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In recent years, the research on single-robot simultaneous localization and mapping (SLAM) has made a great success. However,
multirobot SLAM facesmany challenging problems, including unknown robot poses, unsharedmap, and unstable communication.
In this paper, a map merging algorithm based on virtual robot motion is proposed for multi-robot SLAM.The thinning algorithm
is used to construct the skeleton of the grid map’s empty area, and a mobile robot is simulated in one map. The simulated data is
used as information sources in the other map to do partial map Monte Carlo localization; if localization succeeds, the relative pose
hypotheses between the two maps can be computed easily. We verify these hypotheses using the rendezvous technique and use
them as initial values to optimize the estimation by a heuristic random search algorithm.

1. Introduction

Recent advances in mobile robotics have allowed autono-
mous systems to be involved in many successful applications
including planetary exploration, search and rescue, surveil-
lance, and other service scenarios [1].

For the purpose of successfully accomplishing a generic
task, a main prerequisite for a mobile robot, deployed in an
unknown area, is the ability to autonomously navigate,
exploiting the information acquired through the joint esti-
mation of its positions and a model of the surrounding envi-
ronment. The problem of estimating both the robot pose
and the environment representation is usually defined as
simultaneous localization andmapping (SLAM) [2, 3].While
the maturity of SLAM in single robot scenarios is recognized
in many recent works, a challenging issue is to extend these
approaches to multirobot scenarios [4–7].

Recently, in order to cope with dynamic environment and
multiple tasks, a lot of researches have been presented in
multiagent andmultiple distributed autonomous robotic sys-
tems. Each robot has its own task, such as building a map
of local position. Moreover, they have to combine their data
into sharedmaps. Using sharedmaps, robots coordinate their
exploration strategies to maximize the efficiency of explo-
ration. Multiple autonomous mobile robots can complete the

task through cooperation and give a more accurate map by
data fusion.The robots coordinate their exploration strategies
to maximize the efficiency of their exploration using these
shared maps.

Fenwick et al. extended single robot SLAM algorithm
based on EKF to the multirobot [8–10]. Howard extended
single-robot SLAM algorithm based on particle filter to
multi-robot applications [11]. Thrun put forward multi-robot
hybrid map building method that combines fast maximum
likelihood map growing with a Monte Carlo localizer [12].
Thrun [10] points out that the key to multi-robot map
building is to determine the initial position and orientation of
each single robot. However, most current algorithms bypass
the problem, either some algorithms assume that the road
signs in the environment are identified, or some algorithms
assume that each robot starting from a similar position, so
that their initial map has large coverage area. Ko et al. [13]
specialize in the methods by which the robots determine
relative pose in environmental exploration. Each robot builds
its own maps, and meanwhile, estimates the pose of other
robots in its own map. If the estimation probability reaches
the higher accuracy, two robots rendezvous [14] to confirm
the pose between them, and this paper also adopts a similar
approach.Another strategy is to assume that the robots can be
cross-observed to determine the relative pose between them
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[13, 15].The deficiency of the method is that each robot in the
process of movement must be “accidentally” encounter.

In this paper we present a novel fast and accurate algo-
rithm for merging multiple maps represented as occupancy
grids.Themain idea is as follows: make a virtualmobile robot
in one partial map and control its move and measure in the
map. At the same time, these simulated data are used as infor-
mation sources in the other map to do partial map Monte
Carlo localization [16]; if localization succeeds, the relative
pose hypotheses between the two maps can be computed
easily. In order to speed up the process, we can constrain the
virtual robot move along the local topological edge of the
partial map, so in the process of Monte Carlo localization
within the partial map, the initial random samples only are
generated near the edges of the corresponding topology of
the other partial map. Prior knowledge of the relative pose
between maps or robots is not demanded in the method,
which enhances autonomous exploration and multi-robot
SLAM.

2. Concept of Map Merging

The research on map merging is limited, and the previous
work focused on feature-based approaches [17–19], which rely
on special landmarks that can be recognized through prop-
erly processing the data gathered by the robots. For example,
the topological maps are graphs in which vertices represent
recognizable places such as doorways, corridors, anddifferent
types of corner and edges represent the passage connecting
two places. Merging map A and map B turns into searching
subgraphs with the same structure in map A and map B. Our
goal is to merge maps which are not based on features, but
rather on occupancy grids. For sake of clearness, we formally
define the several concepts [20].

Definition 1. Let 𝑁 and 𝑀 be two positive real numbers. A
𝑁 ×𝑀map is a function. Consider

𝑚 : [1,𝑁] × [1,𝑀] → R, (1)

where 𝐼
𝑁×𝑀

denoting the set of𝑁 ×𝑀maps.

Discrimination is needed when a map is processed in the
practical application, and the map is represented as a matrix
with𝑁 rows and𝑀 columns.The function𝑚 is a confidence
model in the map. For example, one could assume that if the
value of𝑚(𝑥, 𝑦) is positive, the point (𝑥, 𝑦) in the map is free,
while a negative value represents the point (𝑥, 𝑦) as occupied.
The absolute value represents the degree of belief. Especially,
we assume that if the value of𝑚(𝑥, 𝑦) is zero, the point (𝑥, 𝑦)
is unknown. The definition is consistent with the grid map.
In the following, the planar transformation is defined, which
will be used to find the best matching between two partial
maps.

Definition 2. 𝑡
𝑥
, 𝑡
𝑦
, and 𝑡

𝜃
are three real numbers; the pose

transformation function consists of 𝑡
𝑥
, 𝑡
𝑦
, and 𝑡

𝜃
is defined as

follows:

𝑇
(𝑡
𝑥
, 𝑡
𝑦
, 𝑡
𝜃
)
(𝑥, 𝑦) : R2 → R2, (2)

where 𝑡
𝑥
, 𝑡
𝑦
, and 𝑡

𝜃
are three real numbers. It is defined as

follows:

𝑇
(𝑡
𝑥
, 𝑡
𝑦
, 𝜃)
(𝑥, 𝑦) = [

1 0 0

0 1 0
][

[

cos 𝜃 − sin 𝜃 𝑡
𝑥

sin 𝜃 cos 𝜃 𝑡
𝑦

0 0 1

]

]

[

[

𝑥

𝑦

1

]

]

. (3)

Definition 3. 𝑚
1
and 𝑚

2
are the two maps of 𝐼

𝑁×𝑀
; the cov-

erage between𝑚
1
and𝑚

1
is defined as follows:

𝜔 (𝑚
1
, 𝑚
2
) =

𝑁

∑

𝑖=1

𝑀

∑

𝑗=1

𝑒 (𝑚
1
[𝑖, 𝑗] , 𝑚

2
[𝑖, 𝑗]) , (4)

where

𝑒 (𝑎, 𝑏) = {
1, if 𝑎 = 𝑏,
0, otherwise.

(5)

The coverage function is used to measure the degree of
the match between twomaps. Ideally, the map, which the two
robots build, is entirely consistent with the physical environ-
ment and covers the entire environment space. In this case,
the coverage function is 𝜔(𝑚

1
, 𝑚
2
) = 𝑁×𝑀; it is maximum.

According to the above definitions, we can formally make
definitions on map merging.

Definition 4. Given two maps 𝑚
1
and 𝑚

2
, pose transfor-

mation function 𝑇
(𝑡
𝑥
,𝑡
𝑦
,𝑡
𝜃
)
(𝑥, 𝑦) is searched to maximize the

function 𝜔(𝑚
1
, 𝑇
(𝑡
𝑥
,𝑡
𝑦
,𝑡
𝜃
)
𝑚
2
).

From the previous definition, the key tomapmerging is to
search the optimal pose transformation 𝑇

(𝑡
𝑥
,𝑡
𝑦
,𝑡
𝜃
)
. The prelim-

inary estimations of the transformation are got by the Monte
Carlo localization in the partial map [16]. In order to improve
computational efficiency, we adopt the samplingmethodwith
confined area.The heuristic random search algorithm is used
to further optimize the pose transformation.

3. Fast Monte Carlo Global Localization

3.1. Topological Information of a Map. The topological infor-
mation of amap is the abstraction of environmental informa-
tion. Vertices represent discrete places in the environment,
and edges represent paths connecting these places. The
information can be obtained by generalized Voronoi graph
(GVG) algorithm [21] or thinning algorithm [22, 23]. Use-
less boundaries and virtual intersections for navigation are
generated in GVG algorithm, the thinning method does not
generate this information because it is based on probabilistic
framework. It is robust for the sensor noise and various
environments.

Thinning algorithm is the method that extracts the image
skeleton in the digital image processing algorithm. Figure 1
illustrates the concept of thinning.Theobject on the left figure
can be describedwell by the structure composed of connected
lines (i.e., “T” shape designwith thin lines on the right figure).
Note that connectivity of the structure is still preserved even
with thin lines. For mobile robots, the connecting lines can
be used as collisionless paths of the robot navigation.
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Figure 1: Concept of thinning.

In the paper, eight neighbour grid operators are used to
solve the skeleton of free areas in grid map. Centre grid 𝑝

1

and 8 neighbor grids (𝑝
2
∼𝑝
9
) are described in Figure 2. “0”

indicates that the grid is empty and “1” indicates the grid
is occupied. For the occupied grid 𝑝

1
, if its eight neighbour

grids satisfy the thinning condition, grid 𝑝
1
is change into

empty because it is not a part of the skeleton.
Thinning Condition 1. Consider

(1) 2 ≤ 𝑁(𝑝
1
) ≤ 6,

(2) 𝑆(𝑝
1
) = 1,

(3) 𝑝
2
⋅ 𝑝
4
⋅ 𝑝
6
= 0,

(4) 𝑝
4
⋅ 𝑝
6
⋅ 𝑝
8
= 0.

Thinning Condition 2

(1) and (2) are the same as Thinning Condition 1,

(3) 𝑝
2
⋅ 𝑝
4
⋅ 𝑝
8
= 0,

(4) 𝑝
2
⋅ 𝑝
6
⋅ 𝑝
8
= 0.

Here,

𝑝
𝑖
=
{

{

{

0, grid 𝑝
𝑖
is empty,

1, grid 𝑝
𝑖
is occupied.

(6)

𝑁(𝑝
1
) denotes the number of occupied grids of 8 neighbours,

and it is defined as follows:

𝑁(𝑝
1
) =

9

∑

𝑖=2

𝑝
𝑖
. (7)

𝑆(𝑝
𝑖
) denotes times of the change from 0 to 1 in the sequence

𝑝
2
, 𝑝
3
, . . . , 𝑝

8
, 𝑝
9
.

3.2. The Sample Space Limitation. The map skeleton is con-
structed for designating confined sample area and navigation
path. If robot moves along bisector of the obstacles (approx-
imately along the skeleton), it has more opportunities to
collect more environment information.

The performance ofMCL is heavily dependent on density
of particles if the other conditions are the same. The sample
space is usually very large in the stages of MCL global local-
ization and processing the kidnapped robot problem (the
worst case is all free areas in the environmental map). A lot of
particles are required in order to localize successfully, and the
request of real time is not met. However, if we could acquire

p9 p2 p3

p8 p1 p4

p7 p6 p5

Figure 2: Centre grid 𝑝
1
and its 8 neighbor grids.

T1

T2

T21

m1

m2

Figure 3: Map merging coordinate diagram.

the relevant knowledge about pose of robot in advance, for
example, we are sure that robot is located in the area that is
much smaller than free area in the map, we can only sample
in this area, which improves the speed of the algorithm.

4. Relative Pose Estimation of Maps

4.1. Hypothesis Generation. The simplest situation is con-
sidered: two complete maps 𝑚

1
and 𝑚

2
(their coordinates

are different in global coordinates) in the same closed envi-
ronment Ω save two parts of information: grid occupancy
information and skeleton of corresponding free area. If a
robot constantly moves along the skeleton of free area in
environment Ω and observes the environment at the same
time, MCL global localization is used to localize the robot
in map 𝑚

1
and map 𝑚

2
. Suppose the location estimations of

robot in two maps are 𝜉(1)
𝑡

and 𝜉(2)
𝑡
, respectively, at time 𝑡, as

shown in Figure 3, the following formula can be concluded:

𝑇
1
= 𝑇
21
⋅ 𝑇
2
, (8)

where 𝑇
1
and 𝑇

2
are corresponding homogeneous transfor-

mation matrixes to 𝜉(1)
𝑡

and 𝜉(2)
𝑡
, respectively. 𝑇

21
is homoge-

neous transformation matrix that the coordinates of map𝑚
2

is relative to one of map𝑚
1
.

According to (4), the relative pose between 𝑚
1
and 𝑚

2
is

as follows:

𝑇
21
= 𝑇
1
⋅ 𝑇
−1

2
. (9)

The specific approach is put forward in the paper. A robot
is simulated to move along the skeleton of the partial map
𝑚
1
and constantly observe the map, which is obtained by
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a robot using the single-robot-SLAM algorithm. At the same
time, these simulated data are used as information sources
to do Monte Carlo localization for partial map in the map
𝑚
2
. The localization process is carried out until the particles

converge to one ormore clusters. Because the simulation data
is obtained near the map skeleton, the initial particles only
need to be generated near the skeleton of 𝑚

2
in the process

of MCL in the map𝑚
2
. In this way the initial pose estimation

between 𝑚
1
and 𝑚

2
is got quickly. Figure 4 shows the model

of the method.

4.2. Hypothesis Verification. From the previous method, we
get the preliminary estimation to the relative pose between
two partial maps 𝑚

1
and 𝑚

2
which were constructed by

Robot1 and Robot2, respectively. The estimation may have
one or more peak values, which are supposed to be as relative
pose hypotheses between 𝑚

1
and 𝑚

2
. Suppose that homoge-

neous transformation matrix 𝑇 is one of these hypotheses, as
show in Figure 5, the homogeneous transformationmatrix𝑇

3

of the two robots’ relative pose can be calculated with 𝑇, 𝑇
1
,

and 𝑇
2
as follows:

𝑇
3
= 𝑇
−1

1
⋅ 𝑇 ⋅ 𝑇

2
. (10)

We can use 𝑇
3
to path planning two robots’ paths in the

map 𝑚
1
and make them meet as far as possible. The plan

is operated on Robot1, and the results are sent to Robot2
in order to collaborate with each other. If the two robots
can meet according to the path planning, the relative pose
hypothesis 𝑇 is true, and we go to the stage of estimation
optimization; otherwise we test the next hypothesis. If all
hypotheses are false, the robot still constructs map indepen-
dently (single-robot SLAM), waiting for the next operation of
map merging.

5. Estimation Optimization

After the previous steps, the preliminary estimation to the
relative pose of map is got. Based on the research of literature
[24], the relative pose is further optimized. The concrete
optimization process is as follows.

5.1. Dissimilarity Measurement Function of Map. From the
definition of map merging, the map merging problem can be
seen as an optimization problem, whose optimization func-
tion is 𝜔(). It is the problem that 𝜔() is directly used as opti-
mization function. Because the values of 𝜔(𝑚

1
, 𝑇
(𝑡
𝑥
,𝑡
𝑦
,𝑡
𝜃
)
(𝑚
2
))

are arbitrarily leap with continuous changes of variables
(𝑡
𝑥
, 𝑡
𝑦
, 𝑡
𝜃
), the function 𝜔() delivers no effective gradients to

do optimization like hill-climbing algorithm.The dissimilar-
ity function is as follows:

𝜓 (𝑚
1
, 𝑚
2
) = ∑

𝑐∈𝐶

[𝑑 (𝑚
1
, 𝑚
2
, 𝑐) + 𝑑 (𝑚

1
, 𝑚
2
, 𝑐)] (11)

with

𝑑 (𝑚
1
, 𝑚
2
, 𝑐) =

∑
𝑚
1
[𝑝
1
]=𝑐

min {𝑚𝑑 (𝑝
1
, 𝑝
2
) | 𝑚
2
[𝑝
2
] = 𝑐}

#
𝑐
(𝑚
1
)

,

(12)

The partial map A

The partial map B

ut, zt𝜉(1)t

𝜉(2)t
The partial map

Monte Carlo
localization

Virtual robot
motion

The calculation
of relative
position

Figure 4: Calculation of relative pose ofmaps based on virtual robot
motion.

T3

T
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Robot 1
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Figure 5: Relative pose of robots.

where 𝐶 denotes grid range of map 𝑚
1
and map 𝑚

2
, 𝑚
1
[𝑝
1
]

denotes the value of grid 𝑝
1
in map 𝑚

1
, 𝑚𝑑(𝑝

1
, 𝑝
2
) = |𝑥

1
−

𝑥
2
|+|𝑦
1
−𝑦
2
| denotes theManhattan-distance between points

𝑝
1
and 𝑝

2
, and #

𝑐
(𝑚
1
) = #{𝑝

1
|𝑚
1
[𝑝
1
] = 𝑐} denotes the

number of grids with value 𝑐 in map𝑚
1
.

To simplify the calculation, the grids’ value of the map
is marked as “free” or “occupied” or “unknown” according
to the predefined threshold. Only occupied and free grids
are considered for computing dissimilarity function, so 𝐶 =

{occ, free}. In order to compute the dissimilarity function in
linear time, a so called distance-map is introduced. Distance-
map 𝑑𝑚𝑎𝑝

𝑐
[𝑥
1
][𝑦
1
] denotes theManhattan distance between

the grid 𝑝
1
= (𝑥
1
, 𝑦
1
) in map 𝑚

1
and a grid which is the

nearest point to 𝑝
1
with value 𝑐 in map𝑚

2
:

𝑑𝑚𝑎𝑝
𝑐
[𝑥
1
] [𝑦
1
] = min {𝑚𝑑 (𝑝

1
, 𝑝
2
)
 𝑚2 [𝑝2] = 𝑐} . (13)

The concrete calculation process for 𝑑𝑚𝑎𝑝c is shown in
Algorithm 1.

Using the distance-map 𝑑𝑚𝑎𝑝
𝑐
, we can calculate 𝑑(𝑚

1
,

𝑚
2
, 𝑐) with Algorithm 2.
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Input: the grid map𝑚 and grid value 𝑐
Output: distance-map 𝑑𝑚𝑎𝑝

𝑐

1 for 𝑦 = 0 to 𝑛 + 1 do
2 for 𝑥 = 0 to 𝑛 + 1 do
3 if 𝑚(𝑥, 𝑦) == 𝑐 then
4 𝑑𝑚𝑎𝑝

𝑐
[𝑥][𝑦] = 0;

5 else
6 𝑑𝑚𝑎𝑝

𝑐
[𝑥][𝑦] = ∞;

7 end
8 end
9 end
10 for 𝑦 = 1 to 𝑛 do
11 for 𝑥 = 1 to 𝑛 do

12 ℎ = min(𝑑𝑚𝑎𝑝
𝑐
[𝑛 − 𝑥 + 1][𝑛 − 𝑦] + 1,

𝑑𝑚𝑎𝑝
𝑐
[𝑛 − 𝑥][𝑛 − 𝑦 + 1] + 1);

13 𝑑𝑚𝑎𝑝
𝑐
[𝑛 − 𝑥][𝑛 − 𝑦] = min(𝑑𝑚𝑎𝑝

𝑐
[𝑛 − 𝑥][𝑛 − 𝑦], ℎ);

14 end
15 end
16 for 𝑦 = 1 to 𝑛 do
17 for 𝑥 = 1 to 𝑛 do
18 ℎ = min(𝑑𝑚𝑎𝑝

𝑐
[𝑥 − 1][𝑦] + 1, 𝑑𝑚𝑎𝑝

𝑐
[𝑥][𝑦 − 1] + 1);

19 𝑑𝑚𝑎𝑝
𝑐
[𝑥][𝑦] = min(𝑑𝑚𝑎𝑝

𝑐
[𝑥][𝑦], ℎ);

20 end
21 end
22 return 𝑑𝑚𝑎𝑝

𝑐
;

Algorithm 1: Calculation process of distance-map 𝑑𝑚𝑎𝑝
𝑐
in grid map.

Input: the grid map𝑚
1
,𝑚
2
and grid value 𝑐

Output: 𝑑(𝑚
1
, 𝑚
2
, 𝑐)

1 calculate the 𝑑𝑚𝑎𝑝
𝑐
of𝑚
2
according to Algorithm 1;

2 𝑑(𝑚
1
, 𝑚
2
, 𝑐) = 0;

3 for 𝑦 = 0 to 𝑛 + 1 do
4 for 𝑥 = 0 to 𝑛 + 1 do
5 if 𝑚

1
(𝑥, 𝑦) == 𝑐 then

6 𝑑(𝑚
1
, 𝑚
2
, 𝑐) = 𝑑(𝑚

1
, 𝑚
2
, 𝑐) + 𝑑𝑚𝑎𝑝

𝑐
[𝑥][𝑦];

7 end
8 end
9 end
10 return 𝑑(𝑚

1
, 𝑚
2
, 𝑐);

Algorithm 2: Calculation process of 𝑑(𝑚
1
, 𝑚
2
, 𝑐).

5.2. Random Walk Optimization. The basic idea of random
walk optimization is to search in the given solution space
using theway of randomwalk. At each step a random solution
is generated and the corresponding heuristic rule of next step

is computed. The concrete process is shown in Algorithm 3.
And a more detailed description is in the literature [24].

6. Experimental Results

Weperform experiment based on themapmerging algorithm
proposed in this paper. The process of experiment is as
follows. Firstly, grid map of the identical simulation environ-
ment (Figure 6(a)) is constructed by using SLAM algorithm
twice, as shown in Figures 6(b) and 6(c). Then, the relative
pose between two partialmaps is calculated using themethod
proposed in the paper. Finally, the results of mapmerging are
illustrated in Figures 6(d) and 6(e). Figure 6(d) is the result
based on calculation of relative pose of maps using virtual
robot motion, and its optimized result using random walk
optimization is showed in Figure 6(e).

7. Conclusions

In the paper, map merging method based on virtual robot
motion is proposed in the field of multirobot SLAM. For
multi-robot SLAM, there are four kinds of interaction effect
between two robots. The first kind is no interaction between
two robots.The second kind is hypothesis generation because
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(a) Simulation environment (b) Partial mapm1

(c) Partial mapm2 (d) Map merging based on preliminary estimation

(e) Map merging based on optimized estimation

Figure 6: Experimental results.

communication is permitted between robots, but relative
pose of other robot is unknown.The third kind is hypothesis
verification because communication is permitted between
robots, and relative localization hypothesis is generated in the
process of hypothesis generation. The forth kind is coordi-
nated exploration because robots have relative pose and can
share map and explore environment.

In this paper, a mobile robot is simulated in one map;
it moves along the map’s skeleton and measures the vir-
tual environment. At the same time, these simulated data are
used as information sources in the other map to do partial
map Monte Carlo localization; if localization succeeds, the

relative pose hypotheses between the two maps can be com-
puted easily. Then, they actively verify one hypothesis using
a rendezvous technique. If successful, using the hypothesis
as initial value, the estimation is optimized by a heuristic
random search algorithm. The algorithm is not only for grid
maps but also other types of map. The experimental results
have verified the algorithm.

In the future, the corresponding problems, such as net-
work transmission and collaboration of robots, are required
to be considered. Cloud robotics is considered to be the next
great-leap-forward development of robotics.Themethodwill
be improved to apply to cloud robotics.
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Input: the grid map𝑚
1
,𝑚
2
, initial relative pose estimation 𝑡start

Output: the relative pose 𝑡 between map𝑚
1
and𝑚

2

1 𝑘 = 0; 𝑡
𝑘
= 𝑡start;

2 Σ
0
= Σinit; 𝜇

0
= 𝜇init;

3 𝑐
0
= 𝜓(𝑚

1
, 𝑇
𝑡start

(𝑚
2
));

4 while 𝑘 < 𝑛𝑢𝑚𝑠𝑡𝑒𝑝𝑠 do
5 ]
𝑘
∼ 𝑁(𝑢

𝑘
, Σ
𝑘
);

6 𝑠 = 𝑡
𝑘
+ ]
𝑘
;

7 𝑐
𝑠
= 𝜓(𝑚

1
, 𝑇
𝑠
(𝑚
2
));

8 if 𝑐
𝑠
< 𝑐
𝑘
or RS(𝑡

𝑘
, 𝑠) = 𝑠 then

9 𝑘 = 𝑘 + 1; 𝑡
𝑘
= 𝑠; 𝑐

𝑘
= 𝑐
𝑠
;

10 Σ
𝑘+1

= (𝑡
𝑘
, 𝑡
𝑘−1
, . . . , 𝑡

𝑘−𝑀
);

11 𝜇
𝑘+1

= (𝑡
𝑘
, 𝑡
𝑘−1
, . . . , 𝑡

𝑘−𝑀
);

12 end
13 end
14 return 𝑠;

Algorithm 3: Random walk optimization.
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