneously injected with 2 nmol ferritin-NP-preS1-60 

FITC or equimolar SC-preS1-FITC. 4h after injection, ferritin-NP-preS1-FITC or SC-61 

preS1-FITC capture of indicated DCs (c) or non-DCs (d) in iLN were presented and 62 

statistically analyzed. c and d are representative results of two independent experiments. 63 

Data are shown as mean ± SEM, statistical significance was determined by unpaired 64 

two-tailed t-test. e, 10 days post clodronate liposome (CLL) or control liposome (CON) 65 

f.p. injection, depletion of SIGNR1+ cells in pLN was determined by flow cytometry. 66 

The data are representative results of three independent experiments.   67 
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 68 

Supplementary Fig. 4: CpG-1826 adjuvant has no effect on ferritin-NP capture. 69 

a, C57BL/6 mice (n=4) were subcutaneously injected with 2 nmol ferritin-NP-eGFP or 70 

equimolar eGFP-SpyTag with or without 30g CpG-1826 adjuvant. 4h after injection, 71 

inguinal LNs were digested into single cells, ferritin-NP-eGFP or eGFP-SpyTag capture 72 

by SIGNR1+ DCs and SIGNR1+ macrophages were presented and statistically analyzed. 73 

Data are representative results of two independent experiments. Data are shown as 74 

mean ± SEM, statistical significance was determined by unpaired two-tailed t-test. 75 

  76 
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 77 

Supplementary Fig. 5: Ferritin-NP targets SIGNR1+ APCs in vitro. 78 

a,b, Inguinal LNs from C57BL/6 WT mice were digested into single cells and incubated 79 

with ferritin-NP-eGFP (a) or ferritin-NP-preS1-FITC (b) in vitro (n=3). Ferritin-NP 80 

capture by CD11c-CD11b+SIGNR1- macrophages or CD11c-CD11b+SIGNR1+ 81 

macrophages were presented and statistically analyzed. Data are representative results 82 

of three independent experiments. Data are shown as mean ± SEM, statistical 83 

significance was determined by unpaired two-tailed t-test.  84 
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 85 

Supplementary Fig. 6: Ferritin-NP targeting in Signr1-/- mice. 86 

a, Inguinal LNs from WT or Signr1-/- mice were digested into single cells, CD19- non-87 

B cells were identified into rDC, miDC and non-DCs. The percentages of SIGNR1+ 88 

rDC, SIGNR1+ miDC, SIGNR1+ macrophages and CD169+ macrophages were 89 

analyzed as indication. Data are representative results of three independent experiments. 90 

b, WT or Signr1-/- mice (n=3) were subcutaneously injected with 2 nmol ferritin-NP-91 

eGFP. 4h after injection, inguinal LNs were digested into single cells, ferritin-NP-eGFP 92 

capture by DCs and CD169+ macrophages were presented and statistically analyzed. c, 93 

Inguinal LNs from WT or Signr1-/- mice were digested into single cells and incubated 94 

with ferritin-NP-eGFP or ferritin-NP-preS1-FITC in vitro (n=3). Ferritin-NP capture by 95 
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DCs and CD169+ macrophages were presented and statistically analyzed. In b and c, 96 

data are representative results of two independent experiments, Data are shown as mean 97 

± SEM, statistical significance was determined by unpaired two-tailed t-test. 98 

  99 
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 100 

Supplementary Fig. 7: Ferritin-NP targets CD209+ macrophages of human LNs. 101 

a, Human LNs were digested into single cells and incubated with ferritin-NP-preS1-102 

FITC in vitro (n=3). HLA-DR+ CD14+ macrophages were gated and identified into 103 

CD209+ and CD209- populations. The capture of ferritin-NP-FITC by CD209+ or 104 

CD209- macrophage was detected and analyzed. Data are representative results of three 105 

independent experiments. Data are shown as mean ± SEM, statistical significance was 106 

determined by unpaired two-tailed t-test.  107 
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 108 

Supplementary Fig. 8: Gating strategy of antigen presenting cells in LNs after 109 

immunization. 110 

a, The gating strategy of antigen presenting cells in dLNs of ferritin-NP vaccine 111 

immunized mice. CD11c+/hiMHCII+/hi DCs were gated firstly and further analyzed by 112 

anti-CD103. CD103+ migratory DCs and CD103- resident DCs were gated according 113 

to CD103 isotype. CD11b+ non-DC cells were further classified into F4/80+ 114 

macrophages and CD169+ or SIGNR1+ macrophages. Data are representative results of 115 

at least three independent experiments.  116 
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 117 

Supplementary Fig. 9: The characterization and depletion of SIGNR1+ 118 

macrophages in dLNs.  119 

a, F4/80+ macrophages and SIGNR1+ macrophages were sorted from LNs of naïve mice, 120 

the gene expression of lysosome-associated membrane proteins (Lamp1/Lamp2), 121 

lysozyme (Lyz1/Lyz2) and lysosomal proteases (Ctsb/Ctsc) were detected by real-time 122 

PCR analysis (n=3). The data are representative results of two independent experiments. 123 

b, Depletion of SIGNR1+ macrophages but not F4/80+ macrophages upon anti-CSF1R 124 

treatment was determined by flow cytometry (n=4). Data are representative results of 125 

three independent experiments. Data are shown as mean ± SEM, statistical significance 126 

was determined by unpaired two-tailed t-test.  127 
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 128 

Supplementary Fig. 10: SIGNR1+ macrophages upregulate CXCR5 after CpG 129 

immunization for follicular migration. 130 

a, Naïve WT mice were subcutaneously immunized with 30 g CpG-1826. Distribution 131 

of SIGNR1+ (red), CD11c+ (Cyan), CD169+ (green) cells and B220+ (blue) cells in iLNs 132 

were determined by immunofluorescence microscopy 3 days later.  Data are 133 

representative results of three independent experiments. b, Naïve WT mice (n=3) were 134 

subcutaneously immunized with CpG-1826 adjuvant or PBS. The expression of 135 

CXCR5 by SIGNR1+ macrophage, SIGNR1-F4/80+ macrophage, SIGNR1+ DC in iLN 136 

were analyzed by flow cytometry 3 days later. Data are representative results of four 137 

independent experiments. c, SIGNR1+ macrophages and SIGNR1+ DCs were sorted 138 

from naïve WT mice LNs, cells were stimulated with 30 g/ml CpG-1826 for 24 h in 139 

vitro (n=3), the expression of CXCR5 were analyzed. Data are representative results of 140 

three independent experiments. In b and c, data are shown as mean ± SEM, statistical 141 

significance was determined by unpaired two-tailed t-test. 142 
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