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abstract

PURPOSE A substantial portion of medical data is unstructured. Extracting data from unstructured text presents
a barrier to advancing clinical research and improving patient care. In addition, ongoing studies have been
focused predominately on the English language, whereas inflected languages with non-Latin alphabets (such as
Slavic languages with a Cyrillic alphabet) present numerous linguistic challenges. We developed deep-
learning–based natural language processing algorithms for automatically extracting biomarker status of pa-
tients with breast cancer from three oncology centers in Bulgaria.

METHODSWe used dual embeddings for English and Bulgarian languages, encoding both syntactic and polarity
information for the words. The embeddings were subsequently aligned so that they were in the same vector
space. The embeddings were used as input to convolutional or recurrent neural networks to derive the bio-
marker status of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2.

RESULTS We showed that we can resolve ambiguity in highly variable medical text containing both Latin and
Cyrillic text. Final models incorporating both English and Bulgarian syntax and polarity embeddings achieved F1
scores of 0.90 or higher for all estrogen receptor, progesterone receptor, and human epidermal growth factor
receptor 2 biomarkers. The models were robust against human errors originally found in the training set. In
addition, such models can be extended for analyzing text containing words not seen during training.

CONCLUSION By using several techniques that incorporate dual-word embeddings encoding syntactic and
polarity information in two languages followed by deep neural network architectures, we show that researchers
can extract and normalize parameters within medical data. The principles described here can be used to
analyze Cyrillic or Latin mixed medical text and extract other parameters.
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INTRODUCTION

Digitalization and extraction of medical records is critical
in clinical research, patient recruitment for clinical trials,
and improved patient care in the era of value-based
care. However, more than 80% of data in electronic
health records (EHRs) exists as unstructured text.
Automated extraction of medical text into structured
data is challenging. In addition, substantial variance in
reporting because of different sources further com-
pounds the complexity. Manual extraction from such
text is extremely tedious and cost prohibitive because
specialized medical knowledge is often required. It is
also not scalable, given the high volume of medical data
to be annotated. So addressing even simple epidemi-
ologic questions can be a burdensome task.

In working with the hospital information systems in
Eastern Europe, we observed additional challenges.

We focus specifically on Bulgarian EHRs, although this
discussion is relevant to other non-English languages.
Here we provide examples of the biomarker status for
patients with breast cancer. Estrogen receptor (ER),
progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) are important prog-
nostic and predictive biomarkers in breast cancer.
Their status is used for tumor classification and guides
the use of hormonal, anti-HER2, or other appropriate
therapies for treatment and management of the
cancer. The challenges in extracting biomarker status
include the following seven points: (1) Terms in both
English (in Latin) and Bulgarian (in Cyrillic); for ex-
ample, there is substantial heterogeneity in the way
the progesterone biomarker is described: PR, ПR,
Прpгfstfрpo, Rfxfпtpрoj>t, хpрnpoamoj (trans-
lation: PR [Latin], PR [Cyrillic], progesterone, receptor,
hormonal); (2) misspellings, such as Прptfstfрpo
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instead of Прpгfstfрpo; (3) multiple variants of the same
word because Bulgarian and other Slavic languages are
inflected languages; (4) heterogeneity in the position of
the value relative to the target parameter: “ofгatjcoa
flsПрfsj> oa HER2” or “HER2-ofгatjcfo” (translation:
“negative expression of HER2” or “HER2-negative”); (5)
heterogeneity in value types and values themselves: PR +,
Прpгfstfрpo-ofгatjcfo, PR75%, PR/4t./-Пpijt (trans-
lation: PR +, progesterone-negative, PR75%, PR/4t./- posit);
(6) variable lengths of the parameter values and what
delimiter can be used before and after the target parameter:
for example, “ER j PR Пpijtjcoa” or “ER Пpijtjcoa j
PR Пpijtjcoa” (translation: “ER and PR positive” or “ER
positive and PR positive”); and (7) ambiguity with certain
characters, such as “–”, which can be used as the value
“negative” or as a delimiter (eg, PR–/+/). Other challenges
include human error in the labeling of such data sets, and
substantial unbalanced data sets for parameter values.

Many methods have been studied for extracting data from
clinical text, and they can be broadly classified into rule-
based and machine-learning–based approaches. Rule-
based methods1,2 can be labor intensive regarding engi-
neering the logic for parsing the data and are unlikely to
capture all values in current and unseen future medical
data. For example, earlier analysis showed that there were
at least 124 ways for denoting “invasive ductal carcinoma”
in breast cancer pathology reports, excluding misspellings
and spacing errors.2 One study achieved only 69%
accuracy for extracting hormonal status.3 Alternatively,
machine learning or natural language processing (NLP)–
based data extraction4-6 has been applied with varying
degrees of accuracy. Most use classical machine learning
classifiers (eg, support vector machines [SVMs], decision
trees) as individual models or as part of ensemble models.
In light of the substantial variance we observed in Bulgarian
EHRs, these approaches are likely not sufficient for ac-
curate data extraction. Only a few limited studies focused
on non-English medical text, and many of them used

similar rules-based and machine learning–based
approaches.4,7 Studies of extraction from medical Cyrillic
languages are even rarer.8-10 Although applications of deep
learning for the specific task of medical text extraction are
limited, they have recently been used for extracting In-
ternational Classification of Diseases for Oncology, 3rd
revision (ICD-O-3) codes with limited accuracy (F1 score of
0.722).11

Here we use unstructured medical data in EHRs from
Bulgaria for patients with breast cancer to build models
for the extraction and normalization of the status of bio-
markers. We show that we can apply deep-learning NLP
models on the basis of convolutional neural networks
(CNNs) or recurrent neural networks that are superior to
classical machine learning algorithms to accurately de-
termine the status of biomarkers for patients with breast
cancer.

METHODS

Data Set

We retrieved anonymized data from three oncology hos-
pitals in Bulgaria. We filtered specifically for patients with
breast cancer and retrieved medical records from pro-
cedure 38, which contains unstructured text with in-
formation pertaining to biomarker status of patients. A total
of 1,235 records from two hospitals were retrieved from
April 1, 2018, to January 31, 2019. The distributions of the
data set were 86% PR-positive, 14% PR-negative, 99%
ER-positive, 1% ER-negative, 8% HER2-positive, and 92%
HER2-negative. In addition, a total of 1,011 records from
three hospitals were retrieved from February 1, 2019, to
April 31, 2019, and were withheld; the test data set was not
examined, augmented, or modified in any way and was
used only once at the end for final model evaluation. The
distributions of the test data set were 88%PR-positive, 12%
PR-negative, 99.7% ER-positive, 0.3% ER-negative, 8%
HER2-positive, and 92% HER2-negative. The data sets
were manually annotated with biomarker status for ER, PR,
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unstructured data from electronic health records (EHRs) containing both English and Cyrillic text.
Knowledge Generated
We incorporated dual-word embeddings of two languages aligned into the same vector space and augmented with

polarity information. The combined embedding and convolutional or recurrent neural network–based archi-
tecture can accurately retrieve the biomarker status of patients with breast cancer from unstructured medical
data and is robust to human errors, unseen words, and data from different sources.

Relevance
This study is generalizable for extracting and normalizing unstructured EHR data with substantial heterogeneity in

parameter values and language. The ability to obtain important patient information from unstructured EHRs can
enhance the tracking of treatment outcome, eligibility for clinical trials, and epidemiology.

Zhao

2 © 2019 by American Society of Clinical Oncology



and HER2 by one lead physician, and four additional
members were involved in the preparation of, assistance
with, and review of the manually annotated records.

We augmented the data set to create amore balanced input
data set for training and validation. For PR and ER, we had
substantially more positive than negative receptor values. In
contrast, for HER2, we had substantially more nega-
tive than positive receptor values. We extracted, wherever
possible using regular expression, text segments pertain-
ing to the biomarker value. New data were created by
appending pre- and post-text segments drawn from other
entries (eg, [pre-text segment] [PR segment] [post-text
segment]). We confirmed the robustness of our data
augmentation and balancing and confirmed that it did not
result in an overly optimistic estimation of F1 scores and
area under the curve (AUC) values. Using the PR data set
as the test set, we created a separate test set by first
randomly withholding 40 positive and 40 negative PR data
samples. The remaining data were augmented and bal-
anced, followed by splitting that data into training and
validation data sets. We observed that the models achieved
high and consistent F1 and AUC values in training and
validation test sets (Appendix Table A1).

Identifying Region of Interest

For each medical record, a region of interest (ROI) was first
identified to narrow down the specific text segment that
pertained to biomarker information (Fig 1A). Each bio-
marker (ER, PR, HER2) was identified by using regular
expressions and was found to capture nearly all patients for
whom the biomarker information could be found. The text
segment surrounding the target biomarker (30 characters
to the left and 55 characters to the right) was then
extracted. The target biomarker name was also homoge-
nized to ER, PR, or HER2 (eg, Прpгfstfрpo was changed
to PR). Overall, this step is merely an ROI proposal, and
we subsequently relied on an NLP algorithm to resolve all
variance and ambiguity in discerning the biomarker values.
For cases in which multiple ROIs exist in a given medical
text, the text was labeled as such and was not used by the
subsequent NLP algorithm for training.

The text segment of interest was then preprocessed
(Fig 1A). Extra spaces were removed. The obvious de-
limiter where “–” was in front of or following /[value]/ was
removed. An extra space was added after the biomarker
word PR, ER, or HER2 to facilitate accurate word em-
bedding (eg, “PRofгat” is changed to “PR ofгat”).

Word Embedding

The preprocessed text segment was tokenized and
mapped onto word embeddings (Fig 1B). We used the
pretrained fastText embeddings12 for English and Bulgarian
languages, on the basis of data from the free online
Wikipedia encyclopedia and the Common Crawl project
and trained using the CBOW method with position weights
in 300 dimensions, character n-grams of length 5, window

size of 5, and 10 negatives.13 We chose fastText embed-
ding, because unlike Word2Vec14 or GloVe,15 it is designed
to represent words as character n-grams and thus can
effectively derive embedding for out-of-vocabulary words
(eg, additional misspelled words that are not in the training
corpus). Because the two fastText embedding models for
English and Bulgarian were trained independently, words
in one language do not necessarily relate by distance to the
corresponding translated word in the other vector space.
In bilingual models, we transformed the Bulgarian em-
bedding using singular value decomposition onto the En-
glish vector space such that the bilingual embeddings
were both in the same shared vector space.16

The fastText embeddings pretrained on the large corpus
enabled incorporation of syntactic and semantic information,
which allows words with similar meaning to be close (as
measured by cosine similarity) in the high-dimensional
embedding space. However, because the objective func-
tion was not designed to capture sentiments, words that may
be related but have opposite meanings can be close together
in the vector space (eg, the words “positive” and “negative”).
Thus, for tasks for which the objective is to predict sentiment,
model accuracy can be improved by incorporating polarity
information for the words. Past studies have tried to in-
corporate sentiment during the training process of the
embedding,17,18 concatenation of pretrained embedding
with additional linguistic features,19 and refinement of the
pretrained embedding.20 Here we incorporated a polarity
one-dimensional vector (Fig 1B). We built the dictionary
on the basis of a previous lexicon with known sentiments21

and manually added the words “plus” and “minus.” These
added words do not exist in our medical data set and were
later used to validate our out-of-vocabulary predictions. The
English words were also translated into Bulgarian. Positive
words and negative words in this dictionary had the values –1
and 1, respectively. Other words had the value of 0.

Model

We have tested several model architectures, including
using CNNs and recurrent neural networks. In this article,
we summarized the final optimized models using these two
approaches. All text processing was performed using
Python, with deep learning models built using the Keras
library.

Baseline SVM classifiers were built using scikit-learn with
radial basis function as kernel and a penalty parameter C of
0.5. In lieu of a pretrained embedding, the input to the
baseline SVM classifiers was word encoded. All text pre-
processing, ROI identification, and clean-ups were the
same in both baseline and neural network models.

CNN

Our CNN architecture (Fig 1C; Appendix Fig A1) consisted
of three separate one-dimensional convolutional layers with
32 filters, stride length of 1, and kernel sizes of 3, 5, and 7.
Each was followed by a rectified linear unit (ReLU) as
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activation function and dropout (probability, 0.5). The
outputs of the convolutional layer were pooled using max
pooling and were concatenated. This was followed by a fully
connected hidden layer with 32 neurons and ReLU acti-
vation, a dropout layer (probability, 0.5), and an output
layer with sigmoid activation function. The activities of the
hidden and output layer were also regularized with L1 and
L2 regularization (λ = 0.001).

Bidirectional Gated Recurrent Unit

We also examined model architectures containing re-
current units (Appendix Fig A1). Here the input embedding
(with padding masked) was passed onto a bidirectional
gated recurrent unit,22 followed by a fully connected hidden
layer with 32 neurons, ReLU activation, and an output layer
with sigmoid activation function. Dropouts were used

following both the gated recurrent unit and fully connected
hidden layer, with a dropout rate of 0.5.

Model Training and Evaluation

The data set was split 85%:15% into training and validation
sets. The model was trained for 200 epochs, using Adam
optimizer and binary cross entropy as the loss function. The
loss function results were also weighted according to the
proportion of samples with positive and negative samples.

The model was evaluated using F1 score, calculated as,

F1 � 2
precision$recall
precision + recall

.

The F1 scores for each label were average weighted
by support. Receiver operating characteristic curves
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FIG 1. Schematic of the data extraction and normalization pipeline. (A) Unstructured medical text was parsed, and text segments pertaining to biomarker
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(true-positive rate v false-positive rate) and AUC values
were also calculated.

RESULTS

We evaluated the models using the CNN architecture for
the biomarkers PR, ER, and HER2. The model was trained
with no indications of overfitting (Fig 2A) and achieved high
AUC values (≥ 0.98 for all three biomarkers; Fig 2B) and F1
scores (≥ 0.98 for all three biomarkers; Table 1). In addition
to models with CNN architecture, we also evaluated models
with recurrent neural networks and observed comparable
performance results (Table 1 “Validation”). In contrast,
a baseline classifier on the basis of an SVM was not highly
predictive of biomarker status, with F1 scores of 0.52 to
0.67 and AUC values of 0.53 to 0.64 (Appendix Table A2).
We also evaluated our final models on a completely in-
dependent test data set (different time periods and in-
cluding one additional hospital never used in training or

validation). The models continued to perform well with F1
scores of 0.90 or higher for all three biomarkers (Table 1
“Test”).

We reran the model on the entire original data set and
investigated the reasons for the erroneous predictions. A
majority of the results had agreement between actual
biomarker label and predicted label (Fig 2C). For those with
a mismatch between actual and predicted, we observed
that many were actually a result of human error, for which
the model predicted with high confidence what the correct
biomarker status was to be. In the few cases in which the
model was incorrect, the confidence level was also low
(Fig 2C).

Next, we examined whether the models were able to extract
from out-of-vocabulary (OOV) values. We tried first to see if
the model could distinguish potentially conflicting symbols
or numeric values (a positive symbol followed by a negative
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FIG 2. Convolutional neural network (CNN) model evaluation for biomarkers progesterone receptor (PR), estrogen receptor (ER), and human
epidermal growth factor receptor 2 (HER2). (A) Training history over 200 epochs. Y values are shown as the binary cross entropy loss. (B) Receiver
operating characteristic (ROC) curves for the CNN models for the validation data set. (C) Comparison between predicted and actual labels for each
biomarker by running the model on the entire original data set. Blue represents a match between predicted and actual labels, red represents
discrepancy between predicted and actual and the difference was the result of a model error, and gray represents that such difference was the result
of human error. AUC, area under the curve.
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numeric value [eg, +0%] or a negative symbol followed by
a positive numeric value [eg, –81%]). By using a subset of
the data sets containing PR biomarker status, we inserted
a small set of OOV test values (ie, +0%, +0, –51%, –81%) in
lieu of the original PR value and used that value as input to
the models. We observed that the models maintained high
AUC values of more than 0.98 (Table 2).

To examine OOV words, we included a set of Bulgarian and
English words that mean positive or negative that were
never part of the original training set. Although these words
are unlikely to occur, we show that it is hypothetically
possible for the model to also make correct predictions on

the label of the biomarker on the basis of the syntax and
polarity embeddings of words never seen during training,
achieving 0.84 and 0.94 in AUCs for Bulgarian and English
vocabulary, respectively (Table 2). In contrast, models with
no polarity embeddings were not substantially better than
guessing for these OOV words.

DISCUSSION

One of the major barriers in the adaptation of artificial in-
telligence (AI) into medicine is the tremendous volume of
unstructured text that exists in EHRs. We demonstrate here
that using a deep-learning–based NLP algorithm, we can
achieve high-performance (AUC ≥ 0.98) for the extraction
and normalization of biomarker values in EHRs containing
mixed languages and with substantial heterogeneity in the
target parameter positions and values.

In addition, we found that incorrect high-confidence pre-
dictions were mainly a result of human errors, and those
with model errors were restricted to those with lower-
confidence scores. The ability to achieve high accuracy
despite human errors in the training data set highlights the
robustness of the approach. It is worth noting that, aside
from manual annotation errors, other errors are also known
to occur in medical records and registries,23 with error rates
that can be as high as 27%. Here, the final models can be
incorporated into an overall pipeline to facilitate an auto-
mated extraction and normalization of biomarker values.
Low-confidence predictions can be marked for subsequent
manual validation.

The approach described here is also applicable to other
mixed-language medical text data (eg, EHRs in Russian,
Ukrainian, or Serbian). The corresponding embedding for
those languages can be trained independently and can be
aligned to the English embedding vector space. We found
that the broad pretrained embeddings were sufficient for
the purposes of biomarker classification, but the embed-
dings can be improved for other tasks. The pretraining of
embeddings can be continued with specificmedical text for
the incorporation of medical syntactic information. Em-
beddings for polarity can also be extended to include
additional words in the lexicon. It is worth noting that state-
of-the-art language models have recently moved toward
context-specific embeddings (eg, ELMo) and novel self-
attention–based neural network architectures (eg, trans-
formers, openAI transformer, BERT). Although these
models are starting to be used in tasks such as language
translation and named entity recognition, we found that our
proposed approach was sufficient for the extraction and
normalization described. For parameters with more chal-
lenging ROI identifications, algorithms on the basis of
character or word embedding and bidirectional recurrent
neural networks commonly used in named entity recog-
nition may be used for ROI proposals.

Data extraction from an unstructured data source is critical
for clinical research, for identifying eligible patients for

TABLE 1. Model Performance for PR, ER, and HER2 as Evaluated by
F1 Score and AUC on the Validation and Test Data Sets

Model

Validation Test

AUC F1 Score F1 Score

PR

3xConv1D-dense 0.980 0.98 0.95

BiGRU-dense 0.989 0.97 0.93

ER

3xConv1D-dense 1.000 0.98 1.00

BiGRU-dense 0.998 0.99 0.99

HER2

3xConv1D-dense 0.991 0.99 0.92

BiGRU-dense 0.994 0.97 0.90

NOTE. Only F1 scores were reported for the test data set because it
was highly imbalanced.

Abbreviations: 3xConv1D, convolutional neural network-based
model; AUC, area under the curve; BiGRU, bidirectional gated
recurrent unit; ER, estrogen receptor; HER2, human epidermal growth
factor receptor 2; PR, progesterone receptor.

TABLE 2. Model Performance for OOV PR Values Evaluated by F1 Score and AUC
OOV Input Embedding Model F1 Score AUC

OOV (symbols)

Symbols Syntax + polarity 3xConv1D-dense 0.92 0.988

BiGRU-dense 0.84 0.990

OOV (word)

EN Syntax + polarity 3xConv1D-dense 0.83 0.943

BiGRU-dense 0.72 0.687

EN Syntax only 3xConv1D-dense 0.55 0.516

BiGRU-dense 0.66 0.618

BG Syntax + polarity 3xConv1D-dense 0.80 0.840

BiGRU-dense 0.80 0.871

BG Syntax only 3xConv1D-dense 0.40 0.493

BiGRU-dense 0.55 0.530

Abbreviations: 3xConv1D, convolutional neural network-basedmodel; AUC, area
under the curve; BG, Bulgarian; BiGRU, bidirectional gated recurrent unit; EN,
English; OOV, out-of-vocabulary [values]; PR, progesterone receptor.
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clinical trial enrollments, and for monitoring treatment
outcomes for value-based care not only for oncology, but
across all fields of medicine. Undoubtedly, there are many
other challenging tasks, such as deriving drug treatment

durations and therapy effectiveness. Approaches such as
the one presented here are critical in automating data
extraction and improving the accuracy of multilingual
EHRs.
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APPENDIX

BiGRU-dense

masking_1_input: InputLayer
input:

output:

(None, 22, 301)

(None, 22, 301)

masking_1: Masking
input:

output:

(None, 22, 301)

(None, 22, 301)

bidirectional_1(gru_1) : Bidirectional(GRU)
input:

output:

(None, 22, 301)

(None, 64)

dropout_1: Dropout
input:

output:

(None, 64)

(None, 64)

dense_1: Dense
input:

output:

(None, 64)

(None, 32)

dropout_2: Dropout
input:

output:

(None, 32)

(None, 32)

dense_2: Dense
input: (None, 32)

output: (None, 1)

input_1: InputLayer
input:

output:

(None, 22, 301)

(None, 22, 301)

conv1d_1: Conv1D
input:

output:

(None, 22, 301)

(None, 20, 32)
conv1d_2: Conv1D 

input:

output:

(None, 22, 301)

(None, 18, 32)
conv1d_3: Conv1D

input:

output:

(None, 22, 301)

(None, 16, 32)

dropout_1: Dropout
input:

output:

(None, 20, 32)

(None, 20, 32)
dropout_2: Dropout

input:

output:

(None, 18, 32)

(None, 18, 32)
dropout_3: Dropout

input:

output:

(None, 16, 32)

(None, 16, 32)

max_pooling1d_1: MaxPooling1D
input:

output:

(None, 20, 32)

(None, 10, 32)
max_pooling1d_2: MaxPooling1D

input:

output:

(None, 18, 32)

(None, 9, 32)
max_pooling1d_3: MaxPooling1D

input:

output:

(None, 16, 32) 

(None, 8, 32)

f atten_1: Flatten
input:

output:

(None, 10, 32)

(None, 320)
f atten_2: Flatten

input:

output:

(None, 9, 32)

(None, 288)
f atten_3: Flatten

input:

output:

(None, 8, 32)

(None, 256)

concatenate_1: Concatenate
input:

output:

[(None, 320), (None, 288), (None, 256)]

(None, 864)

dense_1: Dense
input:

output:

(None, 864)

(None, 32)

dropout_4: Dropout
input:

output:

(None, 32)

(None, 32)

dense_2: Dense
input:

output:

(None, 32)

(None, 1)

3xConv1D-dense

FIG A1. Model architecture for convolutional neural network (CNN)–basedmodel (3xConv1D-dense) and GRU-based model (bidirectional gated
recurrent unit [BiGRU]-dense); Conv1D, one-dimensional convolutional layer.
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TABLE A1. Model Performance for PR Training, Validation, and Test
Data Sets Evaluated by F1 Score and AUC
Model F1 Score AUC

Training

3xConv1D-dense 0.99 1.000

BiGRU-dense 0.99 1.000

Validation

3xConv1D-dense 0.98 0.977

BiGRU-dense 0.96 0.979

Test

3xConv1D-dense 0.97 0.999

BiGRU-dense 0.96 0.997

Abbreviations: 3xConv1D, convolutional neural network-based
model; AUC, area under the curve; BiGRU, bidirectional gated
recurrent unit; PR, progesterone receptor.

TABLE A2. Model Performance for Baseline SVM Classifier for PR, ER, and HER2
Evaluated by F1 Score and AUC on Training and Validation Data Sets
Marker Model F1 Score (training) F1 Score (validation) AUC (validation)

ER SVM 0.67 0.52 0.525

PR SVM 0.66 0.53 0.550

HER2 SVM 0.65 0.67 0.641

Abbreviations: AUC, area under the curve; ER, estrogen receptor; HER2, human
epidermal growth factor receptor 2; PR, progesterone receptor; SVM, support
vector machine.
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