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Inflammatory skin diseases are induced by disorders of the host defense system of the
skin, which is composed of a barrier, innate and acquired immunity, as well as the
cutaneous microbiome. These disorders are characterized by recurrent cutaneous lesions
and intense itch, which seriously affecting life quality of people across all ages and
ethnicities. To elucidate molecular factors for typical inflammatory skin diseases (such as
psoriasis and atopic dermatitis), transcriptomic profiling assays have been largely
performed. Additionally, single-cell RNA sequencing (scRNA-seq) as well as spatial
transcriptomic profiling have revealed multiple potential translational targets and offered
guides to improve diagnosis and treatment strategies for inflammatory skin diseases.
High-throughput transcriptomics data has shown unprecedented power to disclose the
complex pathophysiology of inflammatory skin diseases. Here, we will summarize
discoveries from transcriptomics data and discuss how to maximize the
transcriptomics data to propel the development of diagnostic biomarkers and
therapeutic targets in inflammatory skin diseases.
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INTRODUCTION

The skin is the outmost layer of the body. It not only acts as the first line to defense against various
biotic and abiotic stresses, but also play crucial roles in water homeostatic and thermoregulation.
Dysregulation of the host defense system of the skin is usually accompanied by immune-mediated
inflammation and abnormal keratinocyte differentiation that subsequently induce inflammatory
skin diseases. Psoriasis and atopic dermatitis (AD) are the most common chronic inflammatory skin
diseases (1, 2). The pathogenesis of these two inflammatory skin diseases is complex, with disease
progression driven by a combination of multiple factors, including environmental factors, genetic
factors in skin barriers, dysbiosis of skin resident microbiomes, and immune system defects (3–5).
Various cutaneous cellular changes, like T-lymphocyte infiltration, vascular hyperplasia can be
found in infected skin of psoriasis (3, 4). AD is clinically characterized by chronic, pruritic
eczematous skin lesions (5). Different subsets of TH cells, for example, TH17 and TH2/TH22 for
psoriasis and AD, respectively, trigger different arrays of cytokines (6). Although both psoriasis and
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AD can occur at any age, AD prefers to affect infants, especially
those at 3-6 months old (5), while the peak onset of psoriasis is in
adolescence and early adulthood (7).

Over the past decade, high-throughput RNA-sequencing
(RNA-seq) has proven to be an indispensable tool for
transcriptome-wide analysis of transcriptional variations.
Various types of RNAs, including messenger RNAs (mRNAs),
microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and
circular RNAs (circRNAs), can be captured by RNA-seq (8).
Therefore, broad applications of RNA-seq open a window for
deep understanding of multiple aspects of molecular biology in
inflammatory skin diseases, such as mRNA splicing and non-
coding RNAs regulation (9, 10). Among main RNA-seq
technologies, short-read sequencing of cDNA comprises the
majority of current available RNA-seq data of inflammatory
skin disease studies. Questions that when and where
transcription occurs and how transcription is regulated are
intensively studied. Recently, newly developed single-cell and
spatial transcriptomic sequencing are emerging as powerful
techniques for mapping and quantifying transcriptional activity
at single-cell and spatial resolution. These powerful techniques
have been widely and successfully used in humans, animals and
plants to resolve intercellular transcriptomics heterogeneity at
single-cell level (11–13). Using scRNA-seq, exciting insights
about the unique characteristics of skin-resident innate
lymphoid cells, key inflammatory pathways as well as
inflammatory fibroblasts have been reported (14–16).

In this review, we will summarize perspectives from the big
data view to characterize the current understanding of
inflammatory skin diseases, specially focusing on common and
bias induced in transcriptional and post-transcriptional levels in
psoriasis and AD (Table 1). These high-throughput
transcriptomics studies will help to provide insightful
knowledge for a more comprehensive understanding of
molecular mechanisms underlying disease occurrence and pave
the way to the identification of therapeutic targets for more
specific and safer modulation of inflammatory skin diseases.
DEEP UNDERSTANDING OF
INFLAMMATORY SKIN DISEASES FROM
LARGE-SCALE TRANSCRIPTOMICS DATA

Best Practice for Excavating Molecular
Treasures From RNA-Seq Data
The rapid development of computational algorithms has largely
expanded our understanding of molecular mechanisms of
inflammatory skin diseases. After obtaining sequencing reads
derived from human skin samples, quality control should be
performed first (Figure 1). Computational tools, such as FastQC,
NGSQC (37), fastp (38), FASTX-Toolkit, and Trimmomatic
(39), can be used to evaluate the quality of sequencing bases
and trim low-quality bases and reads. Next, quality-controlled
RNA-seq reads are mapped to the human reference genome to
determine where they are from by using such aligners as BWA
Frontiers in Immunology | www.frontiersin.org 2
(40), Bowtie2 (41), STAR (42), TopHat2 (43), and HISAT2 (44).
Alignment results should be examined to filter low-quality read
alignments by utilizing Picard (https://broadinstitute.github.io/
picard/), RSeQC (45), or Qualimap (46). Then, reads mapped to
genomic regions of specific genes were calculated to determine
transcriptional abundance, this step could be realized by HTSeq-
count (47), Kallisto (48), featureCounts (49), Cuffilinks (50),
StringTie (51), RSEM (52), and Sailfish (53). Advanced analysis
of RNA-seq data includes differential expression analysis,
ncRNA analysis, alternative splicing (AS), RNA editing, and
alternative polyadenylation (APA). The differential analysis is
designed to statistically compare the same genes between
different conditions to determine functional gene sets that
participate in the development of pathological or physiological
conditions. Frequently used computational tools that perform
differential analysis are DESeq2 (54), edgeR (55), baySeq (56),
EBseq (57), NOISeq (58), and SAMseq (59). Noncoding RNAs
constitute the major component of human genome and exert
important regulatory roles in a variety of physiological and
pathological processes. The identification and quantification of
noncoding RNAs could be performed based on the reference
annotation or do novo transcriptome assembly (60). AS is the
major contribution to transcriptional diversity in humans, which
plays crucial roles in the pathological process of diseases.
Computational algorithms, such as Suppa2 (61), rMATS (62),
CuffDiff2 (63), MISO (64), DEXSeq (65), and spliceR (66), were
designed to identify and quantify AS events and the alternative
usage of gene exons. RNA editing is a post-transcriptional event
that alters single bases at RNA levels, which has been
demonstrated to modulate the AS process, RNA expression,
and RNA translation. Multiple tools have been developed to
identify RNA editing sites, such as RNAEditor (67), REDItools
(68), JACUSA (69), and RES-Scanner (70). APA event is the
alternative processing of mRNA 3’ end that generates mRNAs
with diverse lengths of 3’ UTR.APA is emerging to play
important roles in regulating RNA metabolism, which could be
detected by DaPars (71), APAtrap (72), and PHMM (73). We
will summarize major findings from analyzing large-scale
transcriptomics data in inflammatory skin diseases.

Keratinocyte Responses in
Psoriasis and AD
Keratinocytes (KCs) were previously thought of passive
bystanders in the inflammatory process. Nowadays, growing
evidence has shown that KCs are actively involved in the
initiation and maintenance of skin inflammation, by secreting
chemokines, cytokines and antimicrobial peptides, which further
amplifies the inflammatory process through chemoattraction
and activation of skin immune cells (17).

In psoriasis, IL-17 activates epidermal KCs via IL-17R to
produce proinflammatory cytokines and chemokines, such as
IL-1, IL-6, CXCL1 (C-X-C motif), and CCL20 (C-C motif
ligand 20) to induce and propagate psoriatic inflammation (17),
while IL-23 drives a local skin inflammatory loop through IL-23
triggered production of IL-22, which in turn helps the
maintenance of TH17 cells (18). Therefore, the interplay
October 2021 | Volume 12 | Article 761890
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between IL-23-IL-17 axis and KCs is believed as the central of IL-
17-mediated inflammatory loop in psoriasis. Thousands of
differentially expressed genes (DEGs) by using large-scale
transcriptome analysis were identified in psoriasis. As expected,
IL-17, IL-1/IL-36, IL-12/IL-23, and TNF-a pathways were
Frontiers in Immunology | www.frontiersin.org 3
revealed to be the top enriched pathways (19, 21, 24, 74). To
further reveal the cellular and molecular mechanisms behind this,
IL-17 receptor-A (IL-17RA) antagonist brodalumab, was applied
in moderate and severe psoriasis over 12 weeks. This treatment-
induced global gene expression profiles revealed a rapid and
TABLE 1 | Deregulated genes in AD and Psoriasis.

Gene Pathways Key Message Disease Ref.

IL-17 IL-17 Pathway Central in the psoriatic pathogenesis Psoriasis (17, 18)
IL-17RA Psoriasis (17–19)
IL-17F Psoriasis (17, 18)
IL-12 IL-12 Pathway Psoriasis (17–20)
IL-12B Psoriasis (17, 18)
IL-22 IL-22 Pathway Psoriasis (17, 18)
IL-23 IL-23 Pathway Psoriasis (17, 18)
IL-6 IL-17 mediated inflammatory Pathway Psoriasis (17)
IL-1a Psoriasis (17, 21)
CXCL1 Immunomodulatory chemokines Psoriasis; AD (17, 22)
CCL20 Psoriasis (17)
IL-1a IL-1 pathways Mayor epidermal proinflammatory cytokines and positively correlated with

symptoms in psoriasis and AD
(17, 21)

IL-36 Function on both fibroblasts and KCs, as well as immune system Psoriasis; AD (21, 23)
TNF-a TNF-a pathway An important inflammatory cytokine secreted by macrophages. Functions in

active DCs to induce IL-23 secretion, and activate KCs to induce KRT6 and
KRT16.

Psoriasis (21)

IL-8 KC-derived inflammatory mediators Plays a causative role in acute inflammation Psoriasis (24)
IL-9 TH9 cytokine Enhancing cytokine secretion from TH1, TH2 and TH17 cells to amplify

immune responses
Psoriasis (24)

IL-20 KC-derived inflammatory mediators Function in promote cutaneous inflammation Psoriasis (24)
IL-24 IL-20 family cytokine Binging with IL-20 receptors to activates JAKs and STAT3 signaling

pathway
Psoriasis; AD (25, 26)

IL-13 TH2 cytokine Central in AD pathogenesis; Also reported to be elevated in psoriasis Psoriasis; AD (25, 27, 28)
TGF-a Function as immune-suppressor Psoriasis (25)
IFN-g IFN-g Pathway Induce CXCL10 and CXCL11 in KCs Psoriasis (25)
IL-31 IL-31 Pathway Key factor to trigger itch Psoriasis; AD (25, 29)
TRPV1 Calcium-permeable cation TRPs channels Cross talk with neurons and immune responses Psoriasis; AD
TRPVM8 Psoriasis (30)
TRPV3 Psoriasis (30)
TRPC4 Psoriasis (30)
IL-4 TH2 type inflammation loop Central in AD pathogenesis AD (27, 28, 31, 32)
IL-5 Essential eosinophil growth factor, function in differentiation. AD (31, 32)
RAD50 An important DNA repair molecule; Effect IgE regulation AD (5)
IgE Genetic marker of AD AD (32)
TSLP Type 2 inflammatory cytokines Genetic marker of AD AD (33)
IL-33 Sufficient for AD development; Induce IL-31 to promote itch; Reduce

filaggrin and claudin-1
AD (34)

IL-25 Important in regulation of skin inflammation AD (35)
TREM-1 Innate and adaptive immunity A neutrophils expressed receptor, function in pattern recognition AD (23)
IL-10 IL-10 family cytokines An anti-inflammatory cytokine, central in infection by limiting immune

responses
AD (22)

KRT16 Epidermal differentiation pathway Functions on epidermal differentiation AD (22)
S100A8 Function as a Ca2+ sensor, and important in modulating the inflammatory

response
AD (22)

S100A9 AD (22)
CXCL6 Immunomodulatory chemokines Up regulated by IL-4 AD (22)
FOXK1 Negative regulator of T-cell activation Act as immune regulator AD (22)
FLG Epidermal differentiation complex Function in maintenance of skin barrier AD (22)
LOR AD (22)
KRT10 AD (22)
KLK5 Kallikren related peptidase Degrading desmosomal proteins and inducing proinflammatory cytokine

secretion via protease activity
AD (29)

KLK14 AD (29)
KLK7 AD (36)
SPINK5 Protease inhibitors Regulate epidermal differentiation via Wnt-beta-catenin Pathway AD (29)
AQP3 Aquaporin Regulate epidermal water homeostasis AD (29)
TRPV2 Calcium-permeable cation TRPs channels Cross talk with neurons and immune responses AD (30)
TRPA1 AD (30)
October 202
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extensive suppression of IL-17-dependent genes in KCs as well as
specific KC-derived inflammatory mediators such as IL-8, IL-9,
and IL-20 (24). Compared to human monoclonal antibody
ustekinumab, this suppression occurs earlier and to a greater
extent, suggesting that application of IL-17 antagonists producing
a greater modulation of the synergistic/additive gene set of
psoriasis. Similarly, IL17-RA, IL-12/IL-23, or TNF inhibition
treatments, were found to mainly affect the expression of IL-17
dependent genes, which further confirmed the hypothesis that IL-
17 -stimulated KCs were key drivers of psoriasis (19, 74). Page et
al. reported that transcriptional dysregulation in moderate-to-
severe psoriasis is dominated in IL-17 related genes in KCs.
Down-regulation of IL-17A, IL-17F and IL-12B were detected as
early as 2 weeks post-treatment with PF-06700841, suggesting the
requirement of TYK2 and Janus kinase 1 for psoriasis signaling
transduction (20). IL-36, another important mediator of psoriasis,
was thought to regulate psoriasis by activating MAPKs and NF-kB
pathways (75). To identify novel factors in psoriasis, RNA-seq
analysis was applied in time-dependent IL-1B, IL-36A, IL-36B or
IL-36G treated KC samples. This work found that early and later
IL-1B-specific responses are all replicated by those of IL-36
treatments. Besides, Type I and II interferon genes exhibited a
time-dependent response pattern: inducted at 8 h following no
response or repression at 24 h, suggesting a fine-scale
characterization of time and cytokine-specific response patterns
after IL-1B and IL-36 treatment (76). Early studies showed that the
inflammatory loop of AD initiates once skin-resident DCs or
other immune cells are stimulated by external agents, with a
consequence of releasing epithelial type 2 inflammatory cytokines,
such as TSLP, IL-33, and IL-25 (33–35). Meanwhile, KC responses
can also be directly induced by external agents to affect subsequent
inflammatory events (18, 77). To explore molecular mechanisms
behind this, RNA-seq by using biopsy specimens have been largely
performed (22, 23, 29, 78). The first study of lesional AD RNA-
Frontiers in Immunology | www.frontiersin.org 4
seq, reported that TREM-1 and IL-36 were novel factors of AD
(23). Recently, Tsoi and colleagues showed that dysregulated genes
accompanying the transition from nonlesional to acute and
chronic AD quantitatively different. Enrichment of DEGs in
TNF, TH1, TH2, and TH17 pathways was observed during the
whole process of disease progression in nonlesional, acute, and
chronic AD. And the most heightened inflammatory response in
chronic AD samples. Besides, 42 significant dysregulated genes
involving in epidermal differentiation (e.g., IL-10, KRT16, S100A8,
and S100A9), antimicrobial, immunomodulatory chemokines
(CXCL1, CXCL6), and negative regulation of T-cell activation
(FOXK1) were found in chronic versus acute AD (22). These
findings provide novel insights and highlight underappreciated
pathways in AD pathogenesis that may amenable to be future
therapeutic targets. Medical treatment of moderate-to-severe AD-
like oral JAK/SYK inhibitor ASN002 induces rapid and sustained
improvements in TH2, TH22/TH17, and TH1 pathways, as well
as epidermal barrier abnormalities (78). AD in pediatric and Asian
populations trigger strong TH2 and TH17 responses, whereas
European American adults mainly induce TH2/TH22 activation,
suggesting diverse oral therapeutics in treatment with moderate-
to-severe AD in different region patients need to be carefully
chosen. Very recently, study exploring moderate-to-severe AD
before and after systemic treatment characterized a “core”
signature of AD by dysregulation of genes related to
keratinocyte differentiation and IL-31/IL-1 itch signaling.
Additionally, a dynamic signature reflects progressive immune
response dominated by type 2 cytokines, with an additional role of
TH17 and natural killer cell signaling (29).

Skin Barriers in Psoriasis and AD
The skin can be mainly divided into three layers: epidermis
(consists of four strata of keratinocytes), dermis (mainly consists
offibroblasts and immune cells), and subcutaneous layer (consists
FIGURE 1 | A best practice of RNA-seq data analysis of inflammatory diseases.
October 2021 | Volume 12 | Article 761890
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of subcutaneous fat and connective tissue) (79). As a complex and
dynamic system, skin barriers consist of four parts: microbiome
barrier (skin microbiome), chemical barrier (stratum corneum),
physiological barrier (mainly by epidermis), and immune barrier
(epidermis and dermis) (80).

Stratum corneum and tight junctions (TJs) in granular cells
are two main constituents of the physiological barrier (81). IL-17
was found to downregulate filaggrin expression and impaired TJs
of the skin (82). Though the role of Langerhans cells (LCs) in
psoriasis pathogenesis is still controversial, it seems like that
inflammation-associated LCs in impaired psoriasis barrier gain
an enhanced capacity to promote polarization of naïve T cells
into TH17, and subsequently induce TH17 responses (83).

As showed by Swindell. et al, a large number of psoriasis-
induced DEGs were also differentially expressed in other immune
defective diseases and epidermal differentiation complex (EDC),
reflecting intrinsic immune defects in psoriatic KCs may
contribute to compromising barrier function (84). To achieve a
more comprehensive understanding of molecular pathogenesis,
Zhang et al., re-analysis the gene expression profiles of 175 pairs
of lesional and non-lesional skin samples from 5 previously
published datasets. In this work, they showed that the most
enriched biological processes of DEGs in psoriasis samples were
immune responses and epidermal differentiation/development
(85). In another study, 127 DEGs were screened and the most
enriched GOs were keratinization by in-depth bioinformatic
analyses of datasets deposited in GEO (GSE13355 and
GSE14905) (86). Taking all these together, physical barrier is
speculated to be critical for the development of psoriasis.

As defects in either stratum or tight junction triggers TH2
response, the crucial role of skin barriers in the development of
AD was well accepted (87). Key epidermal genes, such as filaggrin
(FLG), loricrin (LOR), and KRT10, which are also known as EDC
genes, were frequently dysregulated in AD (88–90).
Downregulation of these EDC genes that function as a physical
barrier or antimicrobe factors were proposed to contribute to AD
pathogenesis. Evidence supporting this is that mutation of the
epidermal structure protein FLG causes approximately 20-40% of
AD (5). Besides epidermal disturbances in structural proteins,
proteases and their inhibitors are commonly the top dysregulated
genes in AD transcriptomic profiles (29). This might be due to the
maintenance of skin barrier function largely relies on homeostatic
conditions between cellular motility and excessive tissue
destruction. Kallikrein-related peptidase (KLK) genes, such as
KLK5, KLK14, and lipid metabolism gene ELOVL1, were down-
regulated in AD skin (29), while protease inhibitor SPINK5 (serine
protease inhibitor of kazal type 5) and human aquaporin 3
(AQP3) were up-regulated, which function in elevating
inflammatory responses and epidermal water loss, respectively
(29, 91).

Sensory Nerves in Psoriasis and AD
Since all itch stimuli sensed in the cutaneous are ultimately
transmitted through nerves to the brain, the crucial role of the
nervous system is thought as key factor to understand the
mechanisms underlying itch in inflammatory skin diseases.
Neuropeptides like substance P (SP) and calcitonin Gene-
Frontiers in Immunology | www.frontiersin.org 5
Related Peptides (CGRPs) were reported to be important in the
enhancement of itch in psoriasis (92, 93). TRP cation channels are
a superfamily of nonselective calcium-permeable cation channels,
that in coupling with pruritogenic CGRPs (94, 95). TRPs such as
TRPV1, TRPM8, TRPV3 and TRPC4 were reported to be
significantly elevated in pruritic skin with psoriasis (30, 96).
Meanwhile, various immune cells, such as T cells or mast cells,
secrete diverse cytokines that directly or indirectly aggravate itch
by increasing inflammatory responses. Examples are the well-
known TH17 and TH12 cytokines IL-17, IL-22 and IL-23 (97, 98).
Besides, nociceptors were also found to interact with dermal
dendritic cells (DDCs) and regulate IL-23/IL-17 pathway via
TRPV1 and Nav1.8 (99). In addition, gene transcription of IL-
31 was elevated in pruritic lesions of psoriasis (30). While
application Janus Kinase-Signal Transducer and Activator of
Transcription (JAK-STAT) inhibitor down-regulating mRNA
expression levels of IL-22, IL-23, and IL-31 to effectively
attenuate itch in psoriatic patients (100–102). These studies
highlighted the crosstalk between peripheral nerves and immune
system in the development of psoriasis.

Similar to psoriasis, chronic itch is a well-defined symptom of
AD. Individual proprioceptors are defined to respond to specific
pruritogens, such as non-histaminergic to induce chronic itch
in AD (103). Recently, the role of IgE-basophil-leukotrienes
(LT) were revealed in the activation AD-caused acute itch
flares (104). Likely, TH2 lymphocytes, eosinophils, neutrophils
and mast cells work together to amplify inflammatory
and itch pathways via releasing cytokines and neurogenic
peptides (105, 106). Some AD-associated pro-inflammatory
TH2 cytokines, such as IL-4 and IL-13 can directly activate
sensory neurons through JAK signaling pathways (27).
Additionally, IL-31 and TSLP also directly interact with cation
channel TRPV1+TRPA1+ neurons to trigger robust itch
behaviors in AD (107, 108). RNA-seq analysis showed that
serine proteases KLK7 was the most abundant and
differentially expressed KLKs in both human AD and murine
AD-like skin. Surprisingly, KLK7 promotes AD-associated itch
independently with skin inflammation (36).

Comparative analysis of global gene regulation in paired
itchy, lesional and noitchy, and nonlesional skin biopsies from
AD and psoriasis identified nearly 2,000 DEGs. Among them,
up-regulation of phospholipase A2 IVD, voltage-gated sodium
channel 1.7, and TRPV1 were positively correlated with itch
intensity in both diseases. While upregulation of TRPV2,
TRPA1, protease-activated receptor 2, protease-activated
receptor 4, and IL-10 were only detected in AD, and TRPM8,
TRPV3, phospholipase C and IL-36 were psoriatic specific. This
“itchscriptome” extended our understanding of the molecular
mechanism of sensory nerves in inflammatory skin diseases and
provide potential targets for itch treatment (30).

Skin Microbiota in Psoriasis and AD
Due to the complexity of skin surface microenvironments, skin
located microbiota is quite diverse. Surveys of discrete skin sites,
that were selected from microbial infections sites, demonstrated
that skin physiology (moist, dry, and sebaceous) is the result of
organized skin microbiota communities (109). Skin microbes
October 2021 | Volume 12 | Article 761890
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metabolized host proteins and lipids to release bioactive
molecules. These skin microbe-released antimicrobial peptides
or metabolites can be directly coupled by host skin-resident
dendritic cells (DCs) and trigger host immune responses.
Meanwhile, these molecules released from skin microbiota
promote host to secret cytokines (such as IL-1, IL-17) and
further enhance cell microbicidal function (109). Dysbiosis of
skin microbiota therefore is highly associated with inflammatory
skin disease.

To reveal the role of microbiota in inflammatory skin
diseases, large-scale analysis using 16S and RNA-sequencing
have been performed and presented distinct microbiome
compositions in AD and psoriasis skin. Unlike AD, wherein
only, S. aureus was identified as the dominant microbe, multiple
organisms including Corynebacterium and Finegoldia were
identified in psoriasis skin. Corynebacterium was considered to
negatively regulate interferon signaling to affect the initiation of
psoriasis (110), while colonization or infection of bacterium S.
aureus has been frequently reported in AD (111). Using 16S and
RNA-sequencing of AD samples, a significant increase of S.
aureus and loss of anerobic species, accompanying with host
response by altering expression of genes related to barrier
function, metabolic reprogramming, antimicrobial defense, and
TH2 signaling was detected (110).
DISCOVERIES OF DYSREGULATED
NONCODING RNAs IN INFLAMMATORY
SKIN DISEASES

Besides protein-coding RNAs, the human genome also
transcribes a large number of noncoding RNAs that have been
classified into multiple families based on their size and biogenesis
(112). These noncoding RNAs have been revealed to play pivotal
roles in human complex diseases including cancer,
autoimmunity diseases, and hereditary diseases (113–115). And
deep mining of noncoding RNA transcriptomic data will provide
the opportunity to discover novel biomarkers and therapeutic
targets in inflammatory skin diseases (Table 2) (8).

miRNA
miRNAs are small (approximately 22 nucleotides) and
evolutionarily conserved noncoding RNAs that regulate gene
expression at the post-transcriptionally level. To date, more than
2,500 human miRNAs have been reported, and their expression
levels vary significantly depending on tissue and cell types (141).
Genetical evidences form both gain and loss of function
approaches exhibited that miRNAs functions to regulate gene
expression in at least two aspects: prepress target mRNAs and
buffer posttranscriptional genetic noise (142).

Evidence is rapidly accumulating for the role of miRNAs in
the pathogenesis of inflammatory skin disorders. miR-203 was
the first reported keratinocyte-derived miRNA, which was
shown to target SOC3, NR1H3/LXR-a and PRAR-ϒ (116–
118). miR-203 was reported to be upregulated in serum but
downregulated in urine, suggesting as a potential biomarker for
Frontiers in Immunology | www.frontiersin.org 6
children AD (119). Some miRNAs, such as miR-146a and miR-
155, were elevated in both psoriasis and AD (120, 143). miR-146a
was found to negatively regulate keratinocyte proliferation and
inflammation pathways by targeting CCL5, TRAF6, IRAK1, and
CARD10 (120–122), while miR-155 was demonstrated to be
involved in keratinocyte proliferation, inflammation, and tight
junction disruption, by directly targeting CTL4 in T cells (123–
125). In psoriasis, miR155 was also reported to regulate GATA3
downstream IL-37 mediated inflammatory responses (125).
Several miRNAs have been demonstrated to be efficiency
diagnostic biomarkers for inflammatory skin diseases, such as
miR-223, miR-143, and miR-369-3p in psoriasis (126, 130). In
addition, miR-143 suppresses IL-13 activity and inflammatory
responses via directly targeting IL-13Ra1 (127). In serum of AD
patients,miR-614, miR-223, and miR-151a were significantly up-
regulated, Collectively these studies suggested miRNAs as new
diagnostic biomarkers for inflammatory skin diseases (128,
132, 133).

LncRNA
LncRNAs are RNA transcripts that are over 200 nucleotides long
and commonly recognized to have limited potential to encode
any identifiable peptide products (144). LncRNAs can be
classified into sense, antisense transcripts, long intergenic
noncoding RNAs (lincRNAs), and long intronic RNAs
(lncRNAs) based on their genome location (145), and can also
be classified as cis- and trans-acting lncRNAs according to their
function (146). Expression of lncRNA is usually tissue-restricted,
development-regulated and vary largely under different disease
conditions. Many studies revealed that lncRNAs may serve as
scaffolds to form ribonucleoprotien (RNP) complexes or as
decoys for proteins and miRNAs (147, 148).

With the widespread applications of next-generation
sequencing (NGS) technologies, huge numerous of human
lncRNAs have been identified, producing a plenty of lncRNA
resources in different contexts, such as LNCipedia (149) and
NONCODE (150). Recently, an enrichment of dysregulated
lncRNAs of typical inflammatory skin diseases has been
reported (151). These dysregulated lncRNAs were mainly
involved in epidermal differentiation, apoptosis and immune
responses pathways (134, 140, 152). For example, lncRNA-H19
regulate Dsg1 expression and consequently regulates
keratinocyte differentiation through directly binding to miR-
130b-3p (135). Similarly, Qiao et al. reported that the expression
level of lncRNA-MSX2P1 positively correlated with S100A7.
And up-regulation of lncRNA-MSX2P1 promoted the IL-22-
stimulated KCs by inhibiting miR-6731-5p, suggesting a network
module of lncRNA-MSX2P1-miR-6731-5p-S100A7 (136). By
using weighted gene co-expression network analysis
(WGCNA), 67 miRNA-lncRNA co-expression pairs have been
found (153). Studies of lncRNA SPRR2C revealed that it
competed with STAT1 and S1000A7 to counteract miR-330-
mediated suppression of STAT1 and S100A7 (139). Psoriatic
down-regulated lncRNA MEG3 was found to activate apoptosis
through miR-21-suppressed caspase-8 (137). Alternatively,
psoriatic up-regulated lncRNA PRINS targets the anti-
apoptotic G1P3 in KCs, therefore diminishing the sensitivity of
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KCs to spontaneous apoptosis through G1P3 (138). Recently,
several lncRNAs that were previously annotated as noncoding
RNAs are reported to encode micropeptides or small proteins
(140, 154, 155). These lncRNA-encoded micropeptides were
shown to be key regulators of vital cell functions, such as
muscle development, cancer development, and inflammatory
skin disease development. Niu et al. found that lncRNA
MIR155HG could encode a micropeptide to regulate antigen
presentation and suppress autoimmune inflammation in
psoriasis, unlike well-known lncRNA/miRNA module, this
study, for the first time, illustrated a new mechanism of
lncRNA in inflammatory diseases (140).
POST-TRANSCRIPTIONAL REGULATION
IN INFLAMMATORY SKIN DISEASES

Applications of NGS-based methods revolutionize our
understanding of dysregulated genes at not only the
transcriptome level but also post-transcriptional levels. It is
known that human immature transcripts go through extensive
post-transcriptional regulation to generate mature functional
transcripts (156). Major post-transcriptional events such as AS
and RNA editing are well studied in human complex diseases,
including cancer at immune diseases (157, 158). Here, we will
Frontiers in Immunology | www.frontiersin.org 7
discuss the important roles of post-transcriptional events in the
progression of inflammatory skin diseases.

Alternative Splicing
AS is a post-transcriptional process by which pre-mRNA transcripts
are spliced in different ways. Nearly all human protein-coding genes
undergo one or more forms of alternative splicing to generate
various functional mRNA and protein products from a single gene.
This process largely contributes to the complexity in the
transcriptome and lead to protein diversity (8). AS needs the
formation of the splicing complex to exert inclusion or skipping
of exons, alternative 5’ splice-site selection, intron retention,
exclusive splicing of adjacent exons, and switching between
alternative splice sites (159–161). The formation of the splicing
complex is a series of interplays between small nuclear
ribonucleoprotein particles (snRNPs, U1, U2, U4/6, and U5),
small nuclear RNAs (snRNAs), and overs 150 additional
associated proteins which not directly bound to the snRNPs
(162). With the growing applications of RNA-seq, more roles of
AS events are unveiled. For example, cancer cells can generate
cancer type-specific and subtype-specific alterations in the splicing
process and contribute to cancer progression as well as cancer
immune responses (163). Similarly, Shimizu et al. reported that the
ST2 gene encoded both membrane-bound ST2L and soluble ST2
(sST2) by AS, wherein ST2L promoted TH2 activity with a result of
TABLE 2 | Noncoding RNAs in AD and Psoriasis.

Noncoding
RNAs

Targets/Regulators Key Message Disease Ref.

miR-203 SOC3; NR1H3/LXR-a; PRAR-ϒ Regulate JAK2/STAT3 signaling pathway, by direct targeting SOC3; Modulated the
proliferation of keratinocytes through direct targeting to LXR-a/PRAR-ϒ

Psoriasis;
AD

(116–
119)

miR-146a CCL5; TRAF6; IRAK1; CARD10;
COPS8

Negatively regulated keratinocyte proliferation and inflammation pathways by
targeting CCL5, TRAF6, IRAK1; Inhibits GRCR-mediated NF-ƘB activity by targeting
CARD10 and COPS8

Psoriasis (120–
122)

miR-155 CTL4; PKIa; GATA3 Associated in keratinocyte proliferation, inflammation and tight junction disruption; In
T cells, it promotes T cell proliferation and TH17 responses by directly targeting
CTL4; Regulate GATA3 and IL-37 mediated inflammatory responses in Psoriasis

AD;
Psoriasis

(123–
125)

miR-223 PTEM Positively correlation with Treg cell; Involved in AD through indirectly upregulating
HMT to degrade excessive histamine in AD; Increase proliferation and inhibited
apoptosis in IL-22 stimulated KCs

Psoriasis;
AD

(126–
129)

miR-143 IL-13Ra1 Decrease IL-13 activity and inflammatory responses via targeting IL-13Ra1 in AD; Psoriasis;
AD

(126,
127)

miR-369-3p iNOS miR-369-3p reduce NO production by targeting iNOS, and decreased the release of
TNFa, IL-6, IL-12 et al. to regulate chronic inflammatory response

Psoriasis (130,
131)

miR-151a IL12RB2 Negatively regulate IL-12 signaling AD (132,
133)

lncRNA-H19 miR-130b-3p- Dsg1 axis Regulate Dsg1 expression and consequently regulates keratinocyte differentiation
through directly binds to miR-130b-3p

Psoriasis (134,
135)

lncRNA-MSX2P1 miR-6731-5p-S100A7 axis Up-regulation of lncRNA-MSX2P1 promotes the IL-22-stimulated keratinocytes by
inhibiting miR-6731-5p

Psoriasis (136)

lncRNA-MEG3 miR-21-caspase-8 axis Down-regulated lncRNA MEG3 activates apoptosis though miR-21 suppressed
caspase-8

Psoriasis (137)

lncRNA PRINS G1P3 Up-regulated lncRNA PRINS targets the anti-apoptotic G1P3 in keratinocytes,
therefore diminish sensitivity of keratinocytes to spontaneous apoptosis through
G1P3

Psoriasis (138)

IncRNA SPRR2C miR-330-STAT1-S100A7 axis Competed with STAT1 and S1000A7 to counteract miR-330-mediated suppression
of STAT1 and S100A7

Psoriasis (139)

lncRNA
MIR155HG

encode miPEP155 Encode a micropeptide to regulate antigen presentation and suppress autoimmune
inflammation

Psoriasis (140)
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dysregulation of TH1/TH2 immune balance and severe AD diseases
(164). Human ACT1 undergoes AS in SNP-D10N region with a
result of expressed ACT1 isoforms ACT-D19N and ACT-D10N.
ACT1-D19N is fully responsive to IL-17 through interacting with
Hsp90, while ACT-D10N loses this ability. Although these two
isoforms are equally expressed in ACT1D10N/D10 fibroblasts,
ACT1D10N/D10 T cell expressed predominantly ACT-D10N,
leading to a dysregulated hyperactive TH17 response with
elevated IL-17A and IL-22 expression in ACT1D10N/D10 T cells
and consequently severe psoriasis (165). Kyong et al. reported that
ESRP1-mediated AS of Rho GTP exchange factor ARHGEF11 was
essential for epithelial tight junction (TJ) integrity in the
dysregulation of skin barriers (166). Together, these studies not
only illustrated the vital role of AS events in the development of
inflammatory skin diseases but also revealed a potential application
of mining AS events to deep our understanding of inflammatory
skin diseases.

However, to our best knowledge, comparing with a large
application of transcriptome analysis in the identification of
novel AS events in cancer, most of the AS investigations in
inflammatory skin diseases were low-throughput experiment-
based, suggesting the potential applications of identification AS
events through high-throughput transcriptomics in discovering
novel factors in inflammatory skin diseases.

RNA Editing
RNA editing is a post-transcriptional event that modifies single-base
changes on RNA nucleotides without altering their genomic DNA
(158). Thus, impaired RNA editing activity can lead to increased
modulation of alternative splicing, missense codon changes, and
Frontiers in Immunology | www.frontiersin.org 8
modifications of noncoding RNAs (158, 167, 168) RNA editing has
been reported as an import process that contributes to proteomic
diversity in human diseases (169). In 2011, Cailin E. Joyce reported
a low frequency of RNA editing in normal and psoriasis skin (170).
This work was later confirmed by the Shoshana Greenberger group,
as they reported that psoriasis patients demonstrated a global A-to-I
RNA editing reduction in psoriatic lesions, which may account for
the accumulation of double-stranded RNA (dsRNA). This process,
in turn, stimulates the production of IFNs and is instrumental in
triggering the initiation and progression of diseases (171). Besides
global alteration, RNA editing changes were also detected in
IGFBP7, COPA, and FLNA genes sites, suggesting a link of
autoimmune diseases to a reduction in global RNA editing (171).
These studies together suggested that RNA-editing mediated post-
transcriptional regulation may be involved in the process of
inflammatory skin diseases.
PERSPECTIVES FROM SINGLE-CELL
TRANSCRIPTOMICS DATA IN
INFLAMMATORY SKIN DISEASES

Single-cell RNA sequencing (scRNA-seq) technology is emerging
as a powerful tool for characterizing heterogeneity between and
within tissue/cell types. It enables more rapid identification of
novel cell types, cell states, lineages as well as circuitry (172, 173).
Together with spatial transcriptomics, these revolutionized
techniques have been widely and successfully used in both
mammalian and plant kingdoms (174, 175) and prompted our
understanding of multiple complex diseases, such as
FIGURE 2 | The overall design of experimental and computational analysis for single-cell transcriptomics and spatial transcriptomics studies in inflammatory diseases.
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inflammatory skin diseases (176). The generation of scRNA-seq
data mainly includes sample collection, tissue dissociation, cell
sorting, library construction, and sequencing (Figure 2). The raw
scRNA-seq data was first mapped to reference genome by
utilizing tools like Cell Ranger, SEQC (177), and zUMIs (178)
to generate an expression matrix of all detected genes in all cells.
The data also needs to be checked to remove doublet cells.
Scrublet (179), scds (180), DoubleFinder (181) were designed to
identify doublets. Next, data normalization, integration,
dimensionality reduction, and clustering should be performed,
which could be realized by different functions implemented in
Seurat (182). Cell clusters are further assigned “real” cell names
by using computational tools, such as SingleR (183), CellAssign
(184), AUCell (185). These cell names should be manually
checked and will be used in the following advanced analysis.
Most physiological and pathological processes are accompanied
by transcriptional dynamics, which could be influenced by the
pseudo-temporal ordering of single cells by using scRNA-seq
data. Most commonly used expression trajectory inference tools
include Monocle (186), Slingshot (187), PAGA (188), and DPT
(189). Cell-cell interactions mediated by ligand-receptor
complexes are critical in diverse biological processes.
Investigation of context-dependent crosstalk of different cell
types enables a deep understanding of specific physiological
and pathological processes. ScRNA-seq data could also be used
to infer cell-cell communications by using such computational
tools as CellPhoneDB (190), CellChat (191), and NicheNet (192).
Spatial transcriptomics techniques can assay cells in their native
tissue context, which enables spatial characterization of
transcriptional activities. Multiple computational tools have
been developed to analyze spatial transcriptomics data, such as
Seurat, BayesSpace (193), Giotto (194), stLearn (195). Integrative
analysis of scRNA-seq and spatial transcriptomics data will help
to precisely decode intercellular communications in specific
tissue locations.

Here, we will summarize newly reported discoveries about
inflammatory skin disease at single-cell resolution.

In 2018, Cheng et al. reported the first single-cell transcriptomics
study of human epidermis from multiple anatomic sites and
psoriasis-like skins. Intriguingly, high levels of previous reported
inflammatory transcripts such as S100 transcripts and IFI27 levels
in normal scalp were detected, suggesting a cause for the
inflammation that often occurs at this site. While in foreskin
keratinocytes, upregulation of proliferation-related transcripts was
detected. In the psoriatic epidermis, enrichment of channel cells and
mitotic subfraction, enhancement of inflammatory transcripts like
S100A7, S100A8, S100A9, IFI27, PI3 as well as CD1C+CD301A+

myeloid dendritic cell population were detected. This study
provided a critical step toward epidermal development,
differentiation, and inflammation (196). Psoriasis is known as an
IL-17-driven inflammatory skin disease, in which autoantigen-
induced CD8+ T cells have been identified as pathogenic drivers.
By using scRNA-seq, a total of 11 transcriptionally diverse CD8+ T
cell subsets in psoriatic and healthy skin were identified, including 2
non-exhausted Tc17 cell subsets. Besides, CXCL13, which achieved
greater accuracy than IL-17A, was thought as a novel biomarker of
Frontiers in Immunology | www.frontiersin.org 9
psoriasis severity. This study uncovered the diverse landscape of
CD8+ T cells in psoriatic and healthy skin (197). To uncover the
expression of key phenotypic features of cells in both high fidelity
and high throughput, Hughes et al. developed a massive parallel
scRNA-seq, also called Seq-Well S3 (Second-Strand Synthesis)
protocol to chart the transcriptional landscape of five human
inflammatory skin diseases, including acne, alopecia areata,
granuloma annulare, leprosy, and psoriasis (198). Over-
representation of Tregs, dysfunctional NR4A1-expressing T cells,
and senescent SESN3+ T cells were detected in psoriasis. Besides,
IRF4+ cDC2 cluster that displays an elevated expression of CCL17,
CCL22, and a population of fibroblasts that expressed CCL19 and
BAFF were reported in psoriasis biopsies. Notably, a large
population of shared signals among cell types and states in the
tested five inflammatory diseases were identified, suggesting
potentially common outputs between these diseases (198). He et
al. reported the first scRNA-seq analysis of healthy, lesional, and
nonlesional skin from AD patients. In this work, they detected a
high expression of TH2 (IL-13) and TH22 (IL-22) T cells in AD.
And identified a novel COL6A5+COL18A1+ subpopulation
inflammatory fibroblasts. These COL6A5+COL18A1+

subpopulation fibroblasts expressed CCL2 and CCL9 cytokines
and were unique to lesional AD. Another unique subpopulation
to AD lesions identified in this work is LAMP3+ DC, which
expressed the CCL19 receptor CCR7. These findings together
revealed a potential role of fibroblast in cross-talk with DCs and
T-cells (21). Rojahn et al. characterized the pathogenesis of AD on
both transcriptomic and proteomic levels, by using suction
blistering captured epidermal and biopsies samples. Comparing
transcriptional profiles of key inflammatory pathways (such as TH2
pathways) were detected, but suction blistering was superior in cell-
specific resolution for high-abundance transcripts (i.e. KRT1/
KRT10, KRT16/KRT6A, S100A8/S100A9) (14). An elevated level
of AD-typical cytokines such as IL-13 and IL-22 in TH2 and TH22
cells, as well as antimicrobial cytokines like IL-26 are which
expressed in proliferating T cells and natural killer T cells, were
detected. Gao et al. , evaluated the intrinsic and intercellular
alterations of healthy donors and patients with psoriasis. They
revealed that the evolutionally conserved epidermal keratinocytes
and dermal mesenchymal cells could self-transform into immune
active states via intensively evoking expression of major
histocompatibility complex (MHC) genes during psoriasis. They
uncovered the immunoregulatory axis from skin resident cells to
immune cells (199). To generate the human skin cell atlas, single-
cell technology combined with immunostaining in situ of human
skin biopsies in early prenatal life, adulthood, and typical
inflammatory skin diseases were characterized (176). In total, 34
cell states were identified in healthy human skin, with dynamic
changes across embryonic, adult life, and upon perturbation during
inflammatory skin diseases. In the view of the skin immune system,
the dominant cells are lymphocytes and macrophages in first-
trimester embryonic skin and clonal expansion of disease-
associated lymphocytes in inflammatory diseases. In adult skin,
two inferred trajectories for keratinocyte differentiation and the
presence of endothelial cells were detected. Besides, augmented
migratory DC signature was detected during the development of
October 2021 | Volume 12 | Article 761890
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human thymus and in disease states. Taken together, this study
revealed the dynamic nature of cutaneous homeostasis across the
fetal development and immune-mediated inflammatory
disorders (176).
CONCLUDING REMARKS

The best strategy to characterize the pathological process and
develop therapeutic targets of inflammatory skin diseases is to
comparatively measure every key gene. However, it will take
years to portray a large spectrum of genes by using traditional
molecular techniques. The RNA-seq and single-cell
transcriptomics technologies offer a great opportunity to
extensively identify abnormalities in the pathological
progression of inflammatory skin diseases. In this review, we
Frontiers in Immunology | www.frontiersin.org 10
discussed how transcriptomics data expedites significant findings
in inflammatory skin diseases.
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58. Tarazona S, Furió-Tarı ́P, Turrà D, Di Pietro A, NuedaMJ, Ferrer A, et al. Data
Quality Aware Analysis of Differential Expression in RNA-Seq With NOISeq
R/Bioc Package. Nucleic Acids Res (2015) 43:e140. doi: 10.1093/nar/gkv711

59. Li J, Tibshirani R. Finding Consistent Patterns: A Nonparametric Approach
for Identifying Differential Expression in RNA-Seq Data. Stat Methods Med
Res (2013) 22:519–36. doi: 10.1177/0962280211428386

60. Li S, Hu Z, Zhao Y, Huang S, He X. Transcriptome-Wide Analysis Reveals
the Landscape of Aberrant Alternative Splicing Events in Liver Cancer.
Hepatology (2019) 69:359–75. doi: 10.1002/hep.30158

61. Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, et al.
SUPPA2: Fast, Accurate, and Uncertainty-Aware Differential Splicing
Analysis Across Multiple Conditions. Genome Biol (2018) 19:40.
doi: 10.1186/s13059-018-1417-1

62. Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN, et al. rMATS: Robust and
Flexible Detection of Differential Alternative Splicing From Replicate RNA-
Seq Data. Proc Natl Acad Sci USA (2014) 111:E5593–601. doi: 10.1073/
pnas.1419161111

63. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L.
Differential Analysis of Gene Regulation at Transcript Resolution With
RNA-Seq. Nat Biotechnol (2013) 31:46–53. doi: 10.1038/nbt.2450

64. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and Design of RNA
Sequencing Experiments for Identifying Isoform Regulation. Nat Methods
(2010) 7:1009–15. doi: 10.1038/nmeth.1528

65. Anders S, Reyes A, Huber W. Detecting Differential Usage of Exons From
RNA-Seq Data. Genome Res (2012) 22:2008–17. doi: 10.1101/gr.133744.111

66. WJ K, V-S. Splicer: Classification of Alternative Splicing and Prediction of
Coding Potential From RNA-Seq Data. BMC Bioinf (2014) 15:81. doi:
10.1186/1471-2105-15-81

67. John D, Weirick T, Dimmeler S, Uchida S. RNAEditor : Easy Detection of
RNA Editing Events and the Introduction of Editing Islands. Brief Bioinform
(2017) 18:993–1001. doi: 10.1093/bib/bbw087

68. Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA Editing
in Deep Transcriptome Datasets With REDItools and REDIportal. Nat
Protoc (2020) 15:10981131. doi: 10.1038/s41596-019-0279-7
October 2021 | Volume 12 | Article 761890

https://doi.org/10.3390/ijms21249412
https://doi.org/10.1016/j.cell.2017.08.006
https://doi.org/10.1056/NEJMoa1314768
https://doi.org/10.1016/j.jaci.2020.06.012
https://doi.org/10.1016/j.jaci.2020.06.012
https://doi.org/10.1016/j.jid.2017.12.029
https://doi.org/10.1111/j.1398-9995.2005.00791.x
https://doi.org/10.1111/j.1398-9995.2005.00791.x
https://doi.org/10.1016/j.jaci.2017.07.006
https://doi.org/10.1016/j.immuni.2014.02.003
https://doi.org/10.1038/ni.3829
https://doi.org/10.1038/ni.3829
https://doi.org/10.1016/j.cell.2016.11.040
https://doi.org/10.1016/j.jid.2019.10.022
https://doi.org/10.1016/j.jid.2019.10.022
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/btv566
https://doi.org/10.1093/bioinformatics/btv566
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1038/nbt.2862
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/1471-2105-11-422
https://doi.org/10.1093/bioinformatics/btt087
https://doi.org/10.1093/bioinformatics/btt087
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1177/0962280211428386
https://doi.org/10.1002/hep.30158
https://doi.org/10.1186/s13059-018-1417-1
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1038/nbt.2450
https://doi.org/10.1038/nmeth.1528
https://doi.org/10.1101/gr.133744.111
https://doi.org/10.1186/1471-2105-15-81
https://doi.org/10.1093/bib/bbw087
https://doi.org/10.1038/s41596-019-0279-7
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Transcriptomics in Inflammatory Skin Diseases
69. Piechotta M, Wyler E, Ohler U, Landthaler M, Dieterich C. JACUSA: Site-
Specific Identification of RNA Editing Events From Replicate Sequencing
Data. BMC Bioinf (2017) 18:1–15. doi: 10.1186/s12859-016-1432-8

70. Wang Z, Lian J, Li Q, Zhang P, Zhou Y, Zhan X, et al. RES-Scanner: A
Software Package for Genome-Wide Identification of RNA-Editing Sites.
Gigascience (2016) 5:1–9. doi: 10.1186/s13742-016-0143-4

71. Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ,
et al. Dynamic Analyses of Alternative Polyadenylation From RNA-Seq
Reveal a 3’2-UTR Landscape Across Seven Tumour Types. Nat Commun
(2014) 5:5274. doi: 10.1038/ncomms6274

72. Ye C, Long Y, Ji G, Li QQ,Wu X. APAtrap: Identification and Quantification
of Alternative Polyadenylation Sites From RNA-Seq Data. Bioinformatics
(2018) 34:1841–9. doi: 10.1093/bioinformatics/bty029

73. Lu J, Bushel PR. Dynamic Expression of 3 ′ UTRs Revealed by Poisson
Hidden Markov Modeling of RNA-Seq: Implications in Gene Expression
Pro Fi Ling. Gene (2013) 527:616–23. doi: 10.1016/j.gene.2013.06.052

74. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 Immune Axis: From
Mechanisms to Therapeutic Testing. Nat Rev Immunol (2014) 14:585–600.
doi: 10.1038/nri3707

75. Towne J, Sims J. IL-36 in Psoriasis. Curr Opin Pharmacol (2012) 12:486–90.
doi: 10.1016/j.coph.2012.02.009

76. Swindell WR, Beamer MA, Sarkar MK, Loftus S, Fullmer J, Xing X, et al.
RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes
Identifies a Shared MyD88-Dependent Gene Signature. Front Immunol
(2018) 9:80. doi: 10.3389/fimmu.2018.00080
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The Anti-Apoptotic Protein G1P3 Is Overexpressed in Psoriasis and
Regulated by the Non-Coding RNA, PRINS. Exp Dermatol (2010) 19:269–
78. doi: 10.1111/j.1600-0625.2010.01066.x

139. Luo M, Huang P, Pan Y, Zhu Z, Zhou R, Yang Z, et al. Weighted Gene
Coexpression Network and Experimental Analyses Identify lncRNA
SPRR2C as a Regulator of the IL-22-Stimulated HaCaT Cell Phenotype
Through the miR-330/STAT1/S100A7 Axis. Cell Death Dis (2021) 12:86.
doi: 10.1038/s41419-020-03305-z

140. Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, et al. A Micropeptide Encoded by
lncRNA MIR155HG Suppresses Autoimmune Inflammation via Modulating
Antigen Presentation. Sci Adv (2020) 6:eaaz2059. doi: 10.1126/sciadv.aaz2059

141. Lewis BP, Burge CB, Bartel DP. Conserved Seed Pairing, Often Flanked by
Adenosines, Indicates That Thousands of Human Genes Are microRNA
Targets. Cell (2005) 120:15–20. doi: 10.1016/j.cell.2004.12.035

142. Hornstein E, Shomron N. Canalization of Development by microRNAs. Nat
Genet (2006) 38 Suppl:S20–4. doi: 10.1038/ng1803

143. El-Komy M, Amin I, El-Hawary MS, Saadi D, Shaker O. Upregulation of the
miRNA-155, miRNA-210, and miRNA-20b in Psoriasis Patients and Their
Relation to IL-17. Int J Immunopathol Pharmacol (2020) 34:2058738420933742.
doi: 10.1177/2058738420933742

144. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al.
Integrative Annotation of Human Large Intergenic Noncoding RNAs
Reveals Global Properties and Specific Subclasses. Genes Dev (2011)
25:1915–27. doi: 10.1101/gad.17446611

145. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The
GENCODE V7 Catalog of Human Long Noncoding RNAs: Analysis of Their
Gene Structure, Evolution, and Expression. Genome Res (2012) 22:1775–89.
doi: 10.1101/gr.132159.111

146. Ponting CP, Oliver PL, Reik W. Evolution and Functions of Long Noncoding
RNAs. Cell (2009) 136:629–41. doi: 10.1016/j.cell.2009.02.006

147. Kopp F, Mendell JT. Functional Classification and Experimental Dissection
of Long Noncoding RNAs. Cell (2018) 172:393–407. doi: 10.1016/
j.cell.2018.01.011

148. Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs Regulate
Transcription? Sci Adv (2017) 3:eaao2110. doi: 10.1126/sciadv.aao2110

149. Volders P-J, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P,
et al. LNCipedia 5: Towards a Reference Set of Human Long Non-Coding
RNAs. Nucleic Acids Res (2019) 47:D135–9. doi: 10.1093/nar/gky1031
October 2021 | Volume 12 | Article 761890

https://doi.org/10.1101/gr.131029.111
https://doi.org/10.1038/ng.3192
https://doi.org/10.1038/nrc.2017.99
https://doi.org/10.1038/ni.3771
https://doi.org/10.1038/s41586-021-03208-9
https://doi.org/10.1371/journal.pone.0000610
https://doi.org/10.3892/mmr.2017.7759
https://doi.org/10.1080/15384101.2020.1783934
https://doi.org/10.1371/journal.pone.0115448
https://doi.org/10.1016/j.jaci.2014.05.022
https://doi.org/10.1073/pnas.0605298103
https://doi.org/10.1186/1476-4598-11-71
https://doi.org/10.1016/j.jaci.2010.05.045
https://doi.org/10.1038/s41419-019-2124-x
https://doi.org/10.1111/exd.14117
https://doi.org/10.1016/j.jdermsci.2014.05.005
https://doi.org/10.1111/jcmm.15208
https://doi.org/10.14715/cmb/2018.64.3.17
https://doi.org/10.1016/j.lfs.2019.05.045
https://doi.org/10.1016/j.lfs.2019.05.045
https://doi.org/10.1038/s41598-020-72991-8
https://doi.org/10.1684/ejd.2013.2148
https://doi.org/10.1684/ejd.2013.2148
https://doi.org/10.3390/ijms21239011
https://doi.org/10.1111/exd.13276
https://doi.org/10.1186/s13059-014-0570-4
https://doi.org/10.1038/cddis.2017.516
https://doi.org/10.1016/j.yexcr.2018.01.014
https://doi.org/10.1186/s12860-019-0229-9
https://doi.org/10.1186/s12860-019-0229-9
https://doi.org/10.1111/j.1600-0625.2010.01066.x
https://doi.org/10.1038/s41419-020-03305-z
https://doi.org/10.1126/sciadv.aaz2059
https://doi.org/10.1016/j.cell.2004.12.035
https://doi.org/10.1038/ng1803
https://doi.org/10.1177/2058738420933742
https://doi.org/10.1101/gad.17446611
https://doi.org/10.1101/gr.132159.111
https://doi.org/10.1016/j.cell.2009.02.006
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1126/sciadv.aao2110
https://doi.org/10.1093/nar/gky1031
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Transcriptomics in Inflammatory Skin Diseases
150. Zhao L,Wang J, Li Y, Song T,Wu Y, Fang S, et al. NONCODEV6: AnUpdated
Database Dedicated to Long Non-Coding RNA Annotation in Both Animals
and Plants. Nucleic Acids Res (2021) 49:D165–71. doi: 10.1093/nar/gkaa1046

151. Ghafouri-Fard S, Eghtedarian R, Taheri M, Rakhshan A. The Eminent Roles
of ncRNAs in the Pathogenesis of Psoriasis. Non-coding RNA Res (2020)
5:99–108. doi: 10.1016/j.ncrna.2020.06.002

152. Yan J, Song J, Qiao M, Zhao X, Li R, Jiao J, et al. Long Noncoding RNA
Expression Profile and Functional Analysis in Psoriasis.Mol Med Rep (2019)
19:3421–30. doi: 10.3892/mmr.2019.9993

153. Li H, Yang C, Zhang J, Zhong W, Zhu L, Chen Y. Identification of Potential
Key mRNAs and LncRNAs for Psoriasis by Bioinformatic Analysis Using
Weighted Gene Co-Expression Network Analysis. Mol Genet Genomics
(2020) 295:741–9. doi: 10.1007/s00438-020-01654-0

154. Matsumoto A, Pasut A, MatsumotoM, Yamashita R, Fung J, Monteleone E, et al.
MTORC1 and Muscle Regeneration Are Regulated by the LINC00961-Encoded
SPAR Polypeptide. Nature (2017) 541:228–32. doi: 10.1038/nature21034

155. Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, et al. Emerging Role of
Tumor-Related Functional Peptides Encoded by lncRNA and circRNA. Mol
Cancer (2020) 19:22. doi: 10.1186/s12943-020-1147-3

156. de Klerk E, ‘t Hoen PAC. Alternative mRNA Transcription, Processing, and
Translation: Insights From RNA Sequencing. Trends Genet (2015) 31:128–
39. doi: 10.1016/j.tig.2015.01.001

157. Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, et al. Prognostic Alternative
mRNA Splicing Signature in Non-Small Cell Lung Cancer. Cancer Lett
(2017) 393:40–51. doi: 10.1016/j.canlet.2017.02.016

158. Xu X,Wang Y, Liang H. The Role of A-To-I RNA Editing in Cancer Development.
Curr Opin Genet Dev (2018) 48:51–6. doi: 10.1016/j.gde.2017.10.009

159. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep Surveying of Alternative
Splicing Complexity in the Human Transcriptome by High-Throughput
Sequencing. Nat Genet (2008) 40:1413–5. doi: 10.1038/ng.259

160. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al.
Alternative Isoform Regulation in Human Tissue Transcriptomes. Nature
(2008) 456:470–6. doi: 10.1038/nature07509

161. Wahl MC, Will CL, Lührmann R. The Spliceosome: Design Principles of a
Dynamic RNP Machine. Cell (2009) 136:701–18. doi: 10.1016/j.cell.2009.02.009

162. Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions,
Mechanisms, and Evolution. Mol Cell (2019) 76:329–45. doi: 10.1016/
j.molcel.2019.09.017
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