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ABSTRACT: Micro-oxidation is a fatal problem for some
precision oxygen-free copper materials, and it is difficult to detect
with the naked eyes. However, manual inspection using microscope
equipment is expensive, subjective, and time-consuming. The
automatic high-definition micrograph system equipped with micro-
oxidation detection algorithm can detect more quickly, efficiently,
and accurately. In this study, a micro-oxidation small objection
detection model, MO-SOD, is proposed to detect the oxidation
degree on oxygen-free copper surface based on microimaging
system. This model is developed for rapid detection on the robot
platform combined with high-definition microphotography system.
The proposed MO-SOD model consists of three modules: small
target feature extraction layer, key small object attention pyramid
integration layer, and anchor-free decoupling detector. The small object feature extraction layer focuses on the local features of small
object to improve the perception of micro-oxidation spots and also takes the global features into account to reduce the impact of
noisy background on feature extraction. Key small object attention pyramid integration block couples key small object feature
attention and pyramid to detect the micro-oxidation spots in the image. The performance of MO-SOD model is further improved by
combining the anchor-free decoupling detector. In addition, the loss function is improved to combine CIOU loss and focal loss to
achieve effective micro-oxidation detection. The MO-SOD model is trained and tested from three oxidation levels in an oxygen-free
copper surface microscope image data set. The test results show that the average accuracy (mAP) of MO-SOD model is 82.96%,
which is superior to other most advanced detectors.

1. INTRODUCTION
Oxygen-free copper is widely used in aerospace and electronic
devices because of its high electrical conductivity, high thermal
conductivity, good elasticity, corrosion resistance, nonmagnetic,
low hydrogen permeability, easy machining, and low cost.1

However, the reaction of oxygen-free copper with oxygen and
water vapor in the environment will produce micro-oxidation,
which is fatal to some precision instruments using oxygen-free
copper, and the resulting damage or scrap will cause huge
economic losses and even cause personnel casualties.23

Therefore, detecting the degree of micro-oxidation on the
surface of oxygen-free copper and predicting it in advance is of
great significance for taking effective protective measures in a
timely and reasonable manner.4

Micro-oxidation is a fatal problem for oxygen-free copper
materials, but it is difficult to detect micro-oxidation with the
naked eye. Visual inspection using microscope equipment is one
of the more widely used inspection techniques. However, the
inspector’s work is intensive and long-term inspection can affect
the inspector’s working condition, resulting in low inspection

efficiency, low inspection accuracy, and problems with false and
missed inspections.
Before the increase of machine vision, visual inspection could

not be adapted to efficient production and nondestructive
testing (NDT) is widely used. NDTmethods used for oxidation
corrosion inspection include eddy current, magnetic leakage,
and infrared inspection. Among them, eddy current detection
and magnetic leakage detection are prone to detection errors
when detecting rough surfaces. Infrared detection due to its
more restrictive conditions is generally used for a small range of
offline detection. For intelligent manufacturing, the above
methods cannot satisfy the automation requirements. Infrared
detection is generally only used for offline detection in a small
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range due to its many limited conditions, which cannot meet the
automation requirements of the intelligent manufacturing
industry.
Machine vision inspection is a more desirable method of

oxidation detection, which processes the images captured by the
camera by means of image processing algorithms. Traditional
machine vision-based inspection methods consist of two main
aspects, one is based on image processingmethods and the other
is based on manual feature machine learning methods. The
image-processing-based approach uses a CCD HD camera to
acquire images of copper surface morphology. Shen, Chen, and
Chang5 use RGB color space to collect oxidation chromato-
grams and define oxidation color ranges for oxidation
identification. Manual feature-based machine learning methods
use algorithms such as SIFT,6 Canny,7 HOG,8 LBP,9 and
GLCM10 for feature extraction and then train an SVM11 to
determine if the input image has oxidation. Son, Hwang, and
Kim12 propose a method for determining the surface area of rust
on steel bridges, applying color space transformation, and rust
area classification based on the J48 decision tree algorithm.
These machine vision-based oxidation inspection methods
improve the efficiency of inspection and meet the requirements
of automation to a certain extent but are less adaptable and the
hand-made feature vectors do not adequately represent the
information for complex environments. In addition, classifier
inspection cannot accurately locate the oxidation location.
CNN can automatically extract the features of an image,

solving the problem of time-consuming and laborious manual
feature extraction. Because of their high accuracy, efficiency, and
adaptability, deep learning algorithms are gradually becoming an
important research direction in oxidation detection. Li, Lin, and
Chen13 propose an adaptive multithreshold spot area adaptive
calibration algorithm to detect small rust spots on ships, and the
detection rate and range of this method are better than
traditional methods. Liu, Xu, and Xu14 proposed a convolution
neural network-based surface defect detection system with
markers for the classification and detection of steel plate surface
defects with small samples. Yao, Yang, Wang, and Zhao15

proposed a convolutional neural network-based method for the
detection and identification of corrosion damage on hull
structural panels, using a classifier together with an overlapping
scan sliding window algorithm to identify and locate the location
of corrosion damage. Bastian, Jaspreeth, and Ranjith16 designed
a special convolutional neural network to classify images of
water, oil, and gas pipelines based on the degree of corrosion of
the pipeline that came to be detected. Papamarkou, Guy, and
Kroencke17 proposed a deep learning-based image classification
algorithm for detecting corrosion in stainless steel tanks,
including discoloration, pitting, and stress corrosion cracks.
Zhang, Deng, and Lu18 proposed a channel-attention-based
metal corrosion detection method (CAMCD) that can
automatically and intelligently detect areas with several different
levels of corrosion. Forkan, Kang, and Jayaraman19 developed
CorrDetector based on convolutional neural networks for
structure identification and corrosion feature extraction. These
works achieve good results in their corresponding scenarios, but
their focus is on corrosion detection of large areas, such as rust
defect identification, and did not address micro-oxidation
detection. Micro-oxidation detection shall be taken with a
microscopic imaging system. On this basis, dust particles on the
surface of oxygen-free copper will generate noise on the surface
image. In addition, small indentation and scratch will also cause
great impact, resulting in an extremely noisy background on the

surface of oxygen-free copper photographed by microscopy and
difficult identification.
Although some existing work has made some achievements in

corrosion detection, there are still the following research
problems. Oxidation detection is mostly aimed at corrosion
detection of large areas, such as rust defect identification, and
does not involve micro-oxidation detection. At present, the
feature extraction and detection algorithms used in the object
detection model for oxidation detection are less robust and
accurate.
In this study, a micro-oxidation small object detection model

of oxygen-free copper surface based on microscopic imaging
system is proposed for rapid detection on a robot platform
combined with high-definition microsystem. The main con-
tributions of this paper are as follows:

1. A new type of micro-oxidation small object detection
model for oxygen-free copper surface based on micro-
scopic imaging system, MO-SOD model, which can
realize high-precision detection on the existing robot
computer. MO-SOD model uses three modules to
improve the accuracy of micro-oxidation spot detection
in noisy oxygen-free copper background.

2. The small object feature extraction layer focuses on the
local features of small object to improve the perception of
micro-oxidation spots while taking into account the global
features to reduce the impact of noisy background on
feature extraction. MO-SODmodel embeds the key small
object attention pyramid integration to effectively focus
on small object features, remove redundancy, reduce
parameters, and reduce computation.

3. The performance of the detector is further improved by
combining the anchor-free decoupling detector. In
addition, the loss function is improved to combine
CIOU loss and focal loss to achieve effective micro-
oxidation detection.

4. The effectiveness of the proposed MO-SOD model in
micro-oxidation detection accuracy and performance is
evaluated through comprehensive validation experiments,
analysis, and comparison.

The organization of this study is as follows. In Section 2, a
comprehensive overview of the literature on corrosion testing is
presented. In Section 3, details of the proposedMO-SODmodel
are presented. Section 4 presents the experimental data,
experimental environment, and results. And the conclusion of
this article is summarized in Section 5.

2. MICRO-OXIDATION SMALL OBJECT DETECTION
METHOD
2.1. Motivation. Considering the high similarity in shape,

color, and texture of micro-oxidation spots at different levels on
the surface of oxygen-free copper, we use yolo series as the
micro-oxidation detection tool. Among them, Yolov420 and
Yolov521 may be a little overoptimized for anchor-based
pipelines, and we chose Yolov322 as our starting point. In fact,
Yolov3 remains one of the most widely used detectors in the
industry due to factors such as computational resource
limitations and lack of software support in various practical
applications. To improve the accuracy and efficiency of oxygen-
free copper surface micro-oxidation detection, we propose a
micro-oxidation small object detection model of oxygen-free
copper surface based on microscopic imaging system, MO-SOD
model, which is used for rapid detection on the robot platform
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combined with a high-definition microphotography system. The
overall structure is shown in Figure 1.
2.2. Structure of the Proposed MO-SOD Model. The

MO-SOD model proposed in this paper consists of three parts:
small object feature extraction layer, key small object attention
pyramid integration layer, and anchor-free decoupling detector.
The small object feature extraction layer focuses on the local
features of small object when extracting image features to
improve the perception of micro-oxidation spots. At the same
time, the extraction layer takes the global features into account
to reduce the impact of noisy background on feature extraction.
And we propose a key small object attention pyramid integration
block, where the key small object attention is coupled with the
pyramid. An anchor-free decoupling detector is introduced to
perform micro-oxidation spot detection on the extracted small
object features, output the position and category of the detected
object, and improve the detection accuracy and efficiency of
small objects in a cluttered background.
2.2.1. Small Object Feature Extraction Layer. The size and

shape of different micro-oxidation spots vary greatly. Moreover,
the micro-oxidation spot background photographed by micro-
scope contains a lot of noise, such as indentation and scratch on
the background. The small object feature extraction layer adopts
Darknet53 as the basis to perform feature extraction on images,
including six traditional convolution layers and five residual
convolution layers, as shown in Figure 1. In particular, the small
object feature extraction layer focuses on the local features of
small object to improve the perception of micro-oxidation spots
while taking into account the global features to reduce the
impact of noisy background on feature extraction. Small object
feature extraction layer adds spatial pyramid pooling at the near
end of the feature extraction layer. By maximizing the pool size
of different pool cores, feature extraction is performed to
improve the receptive field of the network.
The spatial pyramid pooling structure is mixed in the

convolution of the last feature layer of the feature extraction
network. After three times of convolution of the last feature layer

of the feature extraction network, three different scales of
maximum pooling are, respectively, used for processing

=G x P x P x P x P x( ) concat( ( ), ( ), ( ), ( ))1 5 7 11 (1)

where x represents the output of the convolution layer, and Pi(x)
represents that the pooled check x of size i is used to maximize
pooling, and finally the pooled tensor concat is used as the
output. Here, the maximum pooling cores i are 11 × 11, 7 × 7, 5
× 5, and 1× 1 (1× 1means no processing). The step size of each
pooling layer is 1. Finally, the size and depth of the feature map
obtained after pooling remain unchanged.
The spatial pyramid pooling module uses pooling of different

sizes to achieve the fusion of features at different scales, which
can greatly increase the receptive field, separate the most
significant context features, extract and fuse local area features. It
focuses on the local features of small objects to improve the
perception of micro-oxidation spots and considers the global
features to reduce the impact of noise background on feature
extraction. This method can effectively extract and fuse local
area features, so it is more suitable for small target detection in
clutter background.
2.2.2. Key Small Object Attention Pyramid Integration.The

feature fusion layer embeds the key small object attention
pyramid integration, which makes the channel attention and
spatial attention for pyramid fusion. Channels focus on global
information, while spatial attention is used locally. In this way,
comprehensive salient features can be extracted to improve the
detection performance of small objects in the clutter back-
ground. After attention mechanism processing, multiscale key
small object features are fused with the pyramid model for
independent detection to improve the detection effect of small
objects.
The key small object attention module is computed as

Figure 1. Structure of the proposed MO-SOD model.
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where input feature map f ∈ RC*W*H, Fc represents channel
attention, and Fs represents spatial attention. As shown in Figure
2, the input feature map passes through the channel attention
module and the spatial attention module, in turn. Mc( f) means
that the input feature map obtains a one-dimensional attention
weight in the channel attention, andMs( f) means that the input
feature map obtains a two-dimensional attention weight in the
spatial attention, where ⊗ denotes element-wise multiplication

= +

=

M f f f

M f f f

( ) (MLP(MaxPool( )) MLP(AvgPool( )))

( ) (conv(concat(MaxPool( ), AvgPool( ))))

c

s
(3)

where σ represents the sigmoid function. The channel attention
mechanism performs global average pooling and global
maximum pooling for the input feature layer of a single key
small object. It uses the shared full connection layer to process
and add them together. The weight of each channel in the input
feature layer is obtained through the sigmoid function, that is,
the channel attention weight of the input feature layer. For the
input single key small object feature layer, spatial attention
mechanism takes the maximum and average value on the
channel of each feature point, stacks them, and then uses the
convolution of channel number 1 to adjust the channel, and
obtains the weight of each feature point of the input feature layer
through the sigmoid function, that is, the spatial attention weight
of the input feature layer.
In the feature fusion layer, attention is only introduced to key

small object features, instead of concatenating attention
mechanisms or serializing attention in the whole feature
extraction process. As shown in Figure 3, attention mechanism
does not participate in the network structure of feature
extraction layer and only strengthens and fuses the features of
key small objects, which can remove redundancy, reduce
unnecessary parameters, and reduce the amount of computa-
tion.

2.2.3. Anchor-Free Decoupling Detector. The research
shows that the classification and regression can be implemented
by using a 1 × 1 convolution, which will bring adverse effects to
the network identification. In the proposed MO-SODmodel, an
anchor-free decoupling detector is introduced to detect the
features from the key small object attention pyramid integration,
thus improving the accuracy and efficiency of small target
detection in the clutter background. The detector is divided into
two parts, which are implemented separately and integrated into
the final prediction.
As shown in Figure 4, it contains a 1 × 1 conv layer to reduce

channel dimensions; two parallel branches of 3 × 3 conv layer

Figure 2. Key small object attention module.

Figure 3. Key small object attention pyramid integration.

Figure 4. Anchor-free decoupling detector.
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are classified and regressed, respectively. Finally, three
prediction results are obtained, where regression prediction is
used to judge the regression parameters of each feature point,
object prediction is used to judge whether each feature point
contains objects, and class prediction is used to judge the class of
the object contained in each feature point.
2.3. Loss Function. To reduce training time and model

hyperparameters, SimOTA dynamically matches positive
samples, calculates pairwise matching, i.e., the cost relationship
between each ground truth box and each feature point, and
selects the top k predictions with the lowest cost in a fixed central
region as its positive samples. Finally, the corresponding grids of
these positive predictions are classified as positive and the
remaining grids are classified as negative. Corresponding to the
predictions, the network loss consists of three components,
namely, reg-loss, obj-loss, and cls-loss.
Reg-loss is the regression parameter judgment of the feature

points. The CIOU takes into account the distance between the
ground truth boxes and the predicted boxes, the overlap rate, the
scale, and the penalty term, making the predicted box regression
more stable and allowing for better convergence speed and
accuracy. Reg-loss is calculated as follows

=
=

L L
i

n

reg
1

CIOU
(4)

= + +L
b b
c

1 IOU
( , )

CIOU

2 gt

2 (5)

=
i
k
jjjj

y
{
zzzz

w
h

w
h

4
tan tan2

1
gt

gt
1

2

(6)

=
+1 IOU1 (7)

where n represents the number of positive samples obtained
after dynamic matching of positive samples by SimOTA. ρ2(b,
bgt) represents the Euclidean distance between the centroids of
the prediction boxes and the ground truth boxes. c represents the
diagonal distance of the smallest closed region that can contain
both the prediction boxes and the ground truth boxes. w, wgt, h,
and hgt represent the width and height of the predicted and real
boxes.
Obj-loss is a judgment of whether a feature point contains an

object, as the number of potential bounding boxes containing
objects is much smaller than those containing only background.
Cross-entropy loss is slow and may not be optimized to
optimality during iterations with a large number of simple
samples. In this paper, we introduce focal loss in the model,
which gives the object a high loss value, which makes the
detector sensitive to the object. The focal loss is calculated as

=
=l

mooo
n
oooF p y

p p y

p p
( , )

(1 ) log( ) if 1

(1 ) log(1 ) otherwise

2

(8)

In the above, y ∈ {±1} specifies the ground truth class, and p
∈ [0, 1] is the estimated probability of the model for the class
labeled y = 1. α2 is a balancing factor to balance the proportion of
positive and negative samples themselves in terms of number. γ
represents the exponential scale factor, which reduces the loss of
easy-to-classify samples and allows theMO-SODmodel to focus
more on difficult, misclassified samples. In this paper, α2 and γ

are 0.25 and 2, respectively. Based on the above formula, Obj-
loss can be converted to

=
=

L p p1 (1 ) log( )
i

N

iobj 2
1

obj

(9)

=
=

L p p(1 ) 1 log(1 )
i

N

ino obj 2
1

no obj

(10)

whereN represents the total number of prediction boxes, the last
feature extracted by the backbone network, and each square
represents a prediction box. 1iobj indicates that the ith prediction
box contains an object. Also, 1ino obj means that the prediction
box only contains the background.
Cls-loss is a judgment of the kind of objects contained in the

feature points, and the cross-entropy loss is calculated based on
the kind of the ground truth boxes and the kind of feature points
predicted as a component of the loss of the Cls part

= [ +

]
=

L p c p c p c

p c

( )log( ( )) (1 ( ))

log(1 ( ))

i

n

i i i

i

cls
1 c classes

(11)

where n is the number of positive samples obtained after
dynamic matching of positive samples by SimOTA. The
prediction of classes is represented by p(c). The variables with
∧ indicate that they are predicted values; otherwise, they
indicate ground truth.
The loss function of the proposed MO-SOD model is

expressed as
= + + +w L L L LLOSS reg reg obj no obj cls (12)

where wreg is the weight of the reg-loss, which has a value of 5 in
this paper.

3. EXPERIMENTS
3.1. Data Set. To verify the applicability of the proposed

MO-SOD model in different chemical environments, we
executed the chemical reactions of oxygen-free copper oxidation
in two different environments, namely, the oxidation of oxygen-
free copper in a normal atmospheric environment and the
oxidation of oxygen-free copper in a high-temperature
atmospheric environment. We collected the surface images of
oxygen-free copper in different oxidation environments through
the microscope shooting system for the experimental analysis of
oxygen-free copper oxidation detection:
(1) Oxidation in a neutral atmospheric environment at room

temperature.
We put nine new oxygen-free copper samples in the

neutral atmospheric environment at room temperature
for 1 month. The oxygen-free copper surface slowly
oxidizes with CO2, O2, and H2O to produce basic copper
carbonate CuCO3·Cu(OH)2, commonly known as
copper green

+ + + =2Cu O H O CO Cu (OH) CO2 2 2 2 2 3
(13))

(2) Oxidation in a high-temperature neutral atmosphere
environment.

Similar to the above, we also take nine new oxygen-free copper
samples for oxidation in the high-temperature neutral
atmosphere. The nine new oxygen-free copper samples are put
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into a high-temperature oxidation furnace and take them out
every half an hour to generate different oxidation gradients. In
the high-temperature oxidation furnace, oxygen-free copper
reacts with O2 in the high-temperature neutral atmospheric
environment to form black copper oxide

+ =2Cu O 2CuO2 (14)

To construct a data set to train and validate the proposedMO-
SODmodel, we use amicroscopic HD filming systemwith white
light as the experimental light source. The filming environment
is shown in Figure 5. We collect the surface morphology images
of oxygen-free copper sample blocks in different oxidation
environments through the high-definition microphotography
system. Figure 6a shows the surface image of oxygen-free copper
sample oxidized in a neutral atmospheric environment at room
temperature. Figure 6b shows the surface image of oxygen-free
copper sample oxidized in a high-temperature neutral
atmosphere.
The above micro-oxidation images of oxygen-free copper

surface collected in different oxidation environments are used to
calibrate the data set using the adaptive oxidation calculation
method. There are 899 images in the data set from the surface of
oxygen-free copper samples oxidized in a neutral atmosphere at
room temperature and 1200 images from the surface of oxygen-

free copper samples oxidized in a neutral atmosphere at high
temperature:

1. The oxidation spot is labeled with a detecting frame as the
smallest outer rectangle of the oxidation spot.

2. Edge segmentation of the oxidation spots and removal of
edge noise to calculate the oxidation spot area, where for
the ith oxidation spot in a picture, its area is denoted as Ai.

3. Color calibration of the oxidation level of the oxidation
spots is carried out to determine the color depth of each
oxidation spot. As the degree of oxidation deepens, the
shades of oxidation spots segmented from the outside to
the inside are green, brown, and black; the gray scale range
of the three main colors of oxidation spots is extracted,
and the gray scale values of all pixels within the main color
range are calculated to determine the color depth of each
oxidation spot; for the ith oxidation spot in a picture, its
color depth Ci is denoted as

= + +C k k ki 1 GN 2 BN 3 BK (15))

where μGN is the green pixel gray value, μBN is the brown
pixel gray value, and μBK is the black pixel gray value, and
k1, k2, and k3 are their corresponding color weight
coefficients, respectively, and k1 = 0.4, k2 = 0.2, and k3 =
0.7.

Figure 5. Experimental filming environment.

Figure 6. Image of oxygen-free copper surface taken by high-definition microscope equipment. Surface of oxygen-free copper sample oxidized in a
neutral atmosphere at room temperature (a). Surface of oxygen-free copper sample oxidized in a neutral atmosphere at high temperature (b).
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4. The sample is placed into an X-ray photoelectron
spectroscopy analyzer, and the oxygen-to-copper ratio
of the oxidized spot is determined; for the ith oxidized
spot in a picture, the oxygen-to-copper ratio is recorded as
Ri.

5. Based on the oxygen content parameters obtained and the
corresponding morphological characteristics, the adapt-
able oxidation calculation is fitted to the expression as

=f A C R( )i i i (16)

where α and β are the oxidation coefficient constants, Ai is the
oxidation spot area,Ci is the oxidation spot color depth, and Ri is
the oxidation spot oxygen-to-copper ratio, i.e., the oxidation
volume.
The oxygen-to-copper ratio and corresponding oxidation spot

area and color depth of 100 oxidation spot samples are used to fit
the oxidation amount calculation method to obtain the
adaptable oxidation spot calculation method as

+ =K A C b R( )i i i (17)

where K = 0.02, α = 1, β = −1, and b = 0.2.

The oxidation amount is calculated for a large number of
oxidation spot samples according to the above method, and a
total of 10 374 oxidation spot samples are obtained. The
oxidation grade is classified according to the oxidation amount,
and two thresholds are set through data analysis: T1 = 0.7, T2 =
1.0. These two thresholds divide it into three levels: L1: slight
oxidation, L2: moderate oxidation, L3: severe oxidation. Among
them, the range of the oxygen-to-copper ratio of L1 is Rmin ≤ R <
T1, Rmin = 0.5546. The range of oxygen-to-copper ratio of L2 is
T1 ≤ R < T2. The range of oxygen-to-copper ratio of L3 isT2 ≤ R
< Rmax, Rmax = 3. Classes of slight oxidation, moderate oxidation,
and severe oxidation contain 7043, 2259, and 1072 samples,
respectively.
When the number of input data samples is not enough, it is

easy to lead to features insufficient, which is difficult for
convergence of the model. The model trained by limited data
samples is easy overfitting. The robustness of the model is with
inadequate performance. If the new data is applied in this model,
the accuracy is unsatisfactory. The oxidation classes are labeled
on 2099 images, and several labeled images are shown in Figure
7. To generate the training and test sets, the data set is divided

Figure 7. Labeled images. Panel (a) shows a slight oxidation spot, panel (b) shows moderate oxidation, and panel (c) shows a severe oxidation spot.
The scale bar in the figures shows the 200 μm length of the sample surface.

Figure 8. Loss decline curve of the proposed MO-SOD model.
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randomly and the training and validation data sets contain 1889
images. The other 210 images are used for testing.
3.2. Experimental Environment. The MO-SOD model is

implemented with Pytorch 1.7.1 and CUDA 10.2.89. All cnn-
based training and testing are performed on a server with an
NVIDIA GeForce RTX 2080Ti graphics processing unit (GPU)
equipped with an Intel Core i9-9900k @3.60 GHz CPU, 62 GB
of installed memory (RAM) and 11 GB of GDDR6 RAM.
The micro-oxidation spot image is taken by a high-definition

microcamera with an image resolution of 2448 pixels × 2048
pixels, and the frame rate is 22 fps. A quadruple objective lens is
applied to the front of the camera to enlarge the image, and the
corresponding actual size is shown as a scale bar in the sample
figures.
The loss function loss and Adam optimizer are used to

iteratively update the parameters of the convolution kernel and
neurons in the model. The optimizer is parameterized by 100
iterations of training. The first 50 of these are freeze training to
speed up training and prevent the weights from being corrupted
in the early stages of training. Each training batch size is 8, and
the learning rate is set to 1 × 10−3. The next 50 iterations are
unfreeze training. Each training batch size is 4, the learning rate
is 1× 10−4, and themomentum parameter is 0.92. The loss curve
during training can be seen in Figure 8, which shows that the loss
function has been optimized and converged to a stable value.
The pr(precision/recall) curve obtained by testing the proposed
MO-SODmodel is shown in Figure 9, which shows the accuracy
of the model for micro-oxidation detection.
3.3. Evaluation Metrics. To demonstrate the accuracy of

the proposed MO-SOD model for oxidation spot identification,
including the accuracy of location information and the accuracy
of classification of oxidation class categories, it is evaluated by
Precision, Recall, F1Score, AP, and mAP.
In fact, it is unlikely that the predicted results will match the

ground truth exactly. Therefore, we use the intersection-over-
union (IoU) metric to indicate the overlap between the
predicted bounding box and the ground truth box. When the
area of overlap between a suspected oxidation spot and ground
truth exceeds the IoU threshold, the test result is classified as

positive; otherwise, the test result is classified as negative. In this
study, the IoU value is 0.5.
The precision indicates the number of true positive (TP)

results divided by all positive assays, which is shown in eq 18.
Recall is defined as the percentage of TP among all correct test
results, which is shown in eq 19. And F1Score is an overall
measurement between the precision and the recall, which is
shown in eq 20. True positive (TP) indicates the number of
samples for which the prediction is positive and the actual case is
also positive. False positive (FP) indicates the number of
samples where the prediction is positive and the actual is
negative. False negative (FN) indicates the number of samples
for which the prediction is negative and the actual case is positive

=
+

precision
TP

TP FP (18)

=
+

recall
TP

TP FN (19)

= +
×

F1Score
recall precision
recall precision (20)

The area under the precision and recall curve is known as the
average precision (AP). AP indicates the detector’s ability to
locate objects and assign them to a single class. In general, the
higher the AP of a class of objects, the better the detector’s
performance in identifying them. Mean accuracy (mAP)
indicates the detector’s performance across all categories and
can be defined as the average of the AP across all categories.

= r rAP precision( ) d
0

1

(21)

where precision(r) is the curvemade with recall as the horizontal
coordinate and precision as the vertical coordinate

= =
C

mAP
APi

C
i1

(22)

where C is the total number of categories.

Figure 9. Pr(precision/recall) curve of the proposed MO-SOD model.
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4. RESULTS AND DISCUSSION

4.1. Performance of the Proposed MO-SOD Model.
Ten percent of the data set is randomly selected as the test set
and input to the trained MO-SOD model to obtain information
on the location of oxidation spots on the oxygen-free copper
surface images and the results of the oxidation class category
assessment; some of the recognition results are shown in Figure
10. Due to the presence of scratches and indentations on the
copper surface and the high-definition microscope system used
to capture the images, the image background is more cluttered.
We can see that all three different levels of micro-oxidation spots
can be detected correctly. More importantly, when an image

contains multiple levels of micro-oxidation spots, all of them can
be identified.
Table 1 shows the effectiveness of the proposed MO-SOD

model for the detection of three levels of micro-oxidation on
copper surfaces. It can be seen that the object detection network
has high accuracy in the location detection of oxidation spots
and the classification of oxidation grade. Although the total
number of samples for the class of severe oxidation is relatively
small, due to its large oxidation area and deeper color, based on
its unique characteristics, the test results show that it has high
accuracy for this level of micro-oxidation. The class of slight
oxidation is relatively less accurate due to its very small oxidation
area and the large number of samples, which are scattered in the
background, while the class of moderate oxidation is

Figure 10. Detection results of the proposed MO-SOD model. The red box indicates the detected slight oxidation spot, the green box indicates the
detected moderate oxidation spot, and the blue box indicates the detected severe oxidation spot. The number above the box indicates the
discrimination probability of this class. The scale bar in the figure shows the 200 μm length of the sample surface.

Table 1. Detection Results of Three Kinds of Micro-Oxidation

micro-oxidation grade number of micro-oxidation spot AP (%) precision (%) recall (%) F1Score

slight oxidation 643 77.17 82.53 60.96 0.70
moderate oxidation 204 85.81 87.13 73.04 0.79
severe oxidation 85 85.89 89.86 82.35 0.80

Table 2. Comparison of Micro-Oxidation Detection Performance

detector backbone size mAP (%) slight oxidation moderate oxidation severe oxidation

Yolov3 Yolov3 416 55.68 56.28 52.84 57.93
Yolov4 Yolov4 416 53.18 58.64 44.06 56.83
YoloX-s YoloX-s 416 65.42 62.70 61.29 72.27
SSD VGG16 300 51.04 23.01 56.06 74.04
Centernet Resnet50 512 55.48 51.13 52.82 62.49
RetinaNet Resnet50 600 44.38 26.08 54.52 52.54
MO-SOD model MO-SOD model 416 82.96 77.17 85.81 85.89
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intermediate between slight oxidation class and severe oxidation.
The model can detect micro-oxidation spots from different
oxidation environments, such as oxygen-free copper samples
oxidized in a neutral atmosphere at room temperature and
oxygen-rich copper samples oxidized in a neutral atmosphere at
high temperature.
4.2. Comparison with the Recent Detection Methods.

In this section, the proposed MO-SOD model is compared with

some of the most advanced detectors. Yolov3,22 Yolov4,23

YoloX,24 single shot multibox detector (SSD),25 Centernet,26

and RetinaNet27 are chosen for comparison. For a fair
comparison, the size of the compared detectors is adjusted to
a similar scale and all detectors are trained without pretraining.
As shown in Table 2, the proposed detector achieves 82.96%
mAP, which is the best of these algorithms. The superiority of
the proposed MO-SOD model is verified.

Figure 11. Comparison of the detection results among the proposed MO-SOD model with other models. Original image (a) and detection results
produced by the proposedMO-SODmodel (b), Yolov3 (c), Yolov4 (d), YoloX-s (e), SSD (f), Centernet (g), and RetinaNet (h). The scale bar in the
figure shows the 200 μm length of the sample surface.

Figure 12. Comparison of the detection results among the proposed MO-SOD model with other models. Original image (a) and detection results
produced by the proposedMO-SODmodel (b), Yolov3 (c), Yolov4 (d), YoloX-s (e), SSD (f), Centernet (g), and RetinaNet (h). The scale bar in the
figure shows the 200 μm length of the sample surface.

Figure 13. Comparison of the detection results among the proposed MO-SOD model with other models. Original image (a) and detection results
produced by the proposedMO-SODmodel (b), Yolov3 (c), Yolov4 (d), YoloX-s (e), SSD (f), Centernet (g), and RetinaNet (h). The scale bar in the
figure shows the 200 μm length of the sample surface.
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Figures 1−5 show that the proposedmethod achieves the best
detection of micro-oxidation spots compared with other recent
algorithms. In Figures 1−3, it can be found that the proposed
MO-SODmodel can accurately locate the combination of slight
oxidation spots and moderate oxidation spots in the noisy
oxygen-free copper surface image, and the classification is
accurate. However, Yolov3, Yolov4, SSD, and RetinaNet have
poor detection effects and cannot completely detect all
oxidation spots. In contrast, YoloX-s and Centernet cannot
accurately classify slight, moderate, and severe oxidation spots.
YoloX-s wrongly identifies moderate oxidation spot as severe
oxidation spot in Figure 11, slight oxidation spot as moderate
oxidation spot in Figure 12, and moderate oxidation spot as
slight oxidation spot in Figure 13. Centernet classifies moderate
oxidation spot as slight oxidation spot in Figure 13. Figure 14
shows that Centernet incorrectly detects the surface indentation
of oxygen-free copper as oxidation point. In Figure 15, all models
except the proposed MO-SOD model cannot detect all
oxidation spots or the classification is inaccurate, where the
proposed MO-SOD model can detect accurately even if the
oxidation spot is truncated in image.
All detectors except the proposed MO-SOD model are

limited by the tight layout of micro-oxidation, small differences
in size, and features that are difficult to identify. SSD and
RetinaNet are greatly affected by the background noise of a high-
definition microscopic image of oxygen-free copper surface, and

it is difficult to detectmicro-oxidation spots. Among themultiple
dense micro-oxidation spots, Yolov3 and Yolov4 have very low
recall. YoloX-s is slightly lower than the recall of the proposed
MO-SOD model while it has poor classification accuracy.
Besides, the accuracy of the generated micro-oxidation spot
bounding box for YoloX-s is also worse than that of the proposed
MO-SOD model. Centernet tends to over-recognize scratches
on the background, while the classification accuracy is not as
good as that of the proposedMO-SODmodel. MO-SODmodel
is superior to all of the above detectors, and multilayer feature
fusion enables it to accurately identify slight micro-oxidation
spots scattered in the background. MO-SOD model can also
accurately identify moderate micro-oxidation spots with unclear
characteristics, as well as can accurately locate the severe micro-
oxidation spots with obvious characteristics but few samples.
This shows that the MO-SOD model can effectively detect
surface micro-oxidation spots.
MO-SOD model can achieve such excellent detection results

benefiting from its indispensable modules. Small object feature
extraction layer adds spatial pyramid pooling at the near end of
the feature extraction layer. It focuses on the local features of
small object to improve the perception of micro-oxidation spots
while taking into account the global features to reduce the
impact of noisy background on feature extraction. It can greatly
extract and fuse local area features; thus, it is more suitable for
the detection of small objects in the clutter background. The

Figure 14. Comparison of the detection results among the proposed MO-SOD model with other models. Original image (a) and detection results
produced by the proposedMO-SODmodel (b), Yolov3 (c), Yolov4 (d), YoloX-s (e), SSD (f), Centernet (g), and RetinaNet (h). The scale bar in the
figure shows the 200 μm length of the sample surface.

Figure 15. Comparison of the detection results among the proposed MO-SOD model with other models. Original image (a) and detection results
produced by the proposedMO-SODmodel (b), Yolov3 (c), Yolov4 (d), YoloX-s (e), SSD (f), Centernet (g), and RetinaNet (h). The scale bar in the
figure shows the 200 μm length of the sample surface.
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feature fusion layer embeds the key small object attention
pyramid integration, which makes the channel attention and
spatial attention for pyramid fusion. Channels focus on global
information, while spatial attention is used locally. After
attention mechanism processing, multiscale key small object
features are fused with pyramid model for independent
detection, which significantly improves the detection effect of
micro-oxidation spots. Accurate classification of micro-oxida-
tion spots at different levels requires features of higher latitude,
while the accurate regression of micro-oxidation spots requires
features of finer granularity. Therefore, the anchor-free
decoupling detector applies two parallel branches for classi-
fication and regression to train and learn, respectively, so as to
achieve a win−win situation for classification and regression.

5. CONCLUSIONS
In this research, we propose a micro-oxidation small object
detection model, MO-SOD, for oxygen-free copper surface
oxidation detection based onmicroscopic imaging system. It can
be integrated into a detection platform combined with a high-
definition microscopic system for rapid online detection.
The proposed model can be applied for detecting tiny spots,

which are with noisy background or many scratches and difficult
to distinguish. Based on our small object feature extraction layer,
the features of changeable small objects in the noisy background
are extracted by focusing on local features and fusing global
features. Key small object attention pyramid integration is
embedded in the feature fusion layer of the model, where the
attention mechanism is applied to pyramid integration of the
extracted small object features. Besides, anchor-free decoupling
detector and loss function are designed to improve the accuracy
of micro-oxidation spot detection.
Compared with other popular detection models, MO-SOD

model achieves the highest micro-oxidation spot recognition
rate of 82.96%. MO-SOD model provides a new noncontact
method to detect the micro-oxidation spot on the oxygen-free
copper surface and achieve the oxidation degree. This method
can also be used to detect small targets in other noisy
backgrounds.
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