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Abstract

The highly polymorphic genes of the major histocompatibility complex (MHC) play a key role in adaptive immunity.
Divergent allele advantage, a mechanism of balancing selection, is proposed to contribute to their exceptional polymor-
phism. It assumes that MHC genotypes with more divergent alleles allow for broader antigen-presentation to immune
effector cells, by that increasing immunocompetence. However, the direct correlation between pairwise sequence diver-
gence and the corresponding repertoire of bound peptides has not been studied systematically across different MHC
genes. Here, we investigated this relationship for five key classical human MHC genes (human leukocyte antigen; HLA-A,
-B, -C, -DRB1, and -DQB1), using allele-specific computational binding prediction to 118,097 peptides derived from a
broad range of human pathogens. For all five human MHC genes, the genetic distance between two alleles of a hetero-
zygous genotype was positively correlated with the total number of peptides bound by these two alleles. In accordance
with the major antigen-presentation pathway of MHC class I molecules, HLA-B and HLA-C alleles showed particularly
strong correlations for peptides derived from intracellular pathogens. Intriguingly, this bias coincides with distinct
protein compositions between intra- and extracellular pathogens, possibly suggesting adaptation of MHC I molecules
to present specifically intracellular peptides. Eventually, we observed significant positive correlations between an allele’s
average divergence and its population frequency. Overall, our results support the divergent allele advantage as a
meaningful quantitative mechanism through which pathogen-mediated selection leads to the evolution of MHC
diversity.
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Introduction
Pathogens are suspected to be one of the strongest selective
forces in human evolution and the constant exposure to
parasites over evolutionary time has likely contributed to
the genetic variation found at a large number of genes within
and among present day populations (Fumagalli et al. 2011). In
this light, the genes of the major histocompatibility complex
(MHC) with their exceptional genetic diversity and immune
function are a prime candidate to investigate the exact mech-
anisms through which pathogen-mediated selection has con-
tributed to human evolution.

The MHC is a key component of the adaptive immune
system common to all jawed vertebrates (Klein 1986). In
humans, it is known as a gene-dense region that spans
�4 Mb on the short arm of chromosome 6. It comprises
over 200 genes, many of which are involved in immunity
(Beck and Trowsdale 2000). Among these genes, the classical
MHC genes (also called human leukocyte antigen, HLA) en-
code for cell-surface glycoproteins with a key role in adaptive
immunity (Hughes and Yeager 1998; Trowsdale 2011). In cells
infected by intracellular parasites, MHC class I molecules can
present parasite-derived peptides to cytotoxic T lymphocytes
(CTL). Upon recognition of these foreign peptides, the

infected cells are destroyed. The MHC class II molecules pre-
sent antigens, mainly derived from extracellular pathogens,
on the surface of specialized antigen-presenting cells. The
exposed peptides are recognized by helper T lymphocytes
(TH cells), leading to a complex cascade of specific immune
responses (Hughes and Yeager 1998; Jensen 2007; Neefjes
et al. 2011).

The classical MHC genes are among the most polymorphic
genes in the human genome and thousands of different alleles
have been identified at some of these loci (Klein 1986;
Trowsdale 2011). This polymorphism is characterized by a
remarkable sequence variation in the peptide-binding
grooves of MHC molecules (i.e., the pocket where antigens
are bound) (Parham 1988; Reche and Reinherz 2003) as well
as an enhanced rate of nonsynonymous substitutions
(Hughes and Nei 1988). MHC polymorphisms are often an-
cient and allele lineages whose origin predates species diver-
gence are retained across multiple species, an observation
described as transspecies polymorphism (Klein 1987). The
general action of balancing selection in enhancing both the
rate of nonsynonymous substitutions in codons forming the
peptide binding groove (Hughes and Nei 1988, 1989) and the
persistence of allelic diversity over extremely long time
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periods is strongly supported (Klein et al. 1998, 2007).
However, the exact mechanisms of balancing selection are
still disputed. Accordingly, three main mechanisms of
pathogen-mediated selection have been suggested (Spurgin
and Richardson 2010) which are potentially not mutually
exclusive and may interact with one another: heterozygote
advantage (Doherty and Zinkernagel 1975), rare-allele advan-
tage (Bodmer 1972), and fluctuating selection (Hill 1991).

The heterozygote advantage was first proposed by
Doherty and Zinkernagel (1975). Heterozygous individuals
at MHC loci are assumed to present a broader range of
pathogen-derived peptides than homozygotes, thus increas-
ing the probability of triggering a specific immune response.
They show increased resistance to pathogens, and are more
likely to have higher relative fitness, resulting in an increased
persistence of different MHC alleles in the population
(Hughes and Yeager 1998; Penn et al. 2002). The heterozygote
advantage hypothesis has been further extended by taking
into account the sequence level, leading to the idea of a
divergent allele advantage (Potts and Wakeland 1990;
Wakeland et al. 1990). The high sequence divergence ob-
served at MHC genes results in structural polymorphism
that may impact the functional properties of MHC molecules.
Heterozygous individuals with more divergent MHC allele
combinations (i.e., larger number of amino acid differences
along the sequence of the antigen-binding domains) are
thought to encode glycoproteins that differ more in the rep-
ertoire of antigens they can bind. Those individuals may thus
be able to present a wider array of antigens to immune ef-
fector cells, conferring an advantage against pathogen infec-
tions. In contrast, alleles more similar at the sequence level
presumably exhibit more similar peptide binding specificities,
thus leading to recognition of a lower overall number of
peptides when co-occurring in a heterozygous individual
(Lenz 2011).

Because of the extremely high number of pathogen pro-
teins to which each host might be exposed throughout its
lifetime, comprehensively measuring the relevant repertoire
of MHC-bound peptides is impractical in humans and im-
possible in nonmodel species. Consequently, the divergent
allele advantage hypothesis has been difficult to test.
However, different measures of MHC sequence divergence
are increasingly being used as a proxy for the potential
MHC-bound peptide repertoire diversity, leading to correla-
tive evidence that highlights how selection has favored the
evolution of multiple MHC loci with divergent alleles in nat-
ural populations (She et al. 1990; Landry et al. 2001; Richman
et al. 2001; Forsberg et al. 2007; Neff et al. 2008; Lenz et al.
2009; Schwensow et al. 2010; Lenz, Eizaguirre, et al. 2013; Lenz,
Mueller, et al. 2013). In humans, the development of compu-
tational MHC antigen-binding prediction algorithms has en-
abled a more direct test of the divergent allele advantage.
With this approach it has been shown previously that more
divergent HLA-DRB1 allele pairs experience less overlap in the
antigenic peptides they can bind, that is, they are able to
present a broader range of potential antigens (Lenz 2011),
thus supporting the divergent allele advantage hypothesis at
this locus. The investigation of the DRB1 locus has been

further extended by considering two distinct phylogenetic
groups of alleles, denoted as group A and B (Yasukochi and
Satta 2014). The same pattern of increased pathogen recog-
nition capacity was observed only for those alleles that in the
phylogenetic tree cluster together with primate alleles form-
ing a polyphyletic group (group B) (Lau et al. 2015). Recently,
a mechanism of joint divergent asymmetric selection acting
on HLA-A and B as a whole was suggested, which has poten-
tially evolved to counter-balance the lack of diversity at indi-
vidual HLA loci often found in small-sized and isolated
human populations (Buhler et al. 2016).

In order to evaluate the divergent allele advantage hypoth-
esis more systematically across all key classical human MHC
genes, we here investigated the relationship between se-
quence divergence and peptide binding properties for three
class I genes (HLA-A, -B, -C) and two class II genes (HLA-DRB1
and -DQB1). Focusing on “common” alleles for each locus, as
defined by the CWD catalogue (Mack et al. 2013) (supple-
mentary table S1, Supplementary Material online), we evalu-
ated different estimates of amino acid sequence divergence as
proxies for the functional divergence among different alleles.
Functional divergence was characterized by allele-specific
computational binding prediction for a broad range of rep-
resentative human pathogens (supplementary table S2,
Supplementary Material online). Considering a larger and
more comprehensive data set of pathogen-derived peptides
compared with the set of pathogenic peptides that has been
used in previous studies, we were also able to describe the
functional features of the divergent allele advantage, by in-
vestigating the differential pattern of antigenic presentation
between MHC class I and class Il loci. Finally, the frequency
distribution of HLA allele pools was investigated in several
European populations in order to explore ongoing selection
for divergent MHC alleles in modern humans.

Results

Functional Characterization of Common Human
MHC Alleles
The set of 232 proteins from a broad collection of relevant
human pathogens (N¼ 27), including macroparasites, bacte-
ria, and viruses, resulted in a total of 118,097 unique
pathogen-derived peptides. These peptides are meant to rep-
resent a comprehensive repertoire of potential antigens to
which humans may have been exposed to throughout their
evolutionary history, and which may thus have contributed
to the exceptional MHC diversity that we see in present-day
human populations.

The number of alleles defined as common varied among
the different MHC loci: HLA-A: 63, HLA-B: 123, HLA-C: 40,
HLA-DRB1: 73, HLA-DQB1: 21 (supplementary table S1,
Supplementary Material online), reflecting general differences
in allelic diversity among the loci (Trowsdale 2011). The pro-
portion of peptides predicted to be bound by a given allele
varied substantially within and among the different loci (ta-
ble 1 and supplementary fig. S1, Supplementary Material on-
line). For each locus, the proportions of common (shared
among different alleles) and private (allele-specific) peptides
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bound by each allele are reported in supplementary figure S2,
Supplementary Material online. The overlap in bound pep-
tides between different loci was significantly higher for class I
genes (A \ B¼ 8,253, B \ C¼ 5,930, A \ C¼ 5,692, A \ B \
C¼ 3,545) than for class II gene (DRB1 \ DQB1¼ 133) (v2

test, P<0.001) (supplementary fig. S3, Supplementary
Material online). Interestingly, we also found a remarkable
amount of bound peptides that was shared between class I
and class II genes (A \ DRB1¼ 1,377, A \ DQB1¼ 385, B \
DRB1¼ 933, B \ DQB1¼ 403, C \ DRB1¼ 689, C \
DQB1¼ 251) (supplementary fig. S4, Supplementary
Material online). However, since the binding prediction algo-
rithms do not account for different antigen processing path-
ways, it remains to be explored whether in reality these shared
peptides are presented by alleles from both classes of MHC.
The number of combined peptides bound by any two alleles
of a given locus (equivalent to a heterozygous genotype) dif-
fered significantly among the genes (Kruskal–Wallis test,
P< 0.001) (supplementary fig. S5a, Supplementary Material
online). Generally, class II genes showed a lower median num-
ber of peptides bound by allele pairs (HLA-DRB1¼ 587, HLA-
DQB1¼ 446) compared with class I genes (HLA-A¼ 3,936,
HLA-B¼ 3,753, HLA-C¼ 3,349).

Sequence-Based Divergence Parameters and
Functional Differences among MHC Alleles
A growing number of studies are investigating the fitness
consequences of MHC allele divergence both in natural pop-
ulations and in model species by using some estimate of
sequence dissimilarity as a proxy for functional divergence
among alleles. These estimates range from simple nucleotide
differences (only partially relevant at the protein level) to
sophisticated methods that take into account different phys-
icochemical properties of amino acids at the protein se-
quence level.

For instance, the pairwise amino acid p-distance simply
counts the relative number of differences along the amino
acid sequence, but information on amino acid properties and
relationships are not incorporated, and all nonidentical amino
acids are treated as equivalent (Henikoff 1996). However, as
the substitution rate usually varies among amino acid site,
methods including information about different mutation
rates for each amino acid as well as scores that take into
account residue-specific properties have been introduced
(May 1999). DayHoff (Dayhoff et al. 1978) and JTT (Jones

et al. 1992) are two examples of the most popular methods
mainly used to investigate mutational trajectories and evolu-
tionary distances between amino acids. Additionally, quantita-
tive measures of pairwise distance have been developed, in
which the physicochemical properties of the amino acids,
and thus the functional similarity between sequences are con-
sidered. Among the different physicochemical features, the
molecular volumes of amino acid residues might be particularly
meaningful for the question whether a peptide fits into the
various pockets of the peptide-binding groove of an MHC mol-
ecule. Grantham (Grantham 1974) and Sandberg (Sandberg
et al. 1998) distances are two examples of sequence-based
measures of sequence divergence where the molecular volume
of the different amino acids is taken into account.

So far, a comprehensive evaluation has been lacking as to
which sequence parameters are most suitable, that is, most
strongly correlated with functional divergence. Thus, in order
to identify the most relevant sequence-based parameter, the
allele-specific functional binding properties at each MHC lo-
cus were correlated with five different, commonly used meas-
ures of sequence divergence: pairwise amino acid p-distance
(Henikoff 1996), DayHoff (Dayhoff et al. 1978), JTT (Jones et al.
1992), Grantham (Grantham 1974) and Sandberg (Sandberg
et al. 1998).

For each possible allele pair at a given HLA locus, we cal-
culated the total number of unique pathogen-derived pep-
tides (obtained by computational binding prediction as
described earlier) bound by both alleles together (meant to
reflect the MHC-presented antigen repertoire conferred by a
heterozygote genotype). The pairwise number of bound pep-
tides was then correlated with the sequence divergence of the
two given alleles, estimated by the different measures. As
expected, the five measures of genetic distance were highly
correlated with each other (supplementary fig. S6 and table
S3, Supplementary Material online). Accordingly, the correla-
tion values between allele divergence and the combined
number of bound peptides by all possible allele pairs at
each locus under investigation were largely consistent across
the different parameters of sequence divergence (supplemen-
tary table S4, Supplementary Material online). Nevertheless,
despite similar correlation values, a rank analysis across the
five human MHC gene (HLA-A, -B, -C, -DRB1, and -DQB1)
revealed that the Grantham distance measure consistently
ranked at the top, that is, showed the strongest correlation
values (table 2). Therefore, for subsequent analyses, we fo-
cused on one parameter only, the Grantham distance.

Table 1. Proportion of Bound Peptides across the Five Classical MHC Loci.

Locus Proportion of Peptides
Bound By At Least One Allele

Proportion of Bound Peptides Per Allele

Min Max Median (95% CI)

HLA-A 0.185 0.014 0.074 0.017 (0.0159, 0.0178)
HLA-B 0.192 0.012 0.018 0.017 (0.0168, 0.0172)
HLA-C 0.079 0.014 0.019 0.017 (0.0165, 0.0171)
HLA-DRB1 0.025 0.002 0.005 0.003 (0.0026, 0.0031)
HLA-DQB1 0.011 0.001 0.004 0.002 (0.0015, 0.0027)

NOTE.—MHC allele-specific peptide binding was predicted computationally for each locus. Total number of peptides: 118,097.
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Relation between Sequence Divergence and
Functional Divergence
The median distance between allele pairs of a given locus
differed significantly between the five genes (Kruskal–Wallis
test, P< 0.001) with class II genes showing larger median
Grantham distances (HLA-DRB1¼ 9, HLA-DQB1¼ 11) com-
pared with class I genes (HLA-A¼ 7, HLA-B¼ 8, HLA-C¼ 5)
(supplementary fig. S5b, Supplementary Material online).

For the sake of completeness, we first used our data to
confirm the intuitive assumption of the heterozygote ad-
vantage hypothesis that allele pairs (representing hetero-
zygous genotypes) together bind a larger number of
peptides than single alleles (representing homozygous
genotypes). This was generally true for all five loci
(Kruskal–Wallis test, P< 0.001; supplementary fig. S7,
Supplementary Material online), even though there
were some rare cases where certain alleles alone bound

more peptides than certain allele combinations, suggest-
ing interesting variation in peptide promiscuity among
alleles. This general result is in line with a large body of
empirical studies showing higher pathogen resistance for
MHC heterozygotes (Carrington et al. 1999; Penn et al.
2002).

Subsequently, we focus all our analyses on allele pairs with
two different alleles (reflecting heterozygous genotypes).
According to the divergent allele advantage hypothesis, we
expect that the number of peptides bound by heterozygote
genotypes increases with increasing sequence divergence be-
tween the two given HLA alleles. Following this expectation,
all five HLA genes revealed a significant positive correlation
between the pairwise genetic distance and the combined
number of bound peptides across all possible allele pairs
(fig. 1 and table 3). Interestingly, for HLA-A, -B, and -DRB1,
the rate at which the number of bound peptides increases in

Table 2. Rank analysis between different measures of sequence divergence.

Total Extracellular Intra-Extra Intracellular

Average Tau Rank Average Tau Rank Average Tau Rank Average Tau Rank

P-distance 0.321 2 0.265 3 0.297 2 0.297 2
Dayhoff 0.313 3 0.257 4 0.285 5 0.297 2
JTT 0.309 5 0.256 5 0.286 4 0.287 4
Grantham 0.327 1 0.272 1 0.298 1 0.305 1
Sandberg 0.310 4 0.269 2 0.289 3 0.282 5

Note - Average correlation values (Kendall’s tau coefficient) across the five human MHC genes (HLA-A, -B, -C, -DRB1 and -DQB1) and rank analysis across the five parameters of
sequence divergence.

FIG. 1. In silico evidence for divergent allele advantage across five classical human MHC genes. Correlation between pairwise genetic distances
reported as Grantham distance (x axes) and number of bound peptides (y axes) counted for all possible pairs of common HLA alleles. Each dot
represents an allele pair. Binding prediction analyses performed on the complete data set of pathogen proteins (n¼ 232). Linear model (red line)
and smoothed lowess curve (dashed blue line), describing the association between the combined number of bound peptides and pairwise
Grantham sequence divergence. Note the different axis scales.
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response to larger allele divergence appears to slow down
after a certain point, seemingly approaching a maximum.
This can be explained by the fact that, for some loci, even
allele pairs with only intermediate sequence divergence do
not share any bound peptides anymore (supplementary fig.
S8, Supplementary Material online). As the combined num-
ber of bound peptides cannot be larger than the sum of
peptides bound be each allele, as soon as zero overlap is
reached, any further sequence divergence cannot increase
the combined number of bound peptides any further. This
suggests that alleles at some loci can diverge functionally with
only a small number of sequence changes, possibly at sites
located in the peptide binding region.

Furthermore, a significant negative correlation could be
observed between pairwise genetic distance and the propor-
tion of shared peptides (peptides bound by both alleles of a
given combination; supplementary fig. S8, Supplementary
Material online), revealing a decreasing proportion of pepti-
des shared between more divergent alleles. Of note, for the
two class II loci, the correlations between genetic distance and
peptide sharing were stronger than between genetic distance
and the total number of bound peptides. This is owing to the
fact that the latter measure includes additional variation from
differences in the size of the bound peptide repertoire among
HLA class II alleles (supplementary fig. S2, Supplementary
Material online), an allele-specific property that is indepen-
dent of the divergence between alleles.

Phylogenetic analysis of the HLA-DRB1 gene has revealed
two subgroups of allelic lineages: a human-specific monophy-
letic group (Group A), and a polyphyletic group with pri-
mates (Group B) (Yasukochi and Satta 2014). It has been
proposed that group A and B allele lineages have evolved
with contrasting binding capacity, and only the alleles from
the polyphyletic group B showed increased presentation of
pathogen peptides with increasing sequence divergence (Lau
et al. 2015). In contrast with previous findings, our binding
prediction analysis revealed a significant positive correlation
for the whole set of DRB1 alleles (fig. 1 and table 3) as well as
for both groups of alleles separately (supplementary fig. S9,
Supplementary Material online). This discrepancy to the ear-
lier results might be due to the much larger and more com-
prehensive data set of pathogen-derived peptides used in our
analysis (here 118,097 peptides vs. 265 peptides in the previ-
ous study).

Antigen Processing and Different Origins of
Pathogenic Peptides
Up to this point, our analysis treated all pathogen peptides as
equally likely targets for each given MHC locus. However, in
reality some of those peptides will never be in contact with
certain MHC molecules, due to the different processing path-
ways by which eukaryotic cells degrade proteins: the protea-
some and lysosomal proteases. Peptides resulting from
proteasome degradation, generally derived from intracellular
proteins, are presented by MHC class I molecules, whereas
peptides presented by MHC class II molecules are usually of
extracellular origin and processed through lysosomal protease
degradation in antigen-presenting cells (Jensen 2007). If the
exceptional sequence divergence among MHC alleles evolved
at least partly as a consequence of pathogen-mediated selec-
tion for divergent alleles, we would expect to see a stronger
signature of selection at a given MHC locus when focusing on
biologically meaningful pathogens that are likely to actually
be encountered by a given MHC molecule. That is, we expect
a stronger correlation between sequence divergence and
functional divergence when only focusing on peptides origi-
nating from the locus-specific antigen-processing pathway.
We thus divided the pathogen proteins used for binding
prediction analysis into three groups. The three groups
were based on their agent’s lifestyle in the host: “extracellular”
(n¼ 58 proteins), “intracellular” (n¼ 100) and a third group
of pathogen proteins belonging to those agents whose life
cycle involves both intracellular and extracellular stages inside
the host (Silva 2012), here named as “intra-extracellular”
(n¼ 75) (supplementary table S2, Supplementary Material
online). Within each of the three groups of pathogen pro-
teins, and for all five investigated HLA genes, we again ob-
served a significant positive correlation between the pairwise
sequence divergence and the combined number of bound
peptides across all possible allele pairs. Interestingly however,
in some cases, the strength of correlation differed among the
three pathogen groups: at two of the MHC class I genes, HLA-
B and HLA-C, a stronger positive correlation was observed for
the group of intracellular pathogens, compared with extra-
cellular pathogens, while this bias was not observed at HLA-A
(fig. 2 and table 3). Conversely, a stronger correlation for
peptides derived from extracellular pathogens was detected
at one MHC class II locus, HLA-DQB1; while correlation values
between pairwise sequence divergence and the combined

Table 3. Divergent Allele Advantage and Different Pathogen Groups.

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1

Pathogen Groups Tau Padj Tau Padj Tau Padj Tau Padj Tau Padj

Total 0.361 <0.001 0.397 <0.001 0.507 <0.001 0.157 <0.001 0.210 0.001
Extracellular 0.345 <0.001 0.192 <0.001 0.392 <0.001 0.130 <0.001 0.303 <0.001
Intra–Extra 0.351 <0.001 0.289 <0.001 0.475 <0.001 0.166 <0.001 0.210 0.024
Intracellular 0.293 <0.001 0.377 <0.001 0.544 <0.001 0.137 <0.001 0.172 <0.001

NOTE.—Correlation values (Kendall’s tau) between combined number of bound peptide and Grantham genetic distance between all possible allele pairs across the five key
classical MHC genes. Binding prediction was performed on the complete data set of pathogen proteins (n¼ 232) as well as considering proteins separately within three groups
of pathogens: extracellular (n¼ 57), intracellular (n¼ 100), and intra-extracellular (n¼ 75).
Tau, Kendall’s tau coefficient; Padj, P value after Bonferroni-correction across multiple alleles tested at each locus and number of loci.
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number of bound peptides at the HLA-DRB1 locus were com-
parable across the three groups of pathogen proteins (fig. 2
and table 3). In the three cases where a bias across the groups
of pathogen proteins was detected, the intra-extracellular
proteins showed intermediate correlation values between
the intra- and the extracellular proteins (table 3). However,
permutation of the proteins among the three groups revealed
that only for HLA-B and HLA-C, the observed difference be-
tween extracellular and intracellular correlation values were
indeed larger than expected by chance (both P< 0.001; sup-
plementary fig. S10, Supplementary Material online), while
the other three loci did not show a statistically significant
deviation from random expectations.

Our main analyses were performed considering
pathogen-derived peptides that are all of the same length
(9 aa). However, MHC class II molecules allow binding
longer peptides than class I. Thus, for alleles at the two
class II loci, binding prediction of 15mer peptides from
the same set of pathogen proteins were considered. This
analysis showed stronger correlations for DRB1 and
weaker correlations for DQB1, compared with the 9mer
predictions, but overall support the main conclusions
(supplementary table S5, Supplementary Material online).
Furthermore, to test if our results were sensitive to the
choice of the binding threshold, we additionally repeated
the primary analysis using a different binding threshold
(%rank of 0.5, indicating strong binding). The comparable
results suggest that our main conclusions hold across a
range of established binding thresholds (supplementary
table S6, Supplementary Material online).

Distinct Amino Acid Composition among Pathogen
Groups
The observed bias in the correlation between sequence diver-
gence and functional divergence (peptide binding) toward a
specific group of pathogens suggests distinct differences in
the peptide repertoires among these groups. This could be
due either to certain group-specific peptide sequences or to a
more general difference in the amino acid composition of
proteins among the pathogen groups. Amino acid usage
has changed over evolutionary time in different species, and
proteins have evolved in terms of physico-chemical and struc-
tural properties, reflecting adaptations to specific environ-
mental conditions (Bogatyreva et al. 2006; Tekaia and
Yeramian 2006). Intriguingly, intra- and extracellular environ-
ments exhibit significant differences, including different pH
value (Casey et al. 2010) and availability of different nutrients
(Goetz et al. 2001; O’Riordan and Portnoy 2002; Ross 2014). It
thus appears plausible that intra- and extracellular pathogens
may have evolved proteomes with distinct amino acid
compositions.

In order to test if the observed bias in correlation values
across the groups of pathogen proteins was the results of
group-specific peptide sequences or due to more general
differences in the amino acid composition within each group,
we created four different data sets of artificial proteins. These
four data sets were then analyzed in the same way as above,
again assessing the strength of correlation between allele di-
vergence and functional divergence (here based on bound
peptides from the artificial proteins) for the three pathogen
groups and across the five HLA loci. First, amino acids forming

FIG. 2. Different origins of pathogenic peptides. Correlation between pairwise genetic distances reported as Grantham distance (x axes) and
number of bound peptides (y axes) calculated for all possible pairs of common HLA alleles. Each dot represents an allele pair. Binding prediction
analyses performed considering proteins within three groups of pathogens: extracellular (orange, n¼ 57 proteins), intracellular (green, n¼ 100),
and intra-extracellular (purple, n¼ 75).
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each pathogen protein sequence were randomly shuffled,
maintaining the same amino acid composition of a given
protein, but changing its actual sequence. If the stronger cor-
relation with intracellular pathogen proteins by HLA-B and
HLA-C were due to group-specific peptide sequences, we
would expect this bias to disappear when reshuffling the
protein sequences. However, correlation values resulting
from shuffled proteins did not differ substantially from the
true observed correlation values obtained with the real data
set of pathogen proteins (supplementary table S7,
Supplementary Material online). For the second set of artifi-
cial proteins, we created random protein sequences but
maintained amino acid frequencies as they occurred within
each group of pathogen proteins. Again, correlation values
did not differ substantially from the observed true correlation
values obtained in the initial test and the specific bias across
the three groups was still observed (supplementary table S7,
Supplementary Material online). For the third set of artificial
proteins, we again created random protein sequences but this
time maintained amino acid frequencies as they occurred in
the whole data set of pathogen proteins. While a general
positive correlation was also observed in this data set, the
specific bias across the groups of pathogen protein was not
detected anymore (supplementary table S7, Supplementary
Material online). Finally, the amino acid composition com-
puted from UniProtKB/Swiss-Prot data bank (Gasteiger et al.
2005; Boutet et al. 2016) was used to create the fourth set of
artificial proteins. Again, the specific bias across the three
groups of pathogen proteins was not detected anymore (sup-
plementary table S7, Supplementary Material online). Thus,
the observed bias in correlation values persisted only when
amino acid frequencies mirrored the specific frequencies ob-
served within each group of pathogen proteins. One of the
possible explanations of our results could be that the ob-
served stronger correlation of HLA-B and HLA-C alleles with
peptides from intracellular pathogens is not due to specific
peptides but is the results of adaptation of MHC alleles to the
differences in amino acid composition between groups of
pathogens. To further explore this hypothesis, a nonparamet-
ric multivariate analysis of variance was performed to quantify
the similarity among proteins with regard to their amino-acid
composition. The two groups of intracellular and extracellular
pathogen proteins indeed differed significantly in their amino
acid composition (PerMANOVA test, P< 0.001), with 9% of
the total variance associated with the divisions in intracellular
and extracellular proteins (R̂2 estimate from PerMANOVA)
(fig. 3). Accordingly, when average amino acid compositions
were compared between the two groups of pathogen pro-
teins, significant variations in the mean amino acid compo-
sition were observed for specific amino acids (one-way
ANOVA, P< 0.05) (supplementary fig. S11 and table S8,
Supplementary Material online). The observed differences
in amino acid composition could be linked to glycosylation
patterns, which differ between extracellular and intercellular
peptides (Marshall 1972). N-glycosylation is one of the forms
of protein glycosylation in eukaryotic organisms which is
mainly targeting extracellular and secreted proteins. It has
been shown that N-glycosylation sites are specific to the

consensus sequence Asn-Xaa-Ser/Thr and that the presence
of proline between Asn and Ser/Thr inhibits N-glycosylation
(Bause 1983). Accordingly, in our analysis proteins of ex-
tracellular pathogens show low proline concentration
which is instead prevalent in proteins of intracellular
pathogens. These exploratory analyses suggest that the
amino acid composition might be different between the
two groups of intracellular and extracellular pathogen
proteins and that MHC alleles might have potentially
adapted their binding specificities accordingly, at least
at the HLA-B and HLA-C loci. However, further research
is necessary to validate this conclusion and to exclude
other potential causes, such as taxonomy, driving the ob-
served difference in amino acid composition.

Population Frequency of Divergent HLA Alleles
The above-described results support historical pathogen-
mediated selection through divergent allele advantage at
the human MHC. However, we were also interested in ex-
ploring whether the divergent allele advantage was still main-
taining diverse HLA allele pools in present day human
populations. We hypothesized that, under the divergent allele
advantage, alleles that on an average yield a more divergent
genotype (conferring higher fitness) when paired with an-
other allele in a heterozygote individual, would be selected
for and thus exhibit higher frequencies in a given population.

FIG. 3. Multidimensional scaling plot of amino acid composition in
intracellular and extracellular pathogen proteins. Multidimensional
scaling (MDS) based on amino acid frequencies indicates similarity in
amino acid composition among individual proteins (dots).
Intracellular proteins (n¼ 100) are reported in green while extracel-
lular proteins (n¼ 57) in orange. MDS enables a standardized unit-
less representation of variation among data points in 2D space (along
perpendicular axes MDS1 and MDS2): location of proteins within the
plot is indicative of potential bias toward specific amino acids (blue
characters in one letter code), proteins with more similar amino acid
composition are displayed closer to each other. The dashed circles
indicate 95% confidence intervals for each group. Stress for 2D rep-
resentation: 0.21.
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A similar observation had been made in the allele pool of
a social marine mammal whose reproductive success is
partly predicted by the divergence of its MHC genotype
(Lenz, Mueller, et al. 2013). In order to test this hypothesis
across the five classical HLA loci, we calculated for each
allele of a given locus the average pairwise amino acid
sequence divergence to the most common alleles at this
locus (�5% allele frequency, representing alleles most
likely to be forming a heterozygote with the allele in ques-
tion). This average sequence divergence was then corre-
lated with the allele’s population frequency. For this
analysis, we focused again on alleles defined as “common”
in the CWD catalogue (Mack et al. 2013), assuming that
very rare alleles are more susceptible to stochasticity and
neutral demographic processes. In line with our expecta-
tion, a significant positive correlation between the aver-
age pairwise sequence divergence of an allele and its
population frequency was observed for a number of
HLA genes (HLA-B, -C, and -DRB1) across different
European populations (USA European Caucasian,
German, and Polish) (fig. 4 and supplementary table S9,
Supplementary Material online).

Discussion
Here, we used computational antigen-binding prediction on a
large data set of potentially antigenic pathogen peptides to
investigate whether pairs of highly diverged MHC alleles to-
gether bind more different antigens than more similar alleles.
Such an association is predicted by the divergent allele advan-
tage hypothesis (Wakeland et al. 1990) and had previously
been investigated only for the HLA-DRB1 gene in humans
(Lenz 2011; Lau et al. 2015). The observed positive correlation
between the genetic distance of two alleles and the combined
number of peptides they bind together confirmed and ex-
tended the predictions of the divergent allele advantage for all
five investigated human MHC genes. These results support
the hypothesis that enhanced sequence diversity between
alleles in a heterozygous MHC genotype increases the range
of potential MHC-presented peptides, thus raising the chance
to recognize specific antigens and consequently enhance im-
mune surveillance.

Our observation that HLA-B and HLA-C (and potentially
HLA-DQB1) exhibit the strongest associations when consid-
ering antigens originating from their most plausible targets is
intriguing and lends further support to the biological

FIG. 4. Population frequency of divergent HLA alleles. Correlation between the average Grantham pairwise divergence to the most common alleles
and the allele frequency in the USA NMDP European Caucasian (N¼ 1,242,890), German (N¼ 39,689), and Polish (N¼ 20,653) populations, for
four classical HLA loci with available allele frequency data in AlleleFrequencies.net. Significant associations that persisted after Bonferroni cor-
rection across populations are reported with a solid line, while dashed lines indicate associations that are only nominally significant (P< 0.05
before Bonferroni correction; for exact values see supplementary table S9, Supplementary Material online).
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relevance of this mechanism. It might indicate that the ex-
ceptional sequence divergence commonly observed among
alleles of a given MHC locus has evolved specifically in re-
sponse to selection by pathogens that are processed through
the major protein degradation and antigen-presentation
pathways that this given locus is associated with: alleles at
HLA-B and -C loci have apparently evolved to bind specifically
peptides derived from intracellular pathogens, while alleles at
the HLA-DQB1 locus may have evolved to bind a wider array
of peptides from extracellular pathogens. The fact that we did
not observe such a pathogen group-specific bias at the HLA-A
and HLA-DRB1 loci might indicate either that divergent allele
advantage has not played a significant role in their evolution,
or that they are less specific with regard to the pathogen
origin of the peptides they present. It has indeed been shown
that autophagy of intracellular components can promote the
presentation of endogenous antigens by MHC class II mole-
cules (Paludan et al. 2005; Levine and Deretic 2007; Münz
2012; Roche and Furuta 2015). Furthermore, several studies
have reported a potential role for DRB1 molecules in viral
infections (Martin and Carrington 2005). For instance, HLA-
DR variants have been associated with spontaneous clearance
of HBV and HCV infections (Thursz et al. 1995; McKiernan
et al. 2004), with protective effect against dengue shock syn-
drome (DSS) development (Nguyen et al. 2008) and with HIV
suppression (Malhotra et al. 2001). In this light, the lack of a
particular bias by DRB1 alleles toward either of the pathogen
groups may indicate that this locus evolves under selection by
both intra- and extracellular pathogens.

In addressing the frequency of divergent HLA alleles in
different human populations, we observed in some human
populations, and for specific HLA loci, significant correlations
between an allele’s population frequency and its average pair-
wise sequence divergence. These results might suggest still
ongoing selection for divergent HLA genotypes, at least in
some modern human populations, possibly depending on
population-specific differences in historical pathogen com-
munities. However, allelic age may also contribute to the ob-
served pattern, as, in principle, older alleles are both more
likely to have reached high frequencies, even under neutrality,
and to have accumulated more point mutations (thus being
more divergent). On the other hand, HLA genes are known to
undergo frequent recombination and gene conversion events,
yielding novel alleles with high divergence from their origin at
the very start (i.e., at low frequency). It is thus unclear to what
extent novel alleles contribute to the observed pattern, war-
ranting further research to explore the effect of genetic drift
on the frequency of divergent HLA alleles. Furthermore, HLA
alleles that on an average form more divergent allele combi-
nation, and which have been maintained in the population
because of their increased capacity in presenting pathogen-
derived peptides, might also be advantageous in case of newly
emerging and fast-evolving pathogens (i.e., HIV).

Humans share similar MHC allelic lineages with closely
related species (Klein 1987; Lawlor et al. 1988). This observa-
tion is a typical feature of MHC genes, compatible with the
theory of transspecies evolution: ancestral lineages present in
the common ancestor are inherited through successive

speciation events, persisting over long periods of time
(Klein et al. 2007). The ancestral and highly diverged MHC
variants are assumed to be adaptive and selectively main-
tained as a polymorphism by balancing selection (Hughes
and Nei 1988; Lenz 2011). Recently, the role of adaptive in-
trogression has been proposed to contribute to the excep-
tional level of polymorphism at the MHC (Abi-Rached et al.
2011; Wegner and Eizaguirre 2012). So far, explanations for
the maintenance of introgressed MHC alleles have largely
relied on the idea that such alleles were somehow locally
adapted and thus beneficial. For instance, it has been sug-
gested that modern humans might have maintained intro-
gressed archaic HLA variants because they conferred an
advantage against local pathogens (Abi-Rached et al. 2011).
However, another explanation appears also plausible: MHC
alleles from another species are, on average, likely to have
diverged significantly from the species’ own allele pool.
Thus, any allele that introgresses from another species is likely
to lead to highly divergent MHC genotypes. Following the
divergent allele advantage hypothesis (and our results), such
introgressed alleles should then confer a significant advantage
and should consequently be selected for in the new species.
This scenario would easily explain the maintenance of intro-
gressed MHC alleles, but further research is necessary to sup-
port this hypothesis.

While the present analysis focuses exclusively on the
divergent allele advantage, in reality, selection at MHC
genes is a dynamic process that involves additional mech-
anisms apart from the divergent allele advantage.
Conceptually, the divergent allele advantage can be con-
sidered a quantitative mechanism, which works indepen-
dent of specific pathogen species or strains. It can act over
long evolutionary time scales, promoting the mainte-
nance of ancient allelic lineages in natural populations
(Lenz 2011) and facilitating immunity against the con-
stant simultaneous barrage by many different pathogens.
In contrast, negative frequency-dependent selection
(NFDS) is a qualitative mechanism in which specific alleles
can be selected by specific pathogens (Slade and
McCallum 1992; Lenz 2018). This mechanism likely works
on a shorter time scale, for instance affecting MHC evo-
lution in humans in very recent history (Lindo et al. 2016;
Krause-Kyora et al. 2018). Both mechanisms, the diver-
gent allele advantage and NFDS might also act in parallel,
but at different time scales, creating an intriguing combi-
nation of shared polymorphism but distinct allele pools
among populations and possibly even species (Lighten
et al. 2017). Local adaptation plays another significant
role in MHC evolution and might modulate the effect of
the above mechanisms (Eizaguirre and Lenz 2010). The
simultaneous action of these additional mechanisms might
occasionally mask the effect of the divergent allele advan-
tage and potentially explain the only sporadic evidence for
this mechanism in the population frequency analysis
reported here. Nevertheless, our results strongly support
the divergent allele advantage as a meaningful quantitative
mechanism through which pathogen-mediated selection
contributes to the evolution of MHC diversity.
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Materials and Methods

MHC Loci and Alleles Included in Analyses
Five key classical human MHC genes (HLA-A, -B, -C, -DRB1,
and -DQB1) were analyzed in this study. Alleles at each locus
were defined at second field (four-digit) resolution and only
alleles annotated as “common” in the CWD catalogue (Mack
et al. 2013) were included in the analyses. The allele annota-
tion “common” in the CWD catalogue does not specifically
indicate a high population frequency but more the extent
and quality of documentation available for the given allele.
This category indicates that there is universal agreement
about the identity of this allele because it has been observed
in multiple populations and there is sufficient data for robust
frequency estimation (Mack et al. 2013). These criteria
resulted in the analysis of 63 alleles for HLA-A, 123 for HLA-
B, 40 for HLA-C, 73 for HLA-DRB1, and 21 for HLA-DQB1
(supplementary table S1, Supplementary Material online).

Pathogen Proteins
Binding prediction analyses were performed on a data set of
representative human pathogen proteins. Pathogens were
selected from the Gideon database (Berger 2005) based on
the following criteria: a global distribution, a potential for high
mortality and/or morbidity, and a significant impact over the
course of human history (Wolfe et al. 2007). The rational for
these criteria was that such pathogens are likely to have con-
tributed significantly to human evolution in general and to
the evolution of MHC genes in particular. Wolfe et al. (2007)
provided a comprehensive list of infectious diseases with the
greatest evolutionary and historical significance. From that
list, we have taken the majority of pathogens in our data
set. However, to assess mortality and morbidity, epidemiolog-
ical data were also collected from two published reports: the
Annual report of the European Centre for Disease Prevention
and Control (European Centre for Disease Prevention and
Control 2013) and the WHO Global Health Estimates
(World Health Organization 2016). First, pathogens with
the highest current mortality were included. However, not
just mortality, but also nonfatal morbidity can be historically
and evolutionarily significant. Indeed, morbid pathogens can
reduce the fitness of their host in different ways (e.g., by in-
creasing the sterility), thus pathogens considered morbid
were also included. Finally, eradicated pathogens known to
be important in human history were taken into account.
Here, we used protein sequences of present day pathogens
to explore signatures of historical selection, even though an-
cient pathogen strains might have differed slightly in their
antigen repertoires. While we do not expect an effect on
the general patterns observed here, it might be interesting
to explore subtle differences in future work. We further aimed
for a balanced representation of different groups of patho-
gens (i.e., viruses, bacteria, parasites). Based on these criteria,
we identified 27 pathogens (10 viruses, 10 bacteria, 7 macro-
parasites) that were classified into three groups: extracellular,
intracellular, and intra-extracellular, based on their primary
environment in the human body (supplementary table S2,
Supplementary Material online). Then, for the selected

pathogens, amino acid sequences of 232 pathogen proteins
(8.5 6 5.8 per pathogen) known to be antigenic (Vita et al.
2015) and/or likely exposed to the host immune system
(mostly secreted and surface proteins) (Rana et al. 2016)
were obtained from GenBank (for accession numbers see
supplementary table S2, Supplementary Material online).

Peptide Binding Prediction Algorithms
Computational antigen-binding prediction algorithms for
MHC molecules were used to determine pathogen peptides
potentially bound by the MHC alleles under investigation.
Binding prediction was computed for all alleles at each of
the five human MHC genes. Furthermore, as prediction anal-
ysis are likely to be more accurate for the core of the binding
groove, which is known to be nine residues long and contrib-
utes the most to the recognition of the antigens, binding
prediction was performed considering all possible 9mer
pathogen-derived peptides. The data set of 232 representative
human pathogen proteins described above resulted in a total
of 118,097 unique pathogen-derived 9mer peptides that were
analyzed using two different algorithms: NetMHCpan (v2.8)
(Hoof et al. 2009) for the alleles at class I loci (HLA-A, -B, -C)
and NetMHCIIpan (v3.0) (Karosiene et al. 2013) for the alleles
at class II loci (HLA-DRB1, -DQB1). For alleles at the two class II
loci (HLA-DRB1 and HLA-DQB1), we repeated the binding
prediction analysis considering all possible 15mer pathogen-
derived peptides. The predicted binding affinity between
pathogen peptides and MHC molecule variants (defined in
nanomolar IC50, i.e., half maximal inhibitory concentration)
are ranked by the respective software, based on comparison
with a large pool of naturally occurring peptides, and a rank
percentage score (%rank) is assigned to each peptide. To de-
fine “bound” peptides, we used the default %rank threshold
of 2, which includes weak and strong binders. All analysis were
also repeated using another established binding threshold
(%rank of 0.5) which includes only strong binders. The allele
HLA-A*30:04 was predicted to bind about four times as many
peptides as the other 62 HLA-A alleles (supplementary fig. S2,
Supplementary Material online) and was thus excluded as an
outlier from subsequent analysis in order to prevent distor-
tion of results. The binding prediction analyses were per-
formed first on the complete data set of pathogen proteins
(n¼ 232), and then considering proteins within three groups
separately: extracellular (n¼ 58), intracellular (n¼ 100), and
intra-extracellular (n¼ 75).

Sequence Divergence
Allele divergence was computed on the same set of alleles
used in the binding prediction analysis reported in supple-
mentary table S1, Supplementary Material online. Protein
sequences of HLA alleles were obtained from IMGT/HLA
database (Robinson et al. 2015). Exons forming the variable
region in the peptide binding groove (i.e., exon 2 and 3 for
class I alleles and exon 2 for class II alleles) were selected
following the annotation obtained from Ensemble database
(Aken et al. 2016). Amino-acid sequence alignments were
performed using MUSCLE (Edgar 2004), and sites containing
alignment gaps at the beginning or the end of sequences were
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removed. Genetic distances between alleles for all possible
allele pairs at each locus were determined removing missing
sites in pairwise comparisons and using five different pairwise
parameters of allele divergence: p-distance (Henikoff 1996),
DayHoff (Dayhoff et al. 1978), JTT (Jones et al. 1992),
Grantham (Grantham 1974), and Sandberg (Sandberg et al.
1998). Pairwise amino acid p-distance, DayHoff and JTT dis-
tances were calculated in MEGA 7 (Kumar et al. 2016).
Grantham and Sandberg sequence distances were calculated
using a custom Perl script that required two input files: a
FASTA file with aligned HLA alleles and a specific amino
acid distance matrix. Grantham amino acid distance matrix
was constructed from Grantham (1974). Sandberg amino
acid distance matrix was calculated based on Euclidian dis-
tances between all 20 amino acids, using the Euclidian dis-
tance method in R version 3.4.1 (R Development Core Team
2017) according to the five physicochemical z-descriptors de-
scribed in Sandberg et al. (1998): z1 (hydorphobicity), z2 (ste-
ric bulk), z3 (polarity), z4, and z5 (electronic effects). Our perl
script (together with the Grantham amino acid similarity
matrix) is freely available for download from SourceForge
(https://granthamdist.sourceforge.io/). It can be used for cal-
culation of pairwise Grantham divergence for any set of
aligned MHC alleles of any species.

Allele Frequencies
Information about HLA allele frequencies in different human
populations where obtained from the Allele Frequency Net
Database (AFND) (Gonzalez-Galarza et al. 2015). We consid-
ered only populations of European ancestry with large sample
sizes and for which frequencies of alleles at second field res-
olution were available: USA NMDP European Caucasian
(N¼ 1,242,890), German (N¼ 39,689), and Polish
(N¼ 20,653) populations. Furthermore, as with the analyses
above, we focused on alleles defined as “common” in the
CWD catalogue, which led to exclusion of some alleles with
a frequency <1%. For each population, we first determined
the most common alleles (allele frequency>¼ 5%) and for all
the alleles under investigation in a given population, we cal-
culated the average Grantham pairwise divergence to the
most common alleles, considering all possible heterozygote
genotypes.

Statistical Analyses
Correlation Tests
The Shapiro–Francia test was performed for all the parame-
ters under investigation (i.e., measures of genetic distance,
combined number of bound peptides and average
Grantham pairwise amino acid divergence to the most com-
mon alleles) to explore samples’ distribution. As parameters
were not normally distributed and tied ranks could be
detected within our data, the nonparametric Kendall corre-
lation was used to test for associations between parameters.
When testing the association between sequence divergence
and functional divergence, all P values were adjusted for mul-
tiple testing using a sequential Bonferroni correction across
the number of alleles tested at each locus as well as across the
number of different loci tested. When testing the association

between the allele’s average divergence and its population
frequency, P values were corrected across the number of
populations tested. Correlations were performed in R version
3.4.1 (R Development Core Team 2017).

Permutation Tests
To test for significant differences in the strength of correlation
between allele divergence and the binding to pathogen
group-specific peptides, we performed permutation tests.
For this analysis, the set of 232 representative human patho-
gen proteins were randomly shuffled among the three groups
of pathogens, maintaining the same number of proteins as
observed in the original data (extracellular n¼ 57, intracellu-
lar n¼ 100 and intra-extracellular n¼ 75). For each group of
pathogens, permuted proteins were used to perform binding
prediction analyses and compute correlation values between
genetic distances and combined number of bound peptides
counted for all possible allele pairs for the five HLA genes
(analogous to original analysis). Each permutation was run
1,000 times, and the difference between correlation coeffi-
cients for intracellular and extracellular proteins for the five
HLA genes was recorded. If there was no significant bias for
intracellular or extracellular pathogens, on average this differ-
ence should be zero. The distribution of permuted differences
was then used to infer the significance of our initial observa-
tions using a one-tailed test with a 0.05 cut-off.

Artificial Proteins
Four sets of artificial proteins were created and analyzed to
test for potential differentiation of the amino acid composi-
tion (AAC) among the three groups of pathogens. The first
set of artificial proteins was created by randomly shuffling
amino acids within each pathogen protein by using the
Shuffle Protein program (Stothard 2000), thus maintaining
the AAC of each protein intact. Three more sets of artificial
proteins were created in R version 3.4.1 (R Development Core
Team 2017) by assembling random amino acids while main-
taining several features as they occurred within each of the
three pathogen groups used in the initial test (i.e., the number
of proteins, the average length of sequences, the SD of the
length and the minimum and maximum length). The second
set of artificial proteins was created from random amino acids
but maintaining the AAC as it occurred within each group of
pathogen proteins. The third set of artificial proteins was
created from random amino acids, while maintaining amino
acid frequencies as they occur in the whole data set of path-
ogen proteins. Finally, amino acid composition computed
from UniProtKB/Swiss-Prot data bank (Gasteiger et al. 2005;
Boutet et al. 2016) was used to create the fourth set of arti-
ficial proteins.

Multivariate Analysis of Variance
Multidimensional scaling is a multivariate statistical tech-
nique that can be used to display and summarize a high-
dimensional data set in 2D graphical form. The technique
was here applied to explore associations between subsets of
pathogen proteins and amino acids. A nonparametric,
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permutational multivariate analysis of variance
(PerMANOVA) was used to test for differences in the amino
acid composition between pathogen groups. The
PerMANOVA, based on a Bray–Curtis dissimilarity distance
matrix, was run with 999 permutations to tests for statistical
significance. Both procedures are implemented in the vegan
package (Oksanen et al. 2012) in R version 3.4.1 (R
Development Core Team 2017).

Comparison of Average Amino Acid Compositions
Comparison of mean amino acid compositions between the
two groups of pathogen proteins (extracellular and intracel-
lular) were performed using one-way analysis of variance; all P
values were adjusted for multiple testing using Bonferroni
correction across the number of amino acids tested.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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