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Abstract

Hypersensitivity to radiation exposure has been suggested to be a risk factor for the development of several malignancies,
but not including gastric cancer. In this case-control study, radiation sensitivity as measured by chromatid breaks per cell (b/
c) was examined in cultured peripheral blood lymphocytes (PBLs) from 517 patients with gastric cancer and 525 healthy
controls. Our results showed that b/c values were significantly higher in cases than in controls (Mean [SD], 0.47 [0.20] vs. 0.34
[0.17]; P,0.001). Using the 50th percentile value for controls (0.34 b/c) as the cutoff point, unconditional logistic regression
analysis revealed that c–radiation-sensitive individuals were at significantly higher risk for gastric cancer (adjusted odds ratio
[OR] 2.01, 95% confidence interval [CI] 1.49–3.13). Quartile stratification analysis indicated a dose-response relationship
between c-radiation sensitivity and gastric cancer risk (P for trend ,0.001). When using the subjects in first quartile of b/c
values as reference, the adjusted ORs and corresponding CIs for the subjects in second, third, and fourth quartiles were 1.48
(0.91–2.17), 2.42 (1.76–3.64), and 3.40 (2.11–5.29), respectively. The c-radiation sensitivity was related to age and smoking
status. In addition, a clear joint effect on cancer risk was found between c-Radiation sensitivity and smoking status. The risk
for ever smokers with high sensitivity was higher than those for never smokers with high sensitivity and ever smokers with
low sensitivity (OR [CI], 4.67 [2.31–6.07] vs. 2.14 [1.40–3.06] vs. 2.42 [1.57–3.95], respectively). No significant interaction was
found between both factors (P for interaction = 0.42). We conclude that chromatid radiosensitivity is associated with gastric
cancer susceptibility in a Chinese population.
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Introduction

Gastric cancer is one of the most frequent malignancies in

China. Although more and more environmental risk factors [1],

such as cigarette smoking, alcohol drinking, Helicobacter pylori (H.

pylori) infection and excessive salt intake, have been identified, the

genetic factors associated with sporadic gastric cancer remains to

be mostly unclear. In past years, genotypic and phenotypic assays

have been extensively used to study genetic variations in the

general population and to investigate their possible associations

with cancer risk [2,3,4]. Investigations using genotypic assays have

shown that single nucleotide polymorphisms (SNP) and haplotypes

related to genes encoding carcinogen-metabolizing enzymes and

DNA repair proteins might be used to identify high-risk subgroups

in the general population [5,6]. With the advance of SNP chip

technology, genome-wide association study has commonly been

used to identify cancer susceptibility genes. A shared susceptibility

locus in PLCE1 at 10q23 for gastric adenocarcinoma and

esophageal squamous cell carcinoma has been reported in ethnic

Chinese subjects [7]. Meanwhile, investigations using phenotypic

assays have helped to improve cancer risk assessment by

elucidating complex genetic traits that might account for the net

effects of several genetic pathways, for the cumulative effects of

low-risk genetic variants, or simply for epigenetic alterations whose

effects may be difficult to notice in genotypic studies. Of the two

approaches, the phenotypic approach has the advantage of not

depending on the discovery of new genes and has the potential for

identifying individuals who harbor relevant germline mutations in

as yet undiscovered genes.

To date, a variety of phenotype screening assays have been

developed to assess cancer risk in population-based studies. Chief

among them are assays that measure metaphase chromosomal

aberrations [8], micronuclei [9], host cell reactivation [10], and

mutagen-induced comet tails [11]. Another increasingly useful

assay is the mutagen sensitivity assay (MSA) developed by Hsu et al.

[12,13]. This assay, which measures the number of mutagen-

induced chromatid breaks per cell in cultured primary peripheral

blood lymphocytes (PBLs) during the late S-G2 phase of the cell

cycle, has been shown to provide useful biomarkers of susceptibility

to different types of cancer including those of the lung [14], skin

[15], head and neck [16], breast [17], liver [18], and brain [19].
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Interindividual variations in the metabolism of carcinogens,

susceptibility to chromosome damage in response to mutagens or

carcinogens, and DNA repair capacity might contribute to

variations in mutagen sensitivity among individuals. Also, it has

been suggested that different mutagens may act via different

molecular mechanisms and thereby activate different repair

pathways. It follows that a person who is sensitive to one mutagen

may be resistant to another. For this reason, several different

challenge mutagens (e.g., c-radiation, BPDE, and bleomycin) have

come to be commonly used in performing MSAs. c-Radiation is

particular useful because it can cause oxidative damage and

induce single- or double-strand breaks that are repaired by base

excision and/or double-strand-break repair pathways. Moreover,

c-radiation-induced mutagen sensitivity of lymphocytes has been

associated with an increased risk of breast cancer [17] and glioma

[19]. In addition, Esther et al. conducted an inter-laboratory

comparison to address the concerns of intra-observer, inter-

observer, and inter-laboratory variations of mutagen sensitivity

[20]. The correlation was high for all tests, suggesting a good

concordance rate between different laboratories. As laboratory

personnel of both laboratories were trained by using same

technique, it is need to explore inter-laboratory concordance

between different settings and countries.

Genotypic assays have identified many SNPs that are reportedly

associated with increased or decreased gastric cancer risk [21].

However, few studies have attempted to determine gastric cancer

risk phenotypically. Therefore, for the present study, we assembled

a large hospital-based case-control population of 517 cases and

525 controls and used it to assess the relationship between c-

radiation-induced sensitivity and gastric cancer risk. To the best of

our knowledge, this is the largest phenotypic study and the first c-

radiation sensitivity assay to assess gastric cancer risk.

Subjects and Methods

Ethics
This study was approved by the institutional review boards of

the Fourth Military Medical University. Written informed consent

with a signature was obtained from each patient.

Study Population
In this case-control study, ethnicity of all participants was

Chinese Han. All cases and controls were recruited without regard

to age, sex or disease stage. A total of 517 incident cases who were

newly diagnosed with histologically confirmed primary gastric

adenocarcinoma were consecutively recruited from Department of

General Surgery in Tangdu hospital affiliated to The Fourth

Military Medical University, Xi’an, Shaanxi, China, between

March 2008 and June 2011, which represented 81% of all new

cases diagnosed at the same study period in Tangdu Hospital. All

cases had no prior chemotherapy or radiotherapy. A cohort of 525

healthy controls having no prior history of cancer (except non-

melanoma skin cancer) was simultaneously recruited from

individuals who visited the same hospital for physical examination

with a response rate of about 73% during the same time period as

cases were recruited. Any case or control subject who had received

a blood transfusion in the 6 months prior to enrollment was

excluded from the study. After recruitment, cases and controls

were frequency-matched by age (65 years), sex, and the

residential areas.

Epidemiological Data
After signed informed consent was obtained from each

individual, all participants were interviewed by trained staff

interviewers by using a standardized epidemiological question-

naire. Each participant was required to provide detailed informa-

tion on demographics, smoking history, alcohol consumption,

dietary habits and family history of cancer after each interview,

venous blood sample from each subject was drawn into coded

tubes (3 mL into heparinized tube and 2 mL into regular tube)

and forwarded for laboratory analysis. Laboratory personnel

handling blood samples were blinded to the case-control status of

each.

Measurement of Serum Antibody IgG to H. pylori
The 2 mL of coagulated blood was centrifuged for 10 min at

4006g to collect the serum. The serum was then divided into three

aliquots for storage in 280uC. H. pylori infection in all subjects

was determined by pylori DTect test using a commercial IgG

enzyme-linked immunosorbent assay kits (Diagnostic Technology,

Pymble, Australia) according to the manufacture’s instruction. The

test has been validated in Chinese populations with a high

sensitivity and specificity for detection of H. pylori infection [22].

Mutagen Sensitivity Assay
A modified mutagen sensitivity assay as described previously by

Cherry and Hsu [23,24] was used in this study with c-Radiation as

the challenge mutagen. In brief, samples of fresh heparinized

whole blood (1 mL each) were mixed with 9 mL of RPMI 1640

medium supplemented with 20% fetal bovine serum (Life

Technologies, Inc., Gaithersburg, MD) and 112.5 mg/mL of

phytohemagglutinin (Thermo Fisher Scientific, Remel Products,

Lenexa, KS). Each mixture was incubated at 37uC with 5% CO2

for 70 hours to ensure the proliferation of PBLs and a good supply

of mitotic cells for chromosome analysis. Subsequently, cells in one

of the cultures were directly exposed to 1.5 Gy of c-radiation from

a 60Co irradiator (FJX Model, BINE High-Tech Co.,Ltd. Beijing,

China) and then incubated for an additional 5 hours to allow time

for DNA repair. Cells were then arrested in the mitotic stage by

treatment with colcemid (Invitrogen) at a final concentration of

0.05 mg/mL for 1 hour before harvesting to induce mitotic arrest.

The cells were harvested and prepared on slides as described

previously [25]. After coding to ensure blinded evaluation, each

slide was examined under a microscope, and the chromosome

breaks in 50 well-spread metaphases were counted. Note that the

decision to count breaks in only 50 metaphases was based on a

previous study [26] showing that this conventional approach

would provide adequate data. Only chromatid breaks were

counted; chromatid gaps or attenuated regions were ignored.

The mean number of chromatid breaks per cell was taken to

represent the number of chromosome breaks in each sample. In

this study, two well-trained scorers successively worked on the

assessment of mutagen sensitivity by counting chromatid breaks in

well-spread metaphases. Second scorer has been trained by first

scorer until consistent result can be obtained on same slide when

blinded to each other. Both scorers were blinded to case-control

status.

Statistical Analysis
All statistical analyses were performed using the statistical

package SPSS 18.0 for Microsoft Windows (SPSS, Chicago, IL).

Smoking and drinking status were categorized as dichotomized

variables. Individuals who had smoked less than 100 cigarettes in

his or her lifetime were defined as never smokers, and those that

consumed 3 and more standard cups of alcohol each week for over

6 months were considered as ever drinkers. Pack-years were

defined as the mean number of cigarettes smoked per day divided

by 20 and then multiplied by smoking years. Pearson’s x2 test was

c-Radiation Sensitivity and Gastric Cancer Risk
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used to examine differences in the distribution of cases and

controls in terms of sex, smoking and drinking status. Student’s

t test was used to analyze normally distributed continuous

variables, such as age, cigarette pack-years (among ever smokers)

and c-radiation sensitivity. In addition, subjects were dichoto-

mized according to c-radiation sensitivity by using the 50th

percentile value for the controls as the cutoff point or stratified into

quartiles based on the number of chromatid breaks per cell in the

controls for further analyses as a categorical variable. An

individual was considered sensitive to c-radiation if the number

of chromatid breaks per cell was equal to or larger than the 50th

percentile value for the controls. Subjects were dichotomized by

age according to the median age of the controls. The association

between the number of chromatid breaks per cell and gastric

cancer risk was estimated by calculating and comparing adjusted

ORs and their corresponding CIs. To account for the potentially

confounding effects of age, sex, smoking status, drinking status and

H. pylori infection, unconditional logistic regression analysis with

multiple covariates was performed. Stratified analyses were

performed to compare c-radiation sensitivity among different

subgroups of cases or controls, to assess the risk of gastric cancer

associated with c-radiation sensitivity in those subgroups, and to

evaluate the joint effect of c-radiation sensitivity and smoking

status on gastric cancer risk. All P values were based on two-sided

tests. A probability level of 0.05 was used as the criterion for

statistical significance.

Results

The characteristics of the 517 cases and 525 controls are

summarized in Table 1. The cases and healthy controls were well-

matched in terms of sex distribution (P = 0.837) and mean age

Table 1. Distribution of selected characteristics in gastric cancer cases and healthy controls.

Variables Cases (n = 517) Controls (n = 525) P Value

Sex, n (%)

Male 336 (64.9) 338 (64.4)

Female 181 (35.1) 187 (35.6) 0.837

Smoking Status

Never 229 (44.3) 330 (62.8)

Ever 288 (55.7) 195 (37.2) ,0.001

Alcohol Drinking

Never 252 (48.7) 344 (65.5)

Ever 265 (51.3) 181 (34.5) ,0.001

H. pylori Infection

Yes 317 (61.3) 265 (50.4)

No 200 (38.7) 260 (49.6) ,0.001

Age in years, n (%) 52.9 (8.2) 53.2 (8.5) 0.562

Pack-years*, mean (SD) 44.8 (22.5) 32.4 (20.7) ,0.001

Mutagen sensitivity#, mean (SD), b/c 0.47 (0.20) 0.34 (0.17) ,0.001

SD: standard deviation.
*ever smokers only.
#Mutagen sensitivity was represented by number of chromatid breaks per cell (b/c).
doi:10.1371/journal.pone.0043625.t001

Table 2. Gastric cancer risk as estimated by c-radiation sensitivity.

Mutagen sensitivity# Cases, n (%) Controls, n (%) Adjusted OR* (95%CI)

By median (50th percentile)

Low (,0.34 b/c) 172 (33) 262 (50) 1 (Reference)

High ($0.34 b/c) 345 (67) 263 (50) 2.01(1.49–3.13)

By quartile

1st 62 (12) 132 (25) 1 (Reference)

2nd 93 (18) 135 (26) 1.48(0.91–2.17)

3rd 150 (29) 128 (24) 2.42(1.76–3.64)

4th 212 (41) 130 (25) 3.40(2.11–5.29)

P for trend ,0.001

OR, odds ratio; CI, confidence interval.
#Mutagen sensitivity was represented by number of chromatid breaks per cell (b/c).
*Adjusted by age, sex, H. pylori infection, smoking and drinking status.
doi:10.1371/journal.pone.0043625.t002
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PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e43625



(52.968.2 vs. 53.268.5 years old, P = 0.562). Compared with the

controls, the cases had proportionally more ever smokers (55.7%

vs. 37.2%) and proportionally fewer never smokers (44.3% vs.

62.8%) and smoked more heavily (Mean [SD] pack-years, 44.8

[22.5] vs. 32.4 [20.7]; P,0.001). As expected, cases had more ever

drinkers then controls (51.3% vs. 34.5%, P,0.001). Cases had a

significantly higher percentage of H. pylori infection than controls

(61.3% vs. 50.4%; p,0.001).

The c-Radiation -induced chromatid breaks per cell were

significantly more frequent in cases than in controls (mean [SD],

0.47 [0.20] vs. 0.34 [0.17]; P,0.001). After dichotomization by

radiation sensitivity at the 50th percentile cutoff for controls (0.34

breaks per cell), radiation-sensitive individuals were found to be at

significantly greater risk for gastric cancer than non-sensitive

individuals (OR [95%CI], 2.01 [1.49–3.13]) after adjustment for

age, sex, H. pylori infection, smoking and drinking status (Table 2).

Subsequent stratification by quartiles as described above in

Methods revealed a statistically significant dose-response relation-

ship between the number of breaks per cell and gastric cancer risk

(P,0.001). The adjusted ORs and corresponding CIs for the

second, third, and fourth quartiles were 1.48 (0.91–2.17), 2.42

(1.76–3.64), and 3.40 (2.11–5.29), respectively (Table 2). As

indicated in Figure S1, a large overlap of MSA data was noted

between cases and control. Receiver operating characteristic

(ROC) analysis indicated a best cut-off value of 0.475 for a risk

biomarker with positive and negative predictive values of 0.499

and 0.829, respectively. These data suggest a limited separate use

of c-radiation sensitivity as a biomarker to predict gastric cancer

risk.

The c-radiation sensitivity profiles within the case and control

groups were compared in terms of sex, age, smoking use, drinking

status, and H. pylori infection (Table 3). The statistically significant

difference noted was an association between age and c-radiation-

induced sensitivity in the case group and an association between

smoking statuses. In brief, case subjects ,53 years old were

significantly more sensitive to c-radiation than were those

$53 years old (mean [SD] chromatid breaks per cell, 0.49

[0.22] vs. 0.45 [0.17]; P = 0.022). Ever smokers were significantly

more sensitive than never smokers in both cases (0.50 [0.22] vs.

0.43 [0.19]; P,0.001) and controls (0.38 [0.19] vs. 0.31 [0.15];

P,0.001).

Table 3. Comparison of mutagen sensitivity among different subgroups in gastric cancer cases or controls.

Cases Controls

n Mean (SD), b/c pa n Mean (SD), b/c pa

Sex

Male 336 0.47 (0.19) 338 0.33 (0.16)

Female 181 0.47 (0.21) 1.000 187 0.35 (0.18) 0.190

Age

,53 267 0.49 (0.22) 260 0.33 (0.17)

$53 250 0.45 (0.17) 0.022 265 0.35 (0.17) 0.178

Smoking status

Never 229 0.43 (0.19) 330 0.31 (0.15)

Ever 288 0.50 (0.22) ,0.001 195 0.38 (0.19) ,0.001

Alcohol drinking

Never 252 0.47 (0.18) 344 0.34 (0.18)

Ever 265 0.47 (0.21) 1.000 181 0.34 (0.16) 1.000

H. pylori infection

Yes 317 0.48 (0.20) 265 0.34 (0.17)

No 200 0.46 (0.19) 0.260 260 0.34 (0.17) 1.000

SD: standard deviation.
ap values were determined by Student’s t test to assess the difference of mutagen sensitivity between two different subgroups in cases or controls.
Mutagen sensitivity was represented by number of chromatid breaks per cell (b/c).
doi:10.1371/journal.pone.0043625.t003

Table 4. Joint effect of mutagen sensitivity and smoking in gastric cancer risk.

Mutagen sensitivity# Smoking status Cases n (%) Controls n (%) Adjusted OR* (95%CI)

Low Never smoker 73 (14) 165 (31) 1 (Reference)

High Never smoker 156 (30) 165 (31) 2.14 (1.40–3.06)

Low Ever smoker 98 (19) 92 (18) 2.42 (1.57–3.95)

High P for interaction Ever smoker 190 (37) 103 (20) 4.67 (2.31–6.07)0.42

*Adjusted for age, sex, H. pylori infection and drinking status.
#Mutagen sensitivity was represented by number of chromatid breaks per cell (b/c).
doi:10.1371/journal.pone.0043625.t004
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PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43625



As revealed by stratified analyses (Table S1), cases exhibited no

significant difference on the increased risk (OR [95%CI])

associated with c-radiation sensitivity in different subgroups, such

as in females and in males (2.65 [1.61–4.24] vs. 1.88 [1.38–2.72]),

in old persons and in younger persons (2.72 [1.78–4.38] vs. 1.83

[1.14–2.91], in never smokers and in ever smokers (2.14 [1.40–

3.06] vs. 1.73 [1.25–2.91], in never drinkers and in ever drinkers

(2.25 [1.53–3.17] vs. 1.86 [1.29–2.95] as well as in individuals

without H. pylori infection and in those with H. pylori infection

(2.56 [1.50–4.06] vs. 1.84 [1.27–2.85]. A joint effect on cancer risk

was found between c-Radiation sensitivity and smoking status by

comparing the risks for sensitive ever smokers, sensitive never

smokers, and non-sensitive smokers against the risk for non-

sensitive never smokers (i.e., the reference group) (Table 4). In

brief, the risk for ever smokers with high sensitivity was higher

than those for never smokers with high sensitivity and ever

smokers with low sensitivity (OR [CI], 4.67 [2.31–6.07] vs. 2.14

[1.40–3.06] vs. 2.42 [1.57–3.95], respectively, P for interaction

= 0.42).

Discussion

In a large case-control population, we have demonstrated that

genetic instability (measured as sensitivity to radiation-induced

chromatid breaks) is associated with an increased risk of gastric

cancer. Our results are in line with those of previous studies

showing c-radiation sensitivity to be an independent risk factor for

breast cancer [17,27,28] and glioma [19].

As an integrated phenotypic biomarker, mutagen sensitivity

potentially represents the endpoint of many different pathways by

which a cell may suffer and repair DNA damage in response to

mutagen challenge [29]. The mechanism underlying susceptibility

to chromosome damage, however, remains unclear in many

respects. Gajecka et al. [30] have suggested that the chromatid

breaks induced by mutagen challenge in vitro do not occur at

random sites, but that in most cases they occur in regions

containing loci involved in DNA repair and cell cycle regulation,

suppressor genes, and oncogenes. Pandita and Hittelman [31]

have suggested that the mutagen sensitivity phenotype may reflect

inherent structural alterations in chromatin that increase the

chances of DNA damage being translated into chromosome

damage. Hsu [32] has suggested that susceptibility to chromosome

damage varies along a continuum, at the extreme end of which lies

recognized chromosome fragility syndromes such as Fanconi’s

anemia or ataxia-telangiectasia. Moreover, the apparently broad

effect of mutagen sensitivity on diverse cancers suggests that

multiple genes in various DNA repair pathways may contribute to

this phenotype. When Wei et al. [33] evaluated DNA repair

activity in 16 established cell lines by conducting host cell

reactivation and mutagen sensitivity assays in parallel, they found

a statistically significant association between decreased DNA

repair activity and higher rates of mutagen-induced chromatid

breaks. This suggests that repair fidelity may be hampered in

individuals who are hypersensitive to mutagens. Berwick and

Vineis [34] have suggested that the mutagen sensitivity assay

indirectly measures general and nonspecific impairment of the

DNA repair machinery. Our present findings provide additional

support for the notion that defective DNA repair is associated with

increased gastric cancer risk.

Although c-radiation sensitivity in our study population was

clearly not affected by sex, drinking status, or H. pylori infection,

which is consistent with previous reports [35,36,37], it did appear

to be affected by age and smoking status. Indeed, we observed that

the frequency of chromatid breaks per cell among case subjects

was higher for the younger ones (i.e., those less than 53 years old).

The increasing radiosensitivity with decreasing age suggests that

genetic variation is more important for a younger age group

whereas environmental risk factors are more important with

increasing age, which is consistent with expectations. Previous

observation by Hsu et al. [38] also demonstrates that mutagen

sensitivity tends to decrease with increasing age in heavy smokers

over 50 years old. Meanwhile, our ability to link smoking status to

mutagen sensitivity suggests that smoking may be responsible for

the differences in susceptibility we observed between groups. In

addition, we compared the level of c-radiation sensitivity

(measured as breaks per cell, b/c) in control subjects among

different studies and found notable difference by population. In

comparison to b/c values in our study (Mean 6SD, 0.3460.17),

Wang et al. [28] have reported obviously higher b/c values

(0.4460.16) for controls, while Natarajan et al. [27] have reported

obviously lower b/c values (0.2460.12). The variation between

studies possibly results from some differences in assay procedure,

radiation dose, and scoring criteria. Future efforts should be

directed at setting up a uniform b/c level for each mutagen to

facilitate inter-study comparisons and potential pooled analyses.

Despite the promising findings, our study has several potential

limitations. First, it may be argued that cancer patients simply

suffer more chromosome breaks in vivo and thus only appear to

exhibit more breaks after c-radiation treatment. Previous studies

[38,39] have extensively analyzed the frequency of baseline

‘‘spontaneous’’ breaks in vitro and found them to be extremely

rare (60.02 breaks per cell) in both patients and healthy controls.

Thus, we do not routinely report such baseline breaks separately.

Second, it may be argued that the mutagen sensitivity of PBLs

does not accurately reflect the mutagen sensitivity of target tissue.

However, there is ample evidence to the contrary. Cheng et al.

[40] established that PHA-stimulated lymphocytes might be used

as a tissue surrogate in estimating DNA repair capacity by

demonstrating the similar expression of several DNA repair genes

in PHA-stimulated lymphocytes, skin, breast, liver, and prostate.

Seetharam et al. [41] demonstrated that UV-irradiated plasmids

replicated in XP lymphoblasts and XP fibroblasts suffered very

similar types of mutations, thus implying that different cell types

from the same individual may exhibit similar mutagenic damage.

In a study of individuals with precancerous disease, Udumudi et al.

[42] detected genetic instability not only in the cervical epithelial

cells but also in the PBLs of their subjects. Together, these findings

suggest that the mutagen sensitivity of lymphocytes does indeed

reflect the repair capacity of a donor’s target tissue.

A third concern, directly attributable to the case-control design

of our study, is that mutagen sensitivity may be an effect rather

than a cause of gastric cancer. However, there is mounting

evidence that increased susceptibility to induced chromatid breaks

does have a genetic basis. Patel et al. [43] reported that first-degree

relatives of breast cancer patients had more radiation-induced

chromosome breaks than did controls. In a cohort study of 3182

workers exposed occupationally to mutagenic agents and studied

for chromosomal aberrations at baseline, Hagmar et al. [44] noted

a statistically significant linear trend toward increased cancer risk

with increasing number of aberrations. In a study of twins [45],

authors found strong, direct evidence that mutagen sensitivity is

highly heritable, thereby validating the use of mutagen sensitivity

as a marker of cancer susceptibility. In addition, a prospective

analysis by Chao et al. supports the hypothesis that sensitivity to

mutagens increases the risk of neoplastic progression in persons

with Barrett’s esophagus, particularly those with 17p LOH

including TP53 [46].
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In summary, our data indicate that increased sensitivity to c-

radiation is associated with an increased risk of developing gastric

cancer. To our knowledge, this study is the first published case-

control study to date to address the role of increased mutagen

sensitivity in gastric tumorigenesis. Our present findings warrant

future studies aimed at identifying the genes responsible for the

mutagen sensitivity phenotype and elucidating the molecular

mechanisms underlying variations in mutagen sensitivity between

individuals. In addition, we can expected that, when combined

with other risk factors, c-radiation sensitivity will contribute to

build a risk prediction model for gastric cancer.
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