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Neuronal soma segmentation is a crucial step for the quantitative analysis of neuronal

morphology. Automated neuronal soma segmentation methods have opened up the

opportunity to improve the time-consuming manual labeling required during the neuronal

soma morphology reconstruction for large-scale images. However, the presence of

touching neuronal somata and variable soma shapes in images brings challenges for

automated algorithms. This study proposes a neuronal soma segmentation method

combining 3D U-shaped fully convolutional neural networks with multi-task learning.

Compared to existing methods, this technique applies multi-task learning to predict

the soma boundary to split touching somata, and adopts U-shaped architecture

convolutional neural network which is effective for a limited dataset. The contour-aware

multi-task learning framework is applied to the proposed method to predict the masks

of neuronal somata and boundaries simultaneously. In addition, a spatial attention

module is embedded into the multi-task model to improve neuronal soma segmentation

results. The Nissl-stained dataset captured by the micro-optical sectioning tomography

system is used to validate the proposed method. Following comparison to four existing

segmentation models, the proposed method outperforms the others notably in both

localization and segmentation. The novel method has potential for high-throughput

neuronal soma segmentation in large-scale optical imaging data for neuron morphology

quantitative analysis.

Keywords: touching neuronal soma segmentation, fully convolutional neural network, multi-task learning, micro-

optical images, neuronal soma localization

INTRODUCTION

Neuron morphology is crucial for brain function research, such as electrophysiology simulation,
connectome, and neuron type classification (Svoboda, 2011). On the one hand, the morphological
features of neuronal somata are important for the quantitative analysis of neuronmorphology when
classifying neuron types (Peng et al., 2017). On the other hand, the distribution, ratio, number,
and morphology of glial cells and neurons also contribute to the research on pharmacological
treatment and pathology of the brain (Fitting et al., 2010; Attili et al., 2019). In addition, neuronal
soma locations could be applied to enhance the results of neurite reconstruction (Zhang et al.,
2018). Recently, with the rapid development in high-throughput optical micro imaging techniques
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(Gong et al., 2013; Wu et al., 2014), it is possible to acquire
high-resolution large-scale neuron imaging datasets. However,
current neuron reconstruction depends largely on manual
labeling, which is error-prone and time-consuming (Acciai et al.,
2016). As an alternative method, automated neuronal soma
segmentation is highly efficient, and provides accurate results
for neuronal somata morphology reconstruction (Meijering,
2010). The complexity of the optical imaging datasets causes
many challenges for automated neuronal soma segmentation
algorithms. First, the variable brightness in 3D optical imaging
datasets, such as heterogeneous brightness between adjacent 2D
imaging slices, and the weak signal region inside the neuronal
soma, make it difficult to extract the regions that include
the neuronal soma. Second, the neuronal soma has different
shapes and sizes, and some neurons have an irregular-shaped
soma. Most importantly, the images consistently show touching
neuronal somata that are clustered in several local regions, with
unclear boundaries between them. For these reasons, it is hard to
localize or divide these neuronal into individual soma.

BACKGROUND

In recent decades, many studies have focused on cell
segmentation. Early cell segmentation studies referenced image
segmentation techniques. The most widely used technique is the
intensity threshold method, which assumes a remarkable
difference between the intensity of the foreground and
background, and segments cells through a single threshold
or a multilevel of thresholds. The intensity threshold can be
calculated by image histograms (Otsu, 1973) and fuzzy sets
(Pal et al., 2000). However, the intensity threshold method
has difficulty in segmenting touching cells. While an improved
thresholdmethod usingmulti-level intensity to separate touching
cells has been previously proposed (Keenan et al., 2000), since
the touching cells have similar brightness and adjacent position
(He et al., 2014), it remains challenging to perform accurate
segmentation in this manner.

More recently, researchers have combined algorithms to
avoid the shortcomings of individual methods under difficult
conditions (Meijering, 2012). These methods contain seed-
generating and segmenting methods where the initial seeds
represent cell localization and work as initial markers for the
generation of segmentation masks. The most widespread cell
segmentation methods contain watershed algorithms, active
contour models, and graph based methods. Watershed algorithm
performs effectively for touching cells, but results in over-
segmentation due to redundant seeds caused by low signal-noise-
ratio and heterogeneous brightness in the images. To reduce
redundant seeds, mark-controlled watershed algorithms are
applied to cell segmentation (Yang et al., 2006). To achieve better
the segmentation performance, a watershed algorithm using
initial seeds generated by curvatures for cell segmentation in
3D confocal microscopy images was developed (Atta-Fosu et al.,
2016). The level-set cell segmentation method, which segments
by evolving the initial contour using an energy function, has been
extended to 3D images and improved computation efficiency

(Dufour et al., 2005). A subsequent study added the repulse
item to their energy function to prevent touching cells from
overlapping with one another (Yan et al., 2008). This method
heavily depends on the initial contour, and while manual labeling
is an accurate contour initialization method, it is very time-
consuming for large-scale datasets. Al-Kofahi et al. (2010)
proposed a two-stage method for cell segmentation in 2D images
where a graph cut is applied in both stages to extract the
foreground and optimize cell boundaries, respectively. While
excellent for 2D images, many existing methods depend on
brightness and gradient, which makes them unsuitable for 3D
images containing variable brightness, gradient, and variable-
shaped neuronal somata.

There are various studies on neuronal soma segmentation
and detection for 3D images. Yan et al. (2013) proposed
neuronal soma segmentation based on an improved rayburst
sampling algorithm for a Golgi-stained dataset, but their method
could not segment touching neuronal somata. He et al. (2014)
combined the concave point detection and random walker
methods for cell detection and cell segmentation, and found
that the method works well in Nissl-stained dataset, especially
for detecting touching cells. Cheng et al. (2016) proposed a
touching neuronal soma localization method based on density
peak clustering, which demonstrated a high detection accuracy.
These combined methods predict accurate localization results
for cells in 3D images. Nevertheless, there are few studies that
focus on generating accurate segmentation masks of touching
neuronal somata.

Accordingly, various deep learning-based methods have been
proposed and found effective for instance segmentation or
detection in medical image segmentation. Cireşan et al. (2013)
proposed a cell detection method using convolutional neural
networks (CNNs) which regard the cell detection task as
pixel classification, and demonstrated excellent performance for
Mitosis detection. Ronneberger et al. (2015) proposed a U-
shaped fully convolutional neural network (FCN) for medical
image segmentation which was found to be effective for
limited datasets. To improve instance segmentation in medical
image analysis, Chen et al. (2017) proposed deep contour-
aware networks based on a multi-task learning framework.
The method showed accurate segmentation of glands in colon
histology images. The contour-aware networks can predict
objects and contours simultaneously and learn discriminative
features from complementary tasks to reduce the risk of
overfitting. Importantly, the predicted contour is helpful for
splitting touching objects. Recently, encoder-decoder FCNs
(Khoshdeli et al., 2018) were used in nuclei segmentation and
performed well for varying nuclear phenotypes. It should be
noted that a weak supervised 3D neuronal network has been
applied to neuronal soma segmentation (Dong et al., 2018).

In this study, we propose a method of 3D touching
neuronal soma segmentation. The proposed method is
based on a 3D FCN which combines a multi-task learning
framework with U-shaped FCN. Additionally, a spatial attention
module is embedded to learn representative features, and the
total neuronal soma segmentation model contains 0.94M
parameters. This method is validated using Nissl-stained
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FIGURE 1 | Nissl-stained dataset. (A) Raw volumetric data. (B) Manual labels; each neuronal soma is labeled by unique random color. (C–E) Regions contain

touching neuronal somata, labeled by dash bounding boxes in (A); the neuronal soma centers are labeled using blue balls. The intensity of raw data is adapted for

visualization. The shape of this volumetric data is 286 × 286 × 86 voxels, and the voxel size is 0.35 × 0.35 × 0.35 µm.

dataset captured by the micro-optical sectioning tomography
(MOST) system.

METHODS

The main challenge of neuronal soma segmentation is the
handling of touching neuronal somata. Figure 1 depicts
the Nissl-stained dataset used in this study. As shown in
Figures 1C–E, there are many touching neuronal somata
distributed throughout the dataset, and the boundaries between
touching somata are blurred because of similar brightness. This
makes it difficult to divide touching neuronal soma clusters
into individuals ones. In this study, we proposed 3D mutli-
task U-shaped fully convolutional neural network. Specially,
the neuronal soma segmentation is decomposed into two
complementary tasks, namely predictions of neuronal soma
segmentation and boundary, that applied to split the touching
neural somata. The backbone of the proposed fully convolutional
neural networks is designed based on U-shaped architecture
which is effective for training in limited data.

Process Overview
The flowchart of the proposed method, which consists of
image pre-processing, neuronal soma segmentation, and post-
processing, is shown in Figure 2. In the pre-processing step, raw
data is normalized and cropped into small patches to reduce
the memory footprint during the training and testing stages.
In the second step, the FCN is used to predict regions containing
the neuronal soma and boundary for each neuron. Finally, the
post-processing step is used to assemble and merge the results of
the patches.

Pre-processing
To facilitate the training of the CNN, z-score normalization
is performed on the raw data. The mean value and standard

deviation are evaluated from all voxels collected in the training
set. In addition, the original random color labels of the
neuronal somata are transformed into binary labels including
the neuronal soma and boundary. Figure 3 shows the sample
labeling. As illustrated in Figure 3C, the neuronal soma regions
are unconnected for each neuronal soma. Figure 3D shows the
boundaries extracted from the original random color labeled
somata (Figure 3B). To alleviate sample imbalance in the
boundary label, a binary dilation operator (with ball structuring
element with radius of 1 voxel) is used to increase the size of the
boundary regions.

The original size of the volumetric data is 285 × 285 ×

86 voxels, which is too big for model training using limited
GPU memory. Therefore, the raw data is cropped into small
patches with a size of 80×80×80 voxels. The mean neuronal
soma radius in this dataset is 11 voxels. As this is significantly
smaller than the original image size, using smaller patches should
not influence the performance. To make full use of the samples,
a slide window with a stride of 48 voxels is used to generate
the patches. After cropping, there are overlapping regions that
are 32 voxels wide left in adjacent patches, and the neuronal
somata broken by the patch borders are expected to present
completely in at least one patch (Yan et al., 2013). This cropping
operation runs in the same way for both the training and
testing stages.

Neuronal Soma Segmentation
The neuronal soma segmentation network is the main part
of the segmentation pipeline shown in Figure 2. The state-of-
the-art U-shaped FCN (Ronneberger et al., 2015) applied in
the proposed model predicts the boundary and neuronal soma
locations simultaneously, as illustrated in Figure 4.

The proposed FCN architecture model includes an encoder
and a decoder for dense prediction. 3D convolution and
deconvolution layers are applied in the model to explore the
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FIGURE 2 | Flowchart of the proposed method.

FIGURE 3 | Sample labels. (A) Raw image slice. (B) Manually labeled neuronal somata, individual soma is labeled by unique random color. (C) Unconnected neuronal

somata label. (D) Boundary label. The neuronal soma region and boundary region have a complementary spatial arrangement.

3D spatial information from the raw images. The encoder
is used to extract features from raw images using stacks of
convolution layers, and the down-sampling layer is applied to
reduce feature map size and enlarge the receptive field. In this
study, convolutional layers with strides of two substitutes for
max-pooling layers are used in the U-net. The number of feature
maps is doubled after reducing the resolution.

The decoder recovers the feature map resolution gradually.
It contains a trainable deconvolution layer which up-samples
feature maps by a factor of two, following stacks of convolutional
layers to reduce the number of feature maps gradually.
Specially, the neuronal somata is small comparing with input
image shape (the mean radius of neuronal soma is about
5µm (Yan et al., 2013), is about 15 voxels in Nissl-stained
dataset). The volume of neuronal soma could be few voxels
after the processed by some down-sampling layers. For this

reason, fewer down-sampling layers are applied in the proposed
model. As illustrated in Figure 4, the architecture of model is
symmetric and comprises two down-sampling layers and two
up-sampling layers.

There are skip connections between the encoder and decoder
which combine feature maps with different resolutions. The
output branch for the neuronal soma and boundary share the
feature maps from the U-shaped FCN and predict the results
using a convolution layer with a kernel size of 1×1×1 following
sigmoid activation. All convolution layers, except the spatial
attention module and output layers, are followed by batch
normalization layers and Rectified Linear Unit (ReLU) activation
to accelerate model convergence. In addition, the feature maps
from the deeper layers are semantically strong but have few
spatial details, whereas the feature maps captured by the shallow
layers contain rich detail. U-shaped architecture, therefore, tries
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FIGURE 4 | Neuronal soma segmentation model. The blocks represent the feature maps. The violet and red blocks denote the two output branches of boundary and

neuronal soma, and the purple module is the spatial attention module. The kernel size of the 3D convolutional layers is 3 × 3 × 3, and that of the prediction layer is 1

× 1 × 1. The root feature map number is 24. The black arrow indicates data flow, and the green and yellow arrows represent the 1 × 1 × 1 convolution layer with or

without sigmoid activation, respectively. The red arrow represents the down-sampling or up-sampling layers in the CNN. The down-sampling layer is a convolution

layer with a stride of 2, and the up-sampling layer is a deconvolution layer with a stride of 2. In particular, the up-sampling layer in the attention module is the nearest

interpolation.

to recover the missing details by combining feature maps from
the adjacent levels through skip connections (Ronneberger et al.,
2015). As there are some heterogeneous brightness regions in
the raw data which could be ambiguous for prediction, a spatial
attention module (Oktay et al., 2018) is applied to extract related
regions from low level feature maps before merging feature maps
of different resolutions.

As shown in Figure 4, the attention module receives the
feature maps from adjacent levels as inputs and learns to suppress
irrelevant regions in the low level feature maps. The input feature
maps are merged by an addition operation, and successive linear
transform layers (convolutional layers with kernel size of 1 × 1
× 1) are used to calculate the attention coefficient. In this study,
the linear transform layers do not reduce the number of feature
maps, and the nearest interpolation is used to up-sample the
attention coefficient instead of the tri-bilinear interpolation used
by Oktay et al. (2018). Thereafter, the low-level feature maps are
weighted by attention coefficient and combined with the high
level feature maps.

During the training stage, the loss function guiding the model
parameter update is the sum of the cross-entropy Lce and soft-
Dice loss LDice, where the soft-dice loss is applied to deal
with the imbalance problem in the boundary branch (Milletari
et al., 2016). The above-mentioned terms are defined in the

following equations:

Lce = −
1

M

∑

i∈N

(

yilog
(

pi (xi,w)
)

+
(

1−yi
)

log (1 − pi (xi,w)
))

(1)

LDice =
2×

∑

i∈N yi × pi (xi,w)
∑

i∈N pi (xi,w) +
∑

i∈N yi
(2)

Lbranch = Lce + LDice (3)

where i indicates the voxel position in the image space N, M is
the number of the total voxels, yi and xi are the respective label
and sample for one voxel, and pi (xi, w) is the predicted result of
the proposed model w. This loss is used for the segmentation of
the both the boundary and neuronal soma, and the total loss is
defined using Equation (4).

Ltotal = Lbou + Lsoma (4)

Lsoma and Lbou represent the losses of the branches of the
neuronal soma and boundary, respectively.

Post-processing
In the testing stage, the neuronal soma segmentation network
predicts the boundary and object regions for each patch from
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the same image. The post-preprocessing step assembles the
predicted patches into the original shape and refines the
segmentation result.

Patches from the same image are assembled according to
their original locations in the raw image. In the cropping step,
overlapping regions are left to make full use of the samples.
However, as regions near the patch borders do not provide
enough contextual information for accurate prediction, only the
center regions in each patch are extracted to be assembled as the
final result for fast predicting. Second, the probability maps are
clipped at a threshold of 0.5 to generate binary masks, following
which the boundary region is subtracted from the object region to
split the connected touching somata. Finally, marker-controlled
watershed is used to fill the gap left by the subtracted boundary
region. Besides, the center points of each predicted masks for
individual neuronal soma are extracted as localization results.

Implementation
In the pre- and post-processing steps, a ball structuring element
with a radius of one is used for the morphology operations of
the dilation operator (in label generating) and of the opening
operator (in result refining), respectively. The sliding window size
is set to 80 × 80 × 80 with a 32 voxels-wide overlapping region
for adjacent patches.

During model training, on-the-fly random flipping and
random brightness are used to augment the samples. The Adam
optimizer (Kingma and Ba, 2014) with an initial learning rate
of 0.001 is used to train the model. The early-stopping strategy
is used to select the best model and each epoch contains
100 iterations. Additionally, touching boundary recalls are also
considered as auxiliary measures for model selection. The mini-
batch size is set to four in this study.

The implementation and dataset with annotation of
proposed method will be available soon in https://github.com/
keepersecond/neuronal-soma-segmentation.

RESULTS

In this study, we compare the proposed method with several 3D
neuronal soma segmentation methods in Nissl-stained dataset,
including the concave points clustering (CPC) random walker
algorithm (He et al., 2014), the distance transform-based rayburst
sampling algorithm (Hu et al., 2017), and 3D FCNs (3D UNet,
Vnet) (Çiçek et al., 2016; Milletari et al., 2016). To validate the
deep learning results similarly, all the methods are evaluated
using a 3-fold cross-validation, where the dataset is split into
three groups (seven images, seven images, six images). The
pre- and post-processing steps of this study are also applied in
other 3D CNNs, and the weighted cross-entropy loss function
(Ronneberger et al., 2015) proposed for cell segmentation is also
used in other 3D CNNs. The parameters of the CPC random
walker and rayburst sampling algorithms are set as defaults.

To validate performance in dataset captured by different
system and labeled by different staining method, we test the
proposed method in green fluorescence protein (GFP) labeled
dataset captured by fluorescence microscope optical section
tomography (fMOST) system (Gong et al., 2013).

All the methods were validated on an Intel Xeon R© E5-2630
2.4 GHz workstation with 64 GB RAM, and a NVIDIA TITAN
Xp graphics card.

Dataset
The test datasets of the current study contain two parts. The first
comes from a C57B/L mouse, and was captured by Nissl-staining
method and the MOST system (Wu et al., 2014). The original
voxel size is 0.35 × 0.4 × 1µm. The raw data selected from the
cortex was resized by cubic interpolation to achieve an isotropic
resolution of 0.35 × 0.35 × 0.35µm and processed by removing
noise and correcting intensity. To validate the proposed model,
20 image stacks with dimensions of 285×285×86 voxels are
extracted. The total dataset contains ∼4,000 manually labeled
neuronal somata. Unclear structures in the raw data are ignored.

Another test dataset comes from Thy1-GFP-M mouse,
and was captured by fluorescence micro-optical sectioning
tomography (fMOST) system (Gong et al., 2013). The original
voxel size is 0.5 × 0.5 × 2µm. The raw data was selected from
cortex and resized to achieve and isotropic resolution of 0.5 ×

0.5× 2µm, and 34 image stacks with dimensionals of 200× 200
× 200 voxels are extracted from an original image data (921 ×

1,435 × 200 voxels). This dataset contains about 300 manually
neuronal somata.

Evaluation of Soma Segmentation
The segmentation result is validated in terms of soma localization
and segmentation. The localization performance is evaluated by
recall, precision, and F1 score. One neuronal soma is correctly
detected if it matches one ground truth. The mass centers
of the manually labeled somata and segmentation results are
regarded as ground truth and prediction results, respectively. If
the distance between the ground truth and result is less than
the mean soma radius Rc, the pair is matched. Rc is set to 11
voxels in Nissl stained dataset and 13 voxels in GFP dataset.
The recall, precision, and F1 score are defined using Equations
(5–7), respectively:

precision =
Ntp

Nfp + Ntp
(5)

recall =
Ntp

Nfn + Ntp
(6)

F1 =
2× precision× recall

precision+ recall
(7)

where Ntp represents the number of true detected somata, Nfp

represents the number of missed neuronal somata, and Nfn

represents the number of falsely detected neuronal somata.
The segmentation performance is evaluated by Dice

coefficient, which describes the overlapping ratio of ground truth
to segmentation result. The ground truth and result are set as
masks of individual soma in the manual label and predict the
result correspondingly. The Dice coefficient is defined using
Equation (8):

Dice =
2× Seg ∩ Gt

Seg ∪ Gt
(8)

Frontiers in Neuroanatomy | www.frontiersin.org 6 January 2021 | Volume 14 | Article 592806

https://github.com/keepersecond/neuronal-soma-segmentation
https://github.com/keepersecond/neuronal-soma-segmentation
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Hu et al. Accurate Neuronal Soma Segmentation

FIGURE 5 | Segmentation Steps. (A) Raw data. (B,C) Predicted boundary and object for each neuronal soma. (D) Refined segmentation results where individual

neuronal somata are labeled by unique gray levels. (E) Neuronal soma labeled by unique random color.

where Seg and Gt are the masks of the neuronal soma in
the ground truth and segmentation result, respectively. Only
the correctly detected neuronal somata are evaluated by Dice
coefficient (Yan et al., 2013).

The segmentation results of the proposed method are shown
in Figure 5. The model generates results for the boundary and
neuronal soma simultaneously and yields complete boundary
predictions for individual touching neuronal somata. Table 1
compares the performance of the neuronal soma localization
among different methods.

As shown in Table 1, at 0.92, the CPC walker algorithm has
the highest recall ratio. While this method detects more neuronal
somata than other methods, it has a notable false localization
rate, which lowers its precision. The rayburst sampling algorithm
demonstrates similar precision and recall, but at 0.74, has the
lowest F1 score. Being based on 3D FCNs, both the 3D UNet
and VNet methods as well as the proposed method offer a better
trade-off between recall and precision. Compared with the 3D
UNet and VNet models, our proposed method demonstrates
higher precision and a comparable recall ratio, achieving the best
F1 score of 0.92.

To demonstrate the detecting result of the methods, two
image stacks with dimensions of 200×200×60 voxels are
extracted from the raw dataset shown in Figure 6. As can
be seen in Figures 6B–F, the rayburst sampling algorithm
misses many neuronal somata, and the main error of the
CPC random walker and 3D UNet methods comes from false
localization. The VNet and the proposed method demonstrate
better performance than the other methods, and there are less

TABLE 1 | Comparison of performance of neuronal soma localization results using

different methods.

Method Recall Precision F1

CPC-walker Fold1 0.91 0.64 0.74

Fold2 0.92 0.61 0.73

Fold3 0.92 0.67 0.77

Average 0.92 0.64 0.75

Rayburst Fold1 0.76 0.74 0.74

Fold2 0.77 0.67 0.70

Fold3 0.78 0.79 0.78

Average 0.77 0.73 0.74

3D UNet Fold1 0.88 0.73 0.79

Fold2 0.94 0.85 0.89

Fold3 0.90 0.91 0.90

Average 0.91 0.83 0.86

VNet Fold1 0.90 0.79 0.84

Fold2 0.94 0.88 0.91

Fold3 0.87 0.88 0.87

Average 0.90 0.85 0.87

Proposed Fold1 0.91 0.93 0.92

Fold2 0.89 0.94 0.92

Fold3 0.90 0.96 0.93

Average 0.90 0.94 0.92

falsely detected neuronal somata in the result of proposed
method than in the VNetmethod.Table 2 shows the results of the
soma segmentation.
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FIGURE 6 | Localization results. (A) Ground truth; the neuronal soma location is demonstrated by neuronal soma centers labeled using green balls. (B) Distance

transform based rayburst sampling algorithm, (C) CPC random walker (D,E) 3D UNet and VNet, respectively. (F) Proposed method. The falsely detected somata are

labeled using yellow balls and the missing neuronal somata are labeled using red balls. The shape of the volumetric data is 200×200×60 voxels, and the voxel size is

0.35 × 0.35 × 0.35µm.

TABLE 2 | Evaluation of soma segmentation by comparing Dice coefficients.

Method Fold1 Fold2 Fold3 Average

CPC-walker 0.7742 0.7711 0.7728 0.7727

Rayburst 0.7233 0.7276 0.7320 0.7276

3D UNet 0.7486 0.8269 0.8385 0.8047

VNet 0.8404 0.8372 0.8192 0.8323

Proposed 0.8024 0.8533 0.8750 0.8436

The under- and over-segmentation is used to analyze the
segmentation performance. Over-segmentation indicates that
one neuronal soma has been split into pieces, and results
in the false localization of neuronal somata and a low
Dice coefficient. On the contrary, under-segmentation means
that several neuronal somata have been segmented as one
neuronal soma.

As shown in Table 2, the CPC random walker algorithm has
an average Dice coefficient of 0.7727, and that of the rayburst
sampling algorithm is 0.7276. Outdoing the two methods, the
3D FCN models demonstrate average Dice coefficients which are
higher than 0.8. At 0.8436, the proposed method achieves the

best Dice coefficient, which indicates that it can generate accurate
contours for neuronal somata. Figure 7 shows the segmentation
results of the evaluated methods.

As can be seen in Figure 7B, the rayburst sampling algorithm
generates ellipsoid segmentation masks for the neuronal somata.
The main error is under-segmentation, and the ellipsoid
model is not suitable for irregular-shaped neuronal soma or
touching neuronal somata. The CPC random walker is able
to segment nearly all the neuronal somata but makes many
over-segmentations for both the isolated and touching neuronal
somata (as shown in Figure 7C). This suggests that the relatively
low average Dice coefficient of 0.7727 shown in Table 2 may
have been influenced by the prevalence of wrongly segmented
neuronal somata. The 3D FCN based models demonstrate better
segmentation results, and the main error is under-segmentation
of the touching neuronal somata. The VNet seems to predict less
false located regions than the 3D UNet. Notably, compared with
the 3D UNet and VNet, the proposed method predicts better
contours for multiple touching neuronal somata than the VNet
(as illustrated downmost in Figures 7E,F).

The segmentation results of GFP dataset is shown Table 3, the
proposed method achieve a comparable performance in soma
localization and segmentation, the F1 score of localization is
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FIGURE 7 | Segmentation results of different methods. (A) Ground truth; boundary of random color label is used to represents segmentation result, the slices are

extracted from three different volumes. The horizontal bar indicates a distance of 10µm. (B) Distance transform based rayburst algorithm. (C) CPC random walker.

(D,E) 3D UNet and VNet with spatial weighted cross-entropy loss, respectively. (F) Proposed method. Several typical regions, including touching neuronal somata are

extracted by green bounding boxes for comparing the methods.

TABLE 3 | Evaluation of soma segmentation in GFP dataset captured by fMOST

system.

Fold1 Fold2 Fold3 Average

Recall 0.9164 0.9538 0.9335 0.9345

Precision 0.8854 0.8475 0.9089 0.8806

F1 0.8915 0.8874 0.9162 0.8983

Dice 0.8519 0.8693 0.8851 0.8688

0.89, average dice of segmentation is about 0.87. As illustrated in
Figure 8, the challenge of soma segmentation in GFP dataset is
neurites with high intensity around neuronal soma, which could
result in false positive in localization, the proposed method could
suppress the neurites and segment neuronal soma accurately (as
shown in Figure 8D).

DISCUSSION

This study proposes a neuronal soma segmentation method
based on a U-shaped FCN. The method is trained on a small
dataset and demonstrates obvious performance. We compared

the proposed method to the CPC random walker algorithm,
rayburst sampling algorithm, and two advanced 3D FCNs (3D
UNet and VNet) for medical image segmentation. The proposed
method outperforms the others in localization and segmentation.

Over-segmentation is significant in the CPC random walker
for isolated neuronal soma, and is presumably caused by
heterogeneous brightness on the soma surface (He et al., 2014).
There is also over-segmentation observed in touching neuronal
somata. This could be caused by the localization of false
concave points on the surfaces of irregular-shaped touching
neural somata. The rayburst sampling algorithm displayed
over-segmentation and under-segmentation in the Nissl-stained
dataset. It is thought that the ellipsoid model could not accurately
describe the irregular-shaped neuronal somata, and may have
split the elongated somata into multiple ones or missed the plat-
shaped somata (Hu et al., 2017). These methods assume that
the neuronal soma is ball-like or ellipsoid-like, which may not
suit irregular-shaped neuronal somata. The FCNs show better
performance in both localization and segmentation, which is
most likely due to their encoder-decoder architecture (Khoshdeli
et al., 2018). Compared with the CPC random walker and
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FIGURE 8 | Validation of proposed method in GFP dataset. (A) Raw volumetric data from GFP dataset. (B) Manual labels. (C) localization results. (D) Segmentation

results. Each neuronal soma in (B) and (D) is labeled by unique random color. The neuronal soma localization results are represented by red balls. The intensity of raw

data is adapted for visualization. The shape of each volumetric data is 200 × 200 × 200 voxels, and the voxel size is 0.5 × 0.5 × 0.5µm. The horizontal bar indicates

10µm.

rayburst sampling algorithms, the FCNs were able to learn
effective feature representation from raw images and make
accurate predictions.

In this study, the neuronal soma segmentation was separated
into two complementary tasks, namely predictions of boundary
and neuronal soma position. This multi-task model has
the advantage of learning discriminating features for model
prediction and reducing overfitting (Chen et al., 2017). The
proposed model, with only 0.94M parameters, shows better
performance than the 3D UNet (19M trainable parameters)
and VNet (65M trainable parameters) using weighted cross-
entropy loss. Besides, this study uses an attention gate module
to improve the performance of neuronal soma segmentation
through surpassing unrelated regions. A slight improvement of
1.5% is observed in the F1 score in soma localization.

Besides, the proposed method has been validated in dataset
labeled by green fluorescence protein (Gong et al., 2013). The
appearance of this dataset is different from the Nissl stained
dataset. There are many neurites with high intensity around the
neuronal somata, which makes it difficult to extract neuronal
soma regions. The results show that the proposed method could

segment neuronal soma accurately in this dataset (as shown
in Table 3), suppress interference from neurites (as shown in
Figure 8). The proposed method has potential for neuronal soma
segmentation in dataset captured by other staining method.

Additionally, the boundary prediction helps to split the
touching neuronal somata. In many cases, the proposed model
successfully predicts touching boundaries, even for multiple
touching neuronal somata (as shown in Figure 7). Nevertheless,
the main error in our proposed method comes from under-
segmentation caused by local boundaries missing in the
prediction result (as shown in Figure 9), though Dice loss has
been used to deal with the sample imbalance in the boundary
branch. The possible reason could be heavy sample imbalance
and the presence of hard samples in the boundary region.
Clearly, the touching neuronal boundary is the key to splitting
the clustered somata; however, seeing as the ratio of touching
boundaries to total boundary voxels was <10%, it could not be
processed by the soft-Dice loss used in the boundary branch.
Moreover, it is believed that the touching boundary could be
hard to learn, or the voxels in the touching boundary could have
a different neighborhood to those of the boundary between the
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FIGURE 9 | Missing boundary in results. (A) Slices from raw volumetric data. (B) Predicted mask of boundary. (C) Predicted mask of neuronal soma. (D)

Segmentation result labeled by random unique color. (E) Ground truth. The shape of slices is 150 × 150 voxels, the bar indicates 5µm, and the red arrows label the

local missing boundaries.

background and foreground (as shown in Figure 3). For this
reason, the touching boundary could be mistaken for a region
inside the neuronal soma with similar brightness. The focal loss
(Lin et al., 2017) proposed for dealing with hard examples and a
more powerful encoder (He et al., 2016; Huang et al., 2017) could
be possible solutions to this problem. Furthermore, the object
detection framework could avoid the heavy sample imbalance
in the voxel-wise boundary and provide a better localization for
neuronal somata.

Moreover, the proposed method regards the neuronal soma
segmentation as voxel-wise prediction task in an end-to-end
way. Though the neuronal soma size is a basis of network
design, information about neuronal soma morphology should
not be ignored. For example, the neuronal somata are always
blob-like, which is different from neurites and vessel. It is an
important cue to distinguish the neuronal soma from other
structure or split touching neuronal soma with similar intensity.
Specially, multiscale orientable filters have been applied in the
neuronal soma segmentation to identity the blob-like structure,
this method can distinguish the blob-like soma from contiguous
neurites efficiently (Kayasandik and Labate, 2016). Besides, gas
of circles (GOC) active contour model is applied to fluorescently
stained cell segmentation, this model is initialized by a circular
marker and segment overlapping cell accurately (Molnar et al.,
2016). These works have proven that the soma morphology prior
knowledge can process the unrelated structure and clustered
cells. In this study, experiment shows that the proposed
method could predict unclear touching boundary accurately (as
illustrated in Figure 8). Integrating the morphology information

into Loss functions or post-preprocessing step of FCN could be
efficient way to improve the robustness of algorithm to resist the
disturbance of unrelated structure and split touching soma with
unclear touching boundary.

CONCLUSION

In this study, a deep learning-based method is proposed for
3D neuronal soma segmentation. The main part of the method
is the neuronal soma segmentation network, which is a multi-
task learning U-shaped fully convolutional neural network into
which a spatial attention module is embedded to improve the
performance. This model can predict the respective masks of
neuronal soma and boundary. The total model contains only
0.94M trainable parameters, reducing the risk of over-fitting.
The proposed method can segment touching neuronal soma and
irregular-shaped soma efficiently and generate accurate contours
for individual neuronal soma with simple post-processing based
on watershed transform.

The methods are validated in Nissl stained dataset captured
using the MOST system. The proposed method outperformed
four existing neuronal soma segmentation methods by achieving
an F1 score of 0.92 and an average Dice coefficient of 0.84,
respectively. Compared with 3D FCNs which havemore trainable
parameters (19M parameters in 3D UNet, 65M parameters
in VNet), the proposed method generated fewer false detected
targets and achieved comparable recall in neuronal soma
localization. In addition, the proposed U-shaped neuronal soma
segmentation network can be trained with limited training data.
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The proposed method has potential for high-throughput
neuronal soma segmentation in large-scale 3D optical imaging
data and provides accurate neuronal soma contour for neuron
morphology analysis in brain function research.
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