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Abstract: Modelling the epidemic’s spread on multiplex networks, considering complex human
behaviours, has recently gained the attention of many scientists. In this work, we study the interplay
between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic
layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude
towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our
model, the agent’s point of view could be altered by either conformism mechanism, social pressure,
or independent actions. As the underlying opinion model, we leverage the q-voter model. The
entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The
question arises of how to properly align these dynamics, i.e., whether they should possess equal or
disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on
epidemic spreading, focusing on the time and the infection’s peak.

Keywords: multiplex networks; epidemic spreading; COVID-19; opinion dynamics; voter model

1. Introduction

The work by Kermack and McKendrick [1] is acclaimed as the primary mathematical
modelling tool of infectious diseases. The so-called SIR model considers a fixed population
with only three compartments: S (Susceptible), I (Infected), R (Removed), with a fixed flow
of states, and is described as a system of differential equations. Despite its simplicity, the
model can be used to highlight the importance of social distancing and safety measures
such as using face masks or hand-washing. By incorporating these health-prevention
recommendations, we could mitigate the disease spread, i.e., reduce the infection probabil-
ity [2]. That strategy is known as “flattening the curve“ and prevents a health care system
from being overwhelmed.

On the other hand, the SIR model, in its general form, lacks many real data features,
e.g., assumes homogeneous contact probability and unidirectionality. Recent advances in
network science have shown key applications in epidemic-spreading processes [3]. With
the underlying graph structure of contacts, we introduce the heterogeneity of infection
probability based on the degree of a given node. Epidemic spreading has been studied
on scale-free networks [4], hierarchical social networks [5], networks with community
structure [6], and correlated [7] or weighted [8] complex networks. All of these works
operate on the single-layer network.

Ubiquitous access to information prevents us from examining the epidemic spread
without considering other important aspects, e.g., social or economic aspects. A similar
reasoning led to the introduction of the multilayer concept into network science—over the
last 15 years, the use of multiplex networks has become increasingly popular in modelling
complex human behaviour [9–12]. Notable work on the connection between epidemic
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spreading and awareness has been carried out by Granell et al. [13]. They studied the
interrelation between two processes responsible for epidemic spreading and the information
awareness to prevent its infection, on top of multiplex networks. It is interesting to note
that the critical point for epidemic outbreaks is defined by the awareness dynamics and the
topology of the virtual network.

The interplay between awareness and epidemic spreading could be studied in the
very early phase of the epidemic. At present, due to the omnipresence of social media,
shortly after the epidemic outbreak, society was already informed and aware of the current
situation. This is in contrast, for example, to the Spanish flu, a deadly global influenza
pandemic dated 1918 [14], when people from different cities were largely unaware of the
fact that the epidemic was in progress. Here, we focus on another aspect, i.e., the opinion of
restrictions caused by the epidemic. According to the World Health Organization (WHO),
to protect ourselves and prevent the spread of COVID-19, one needs to (i) wear a correctly
fitted mask if physical separation is not possible and in poorly ventilated environments,
(ii) wash hands frequently with alcohol-based hand rub or soap and water, (iii) cover
one’s mouth and nose with a bent elbow or tissue when one coughs or sneezes, (iv) self-
isolate until recovery in the case of symptoms or testing positive for COVID-19 [15]. These
regulations are not limited to the COVID-19 pandemic; they were also obeyed in the H1N1
influenza [16] or Ebola virus outbreak [17]. Wearing face masks is one of these safety
precautions and has been corroborated to mitigate disease prevalence [18,19]. However,
some individuals express an opposite opinion, forming a so-called anti-mask minority [20].
These attitudes could lead to a strongly polarized society [21] and affect the epidemic’s
pace [22]. Hence, this work is dedicated to scrutinizing the interrelationship between
opinion dynamics and epidemic spread. We would like to emphasise that the issue of the
COVID-19 infodemic [23], leveraging the threats of spreading misinformation (especially
on social media [24]), is acknowledged as one of the possible factors that could devastate
the effectiveness of public health measures.

In this study, we adopt the so-called q-voter model [25] as the underlying opinion
dynamic. It is a binary opinion model with special cases of both the linear voter model [26]
and the Sznajd model [27]. Nyczka et al. [28] investigated q-voter model in the presence
of different types of nonconformity and showed the differences between the two types of
stochastic noise, anticonformity and independence, that play a crucial role in the phase
transition observed in the system. In the case of anticonformity, the critical value of noise
increases with the parameter q, whereas in the model with independence, the critical value
of noise decreases with q. The character of the phase transition strongly depends on the
type of noise in the model: with anticonformity, the phase transition is continuous for any
value of q, whereas in the model with independence, the transition is continuous for q ≤ 5
and discontinuous for q > 5. A comprehensive mathematical description of the q-voter
model behaviour in the complex networks was obtained by applying the pair approxi-
mation approach [29]. Although it is a straightforward model, it has been applied to the
characterization of various dynamical phenomena, such as the diffusion of innovation [30]
or recurring fashion cycles [31]. It is also worth mentioning that, when considered in duplex
and multiplex settings, the q-voter model provides a very rich behaviour with respect to the
observed phase transitions [32,33]. Considering these observations, we eventually select
the q-voter model due to its apparent simplicity and low number of tunable parameters
that can lead to complex results.

With two distinct dynamics, epidemic spreading and opinion prevalence, the question
arises of whether to treat them equally, i.e., run one opinion update per one epidemic
update. Usually, one assumes that the two dynamics possess the same timescales [34–37].
However, the transmission of opinion could be significantly faster than the spread of disease
due to common access to the Internet. Recent works highlight the impact of timescales
in the spread of interacting diseases [38] or awareness dissemination [39]. For instance,
in [38] the authors inspected asymmetrically interacting diseases and concluded that if
a dominant disease has a faster clock, the prevalence of both diseases decays, possibly
eradicating the weaker one. On the other hand, in [39], the authors considered the interplay
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between information propagation and epidemic spreading, outlining that the timescales
between the information and infection processes determine whether information awareness
is beneficial for the magnitude of the epidemics. These facts motivate us, in this study, to
deepen the knowledge of the role of timescales in the context of coupled opinion–epidemic
dynamics. The main aim of the work is to highlight the importance of the time dependence
(separation of scales) between two classes of dynamical processes, i.e., the social and the
epidemic classes. We add a simple mechanism of the relative rate of dynamics, which
results in the level of opinion being “faster” than the epidemic class. We expect that, when
the relative rate grows, the influence of the epidemic dynamic will become less pronounced
for the agents’ initial opinions.

2. Materials and Methods

Our model considers the epidemic spread of the disease alongside the propagation of
opinions respecting restrictions and regulations. Individuals could impede the prevalence
of the epidemic by maintaining social distancing, wearing face masks, or handwashing. Two
dynamics operate on a double-layer multiplex network that forms the opinion–epidemic
model (see Figure 1).

Opinion layer

Epidemics layer

Figure 1. Representation of the opinion–epidemic model. The upper (opinion) layer considers
opinion dynamics, and nodes possess two possible states: positive (+1) or negative (−1). This layer
also contains additional connections between agents. The lower (epidemic) layer supports the spread
of disease. The nodes are the same agents as in the opinion layer, but their states can be (S) susceptible,
(I) infected, (Q) quarantined, (D) deceased or (R) recovered.

In the first layer, we leveraged the q-voter model, which many scholars have studied
extensively [33,40–43]. In our context, this assumes that each agent i has an opinion
respecting the current restrictions, given by a binary variable: Si(t) = +1(o+) or Si(t) =
−1(o−). This describes either a positive or negative view towards compliance with the
rules. We only allowed individuals who have a fully supportive opinion, i.e., agents either
respect all current restrictions (social distancing, wearing face masks and handwashing), or
truly disagree and do not follow any of the rules. At each elementary update, we randomly
selected a node i from the entire system. An agent in a given update could behave in one
of two ways. It acts independently with a probability p, or it acts like a conformist, with
complementary probability 1− p. In the first case (independence), an agent is unwilling to
yield to group pressure, and flips to the opposite opinion. In the second case (conformism),
an agent i is influenced by a group of size q (randomly chosen), and that agent adapts to
the group only if the opinion is unanimous. Otherwise, the opinion of the agent i remains
the same.

In the second layer, we consider the SIQRD model [44], where each node can be in
one of five distinct states: (S) susceptible, (I) infected, (Q) quarantined, (R) recovered or
(D) deceased, at a given timestep. In contrast to the original SIR model, the Removed state
is split by differentiating among the Recovered and Deceased individuals; additionally,
we account for the intervention procedure to control the spread of the disease in the form
of quarantine (Q, see, e.g., [45])—this compartment played a crucial role in the recent
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COVID-19 pandemic [46]. Although, in this study, we shall focus mainly on the evolution
of the number of infected individuals, perhaps making the split between R and D seem
superficial, we underline that agents in the D state are unable to further evaluate their
opinion (which is not true in the case of Recovered agents).

We want to emphasize that this work does not aim to develop a prediction model for
COVID-19 but to explore a salient, yet usually neglected, aspect of the interplay between
opinion dynamics and epidemic prevalence. In recent years, advances in technology have
allowed us to gather precise information about infection statistics. Thus, the data from the
onset of COVID-19 to the current day are easily accessible, and some could serve as an
appropriate estimate of the initial parameters of our model. In particular, the European
Centre for Disease Prevention and Control reports an infection time duration ti between 5
and 14 days for COVID-19 [47]. Therefore, in addition, each agent remains in the infected
state for ti timesteps, where ti is sampled from normal distribution with µ = 10 and σ = 5.
Moreover, the distribution is restricted to non-negative values.

We allow the following transitions between epidemic compartments (see Figure 2).

(i) S
β−→ I: a susceptible agent becomes infected with the probability β.

(ii) I
γ−→ Q: an infected agent goes into quarantine with the probability γ.

(iii) I
µ−→ R: an infected agent recovers with the probability µ.

(iv) I κ−→ D: an infected agent dies with the probability κ.

(v) Q
µ−→ R: an agent in quarantine recovers with the probability µ.

(vi) Q κ−→ D: an agent in quarantine dies with the probability κ.

Here, we introduce the interplay between these two layers. First, a susceptible agent
with a positive opinion (o+S, see Figure 2) is more prone to respect the restrictions. Thus,
the probability of being infected in this case is decreased by half, i.e., β+ = β/2. On the
other hand, the infection probability for the agent with a negative opinion (o−S) remains
the same β− = β. Second, we reduce the duration of the infected state for the positive
agent ti(o+) = ti/2 and keep the same duration for the agent with a negative opinion.
People who comply with the rules are willing to limit their level of social contact and
stay in quarantine [22]. One could consider separating the transition probability to the
quarantine state for agents with positive and negative opinions, indicating that individuals
with positive attitudes are more eager to isolate themselves. However, at present, it is
not uncommon for governing bodies such as the Ministry of Health to impose global
restrictions regarding quarantine. Hence, all individuals possess the same rate of entering
quarantine.

Figure 2. Schematic representation of agent states with associated transition probabilities.

Here, we use Holme et al.’s network [48] as the underlying topology of agent–agent
interactions. It is a modified version of the Barabási–Albert (BA) network [49] with a
“triad formation step”. This step produces networks with high clustering coefficients, often
observed in many real systems [50]. We start from m disconnected nodes. In every timestep,
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a new node v with m edges is added. Each edge of v is then linked to an existing vertex,
and the probability is proportional to its degree, i.e., we apply the preferential attachment
(PA) rule. This probability of a node w being attached to v is given by Pw = kw/ ∑v∈V kv.
In the original setting of the BA model, the growth step is repeated N times, and, for each
growth step, the PA step is iterated m times for m edges of the newly added node. However,
here, we perform an additional step, namely, if an edge between nodes v and w was created
in the last PA step, then one more edge from v is added to a randomly chosen neighbour of
w. If there is no pair to connect, i.e., if all neighbours of w were already connected to v, we
perform a PA step instead. In the first (opinion) layer, we also add Eadd additional links,
as in [13,51]. Using a scale-free network as the topology of the opinion layer introduces
an issue with the size of q-lobby. Even though we restrict the average degree 〈k〉 in the
network to be larger than the size of the group, sometimes the node does not have enough
neighbours to choose from. We account for such a situation, leaving the opinion of such a
node in its original state.

To study the role of timescales in a more precise manner, we introduce a parameter
vstep, which controls the speed of state change in the q-voter model, i.e., per each timestep
on the epidemic layer, we perform vstep updates on the opinion layer. In other words, vstep
can be regarded as the relative rate between two processes.

Table 1 summarises the model’s parameters, and indicates which can be treated as a
variable during experiments.

Table 1. Model parameters with default values. Symbol ♠ indicates that a parameter could be
changed during experiments.

Parameter Default Value Description

N 10,000 ♠ number of nodes
m 10 number of links generated by newly added node in network construction

Eadd 0.01 Nm number of additional links in opinion layer
p 0.01 ♠ probability of an agent to act independently in opinion layer
q 6 ♠ size of q-lobby in opinion layer

oinit 1.0 ♠ initial fraction of agents with positive opinions
Iinit 0.1 initial fraction of infected agents
ti xi ∼ N (10, 52) duration of infected state for agent i
β ♠ infection probability
γ 0.5 probability of an agent to enter the quarantine
µ 0.9 probability of recovery
κ 0.1 probability of death

vstep 1 ♠ number of opinion layer updates per one epidemic layer update

3. Results

To examine the above-described system, we carried out Monte Carlo simulations on
multiplex networks. Each timestep in the simulations comprised N micro-steps, where
N is the size of the system. We selected the number of time steps to allow the system to
reach a steady state. The runs were averaged over multiple realizations to maintain a low
level of error. The set of initial parameters is shown in Table 1. Due to the phase transition
image in q-voter model (see, for instance, Figure 5 in [29]), we focused on smaller values of
independence probability p. When p exceeds a certain threshold, which depends on a few
factors, such as network topology and its mean degree, the mean opinion in the system
converges to zero, i.e., half of the agents have a positive opinion, half have the negative one.
A greater independence probability such as p = 0.9 would indicate that the underlying
dynamic is random to a greater or lesser degree. Sample realizations of the model before
and after simulations are included in Supplementary Materials, Figures S1–S4.

3.1. Role of the Opinion Layer

We began by scrutinizing the impact of the opinion layer on the epidemic spread.
Figure 3 shows the time evolution of the infection rate I(t) for three different independence
probabilities p and different network sizes. First, we concluded that the results do not
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depend on the size of the network; therefore, for the rest of the experiments, we set
N = 10, 000. Second, when β = 0.02 (Figure 3a) we observed that the peak of infection
Imax for p = 0.5 is higher and occurs later than for smaller p values. In a situation when
agents act on their own rather than following the group, Imax increases by almost half in
comparison to conformist agents. Regarding β = 0.2 (Figure 3b), the peaks of infection for
all values of p appear almost simultaneously, and their values are close to each other.

Figure 3. The time evolution of infection rate for different independence probability p = {0.01, 0.1, 0.5}
with N = {1000, 10,000, 30,000}. (a) β = 0.02, (b) β = 0.2. We outline the peak of infection Imax and
time when it occurs tmax in panel (a).

Further study on the range of infection probabilities confirmed the preliminary obser-
vations. In Figure 4 one can see the infection peak in the function of infection probability
for three different independence probability values p. The maximum infection rate grows
rapidly for smaller infection probabilities up to around β = 0.2, when it slowly starts to
saturate. It is interesting to note that we can reduce the infection peak by 0.15 by imposing
group influence, i.e., lowering p (see Figure 4b).

0.0 0.1 0.2 0.3 0.4 0.5

β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I m
a
x

(a)

p = 0.01

p = 0.10

p = 0.50

0.00 0.05 0.10 0.15

β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (b)

Figure 4. (a) The peak of infection Imax in the function of infection probability β with p = {0.01, 0.1, 0.5}.
The results are averaged over 10 realizations. Error bars are smaller than the symbols’ sizes. (b) Close-
ups of smaller β values.

In Figure 3, we have observed that the time of the infection peak for a larger indepen-
dence probability p = 0.5 occurs later than the peak for smaller ones. To fully understand
this relation, we measure the time of the infection peak tmax in the function of infection
probability β for three different independence probabilities. Figure 5 depicts that, indeed,
for a larger independence probability, the tmax is larger, i.e., the pace of the epidemic is
slower. However, at the same time, the infection peak is larger. When the infection proba-
bility is large enough, the difference between independence probabilities becomes blurred.
We note that we initially set all agents as having a positive opinion at the beginning of the
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simulations. A higher independence probability could be viewed as the noise in the model
and induces more negative-attitude agents in the system. On the other hand, when the
whole society does not respect the rules, a larger independence probability could persuade
more people to hold a positive opinion, resulting in reductions in the infection peak and
shortening the time for which it occurs.

0.0 0.1 0.2 0.3 0.4 0.5

β

0

2

4

6

8

10
t m

ax
(a)

p = 0.01

p = 0.10

p = 0.50

0.00 0.05 0.10 0.15

β

0

2

4

6

8

10 (b)

Figure 5. (a) The time of infection peak tmax in the function of infection probability β with p = {0.01, 0.1, 0.5}.
Results are averaged over 10 realizations. (b) Close-up to smaller β values.

Another important parameter of the q-voter model is q, i.e., the size of the influence
group. We carried out simulations for three values of q, while also considering distinct
independence probabilities. Figure 6 depicts the time evolution of the epidemic with the
above-mentioned parameters. On the left panel, we considered β = 0.02. Indeed, a larger
group size has a slight impact on the epidemic trajectory. With a larger independence
probability (p = 0.1), a greater q slows down the decay of the epidemic. However, when
p = 0.5, the group size only impacts the peak of infection. On the other hand, when β = 0.2
(see Figure 6b), the group size no longer extends the decay period or affects the peak of
infection. One could argue that a stronger bond between the two layers is needed, with
more infectious diseases. As we have shown in Figure 4 after exceeding a certain threshold
of β, the peak of infection starts to blend for different independence probabilities. These
phenomena are also present for different q values.

0 10 20 30 40

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

I

(a)

0 10 20 30 40

t

0.0

0.2

0.4

0.6

(b)

q = 2

q = 6

q = 9

p = 0.01

p = 0.10

p = 0.50

Figure 6. The time evolution of infection rate for different q-lobby size q = {2, 6, 9} and independence
probabilities p = {0.01, 0.1, 0.5}. (a) β = 0.02, (b) β = 0.2.

It was shown that the epidemic slows down in countries where people are more
willing to respect the current restrictions [52]. Our model also corroborates that the peak of
infection decreases when the population has a positive opinion (see Figure 7). Moreover,
with a less contagious disease (smaller β), this result is more pronounced. We also show
that mimicking the group could only diminish the peak of infection if that group consists
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of agents with positive attitudes. Otherwise, it is more suitable to stick to your opinion.
However, for most contagious illnesses (β = 0.5), this effect is negligible. One should note
the difference between a society of agents with initially positive opinions (oinit = 1) and
negative ones (oinit = 0) (see Figure 7a). The difference in infection peak when agents act
independently (higher p) and remain conformist (lower p) is more significant for a society
with only negative opinions at the beginning of the simulation. Agents who eventually
change their opinion to a positive one decrease the infection probability by half and reduce
the time spent in an infected state by the same amount. This effect is less pronounced in
more infectious diseases since the interplay between the opinion and epidemic is weaker.

0.0 0.5 1.0

oinit

0.10

0.15

0.20

0.25

0.30

I m
a
x

(a)

0.0 0.5 1.0

oinit

0.60

0.65

0.70

0.75

0.80

0.85
(b)

p = 0.01

p = 0.10

p = 0.50

0.0 0.5 1.0

oinit

0.80

0.82

0.84

0.86

0.88
(c)

Figure 7. The peak of infection Imax in the function of initial positive opinion fraction oinit with
p = {0.01, 0.1, 0.5} for (a) β = 0.01, (b) β = 0.1, (c) β = 0.5. Results are averaged over 10 realizations.
Error bars are smaller than symbols’ sizes.

3.2. Role of Time Scales

Once we have understood the impact of the opinion layer on the epidemic prevalence,
we can turn our attention to the role of timescales. To date, the dynamics of the two layers
have been conducted in the same way. Henceforth, we consider the different speeds of
opinion updates and present their effects.

Figure 8 depicts the relationship between the peak of infection Imax and the initial
fraction of positive agents oinit with p = 0.01. For comparison, the yellow dots are the
same as in Figure 7. One can observe that this relationship becomes a step function with an
increasing number of opinion updates vstep. However, for a higher probability of infection,
one would need to increase vstep for the exact step function. It is worth mentioning that the
initial opinion has a striking impact on less contagious illnesses. When β = 0.01 (β = 0.05),
we can flatten the infection peak by almost 0.2 (0.4). With β = 0.01, the lowest infection
peak equals 0.1, since it is the initial fraction of infected agents. Hereafter, we assume that
the society is unanimous and initially holds a positive opinion, i.e., oinit = 1. However, we
will discuss the opposite situation later.

A complementary point to consider is the impact of timescales on the time of the
infection peak (see Figure 9). With equally fast dynamics, i.e., when vstep = 1, the time
of infection peak remains constant for a lower initial fraction of positive agents, oinit up
to 0.4, when it steadily decreases. That transition from a slower to a faster epidemic is
more pronounced when we increase vstep, i.e., when the dynamic of opinion is faster.
One can observe that the peak in infection for the lower initial fraction of positive agents
oinit is significantly larger than that for higher ones (see Figure 8). At the same time, the
epidemic needs more time to fully develop, i.e., we have a greater tmax. When we consider
a completely positive society, oinit = 1, the peak of infection ranges at around 0.1, which is
the initial fraction of infected. This can be seen in the results shown in Figure 9, i.e., the
time of these peaks occurs immediately.
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(c)

vstep = 1
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vstep = 20
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Figure 8. The peak of infection Imax in the function of initial positive opinion fraction oinit for selected
timescales vstep = {1, 5, 20} with p = 0.01. Each panel corresponds to a different infection probability,
(a) β = 0.01, (b) β = 0.05, (c) β = 0.1, (d) β = 0.5. Results are averaged over 10 realizations. Error
bars are smaller than symbol size.

0.0 0.2 0.4 0.6 0.8 1.0

oinit
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vstep = 1

vstep = 5

vstep = 20

Figure 9. The time of infection peak tmax in function of initial positive opinion fraction oinit for selected
timescales vstep = {1, 5, 20} with p = 0.01 and β = 0.01. Results are averaged over 10 realizations.

We now concentrate on the role of timescales with varying probabilities of indepen-
dence. Figure 10 displays the relationship between the peak of infection Imax and the
independence probability p for different timescales vstep. We carry out simulations for three
different β values. After surpassing p = 0.2 for all infection probabilities, the infection
peak only saturates if the speed of opinion update is greater than 10. Since the indepen-
dence probability controls the noise in the system, the greater the p, the higher the peak of
infection, and with faster opinion updates, we notice this effect earlier (see Figure 3).

The whole picture of the interplay between the opinion and epidemic layer and the
role of timescales is shown in Figure 11. We present heatmaps of the peak of infection with
varying group sizes q and independence probabilities p. The first column comprises the
results for vstep = 1, i.e., both opinion and epidemic dynamics have the same timescale. One
can observe that, for a lower independence probability, the peak of infection decreases, as
seen in the results shown in Figure 4. With vstep = 1, the dependence of group size q is not
very noticeable. However, for vstep = 5, i.e., when for one epidemic step, five updates on the
opinion layer are performed, interesting patterns begin to emerge. Namely, when q is very
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large, we need to keep the independence probability low to reduce the peak of infection.
In contrast, we are free to introduce a higher level of agents’ independence for smaller
group sizes while maintaining an identical value for the infection peak. This phenomenon
is more pronounced with greater vstep (third column, vstep = 20) and is not dependent
on the infection probability β. In each of these two phases, the maximum infection value
remains relatively stable. All these results are debated considering the population of agents
with initial positive opinions, i.e., with oinit = 1. On the other hand, in the case of a society
with initially negative agents, one could assume the opposite conclusion. An increase in
independence probability would introduce more significant noise in the system and, as
a result, decrease the peak of infection. We presume a very similar behaviour as that in
Figure 11, but with higher values in the bottom left regions and lower values elsewhere.
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Figure 10. The peak of infection Imax in function of independence probability p for selected timescales
vstep = {1, 5, 10, 20}. Each panel corresponds to a different infection probability, (a) β = 0.02,
(b) β = 0.1, (c) β = 0.5.
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Figure 11. The peak of infection Imax in function of independence probability p and group size
q. Infection probabilities are shown on the left side of the panels. On top, the labels for vstep are
displayed. First, second and third row show the heatmaps for β = 0.02, 0.1, 0.5 respectively. Panels
(a,d,g) represent models with vstep = 1, panels (b,e,h) with vstep = 5 and panels (c,f,i) with vstep = 20.
Each pixel represents the average of 10 model realizations.
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4. Discussion

In conclusion, we examine the interplay of opinion dynamics in the epidemic spread
on a multiplex network, considering the role of timescales. Our model highlights the
importance of people’s initial opinion towards restrictions, e.g., social distancing, wearing
face masks, and hand washing. In the preliminary, early phase of the epidemic, the gov-
erning bodies should incorporate encouraging actions such as TV spots or advertisements
to hinder the pace of the epidemic. The model shows that, with a positive public outlook,
we can reduce the peak infection, even with many agents operating independently of the
group, i.e., with greater p.

Agents who act independently and neglect all regulations could influence others to
change their minds. As a result, society becomes fragmented, leading to a higher infection
peak. It is worth mentioning that the size of the influencing group may restrict the level of
individualism in the system. The group size could be larger for more conformist agents than
for individualistic agents when maintaining the exact peak of infection. The interrelation
between opinion and epidemic layers is significantly diminished with a higher infection
probability. The difference between an individualistic society and a conformist society is
less pronounced, i.e., the difference in the peak of infection does not exceed 0.1, whereas,
for less infectious diseases, following a group could lead to a peak reduction of 0.2–0.4.

Another key aspect is the choice of proper timescales when simulating two dynamical
processes. In our study, we introduce a simple mechanism of the relative rate of dynamics
vstep, which results in the level of opinion being “faster” than the epidemic level. We need to
recall that, as in all other opinion dynamics models, and the q-voter one, both the dynamics
and the steady-state strongly depend on the initial conditions, i.e., the initial fraction of
agents with positive opinions. If almost the entire society possesses a positive opinion,
they have accepted the restrictions and now follow the rules imposed by the government
agencies. On the other hand, a significant value for the independence probability p, which
plays the role of noise in the system, ruins the opinion homogeneity and makes the society
completely undecided, i.e., half of the individuals have positive and the other half have
opposing opinions. For large values of vstep, the peak of the epidemic is higher than for the
dynamics characterized by vstep = 1. In the case of an “anti-restriction” society, when the
majority of individuals ignore the epidemic, the existing conformity mechanism leads to an
increase in the number of agents that do not respect the rules. In this setting, p is a “good”
(from the government perspective) parameter, responsible for increasing the number of
positive agents and suppressing the epidemic peak. As expected, by making the opinion
dynamics faster than the epidemic dynamics, we increase the role of the opinion level.
Therefore, we observe that the influence of the epidemic dynamic is less pronounced for
the agents’ initial opinions.

We could have missed the relationship between independence probability p and group
size q. However, on disparate timescales, this relationship started to appear (Figure 11).
The best timescale in our model is unknown. To choose the best timescale vstep, one would
need to incorporate empirical datasets with information on both opinion and epidemic
dynamics. To the best of our knowledge, there is a lack of such datasets. The reason for
this could be (i) difficulty in assessing people’s intrinsic opinion, (ii) difficulty tracking
both the state and opinion of the person, (iii) difficulty obtaining knowledge of the entire
contact network and also an online/virtual one. We want to underline that the selected
dynamics of opinion and epidemic serve as examples of real phenomena. Undoubtedly,
one could leverage different implementations of these dynamics, such as SIR, SIS or the
majority voting model. We emphasize that, regardless of the choice of these two processes,
we still need to carry out experiments to scrutinize the issue of timescales.

Finally, let us underline the possible extensions of this work. One could argue that the
pace of opinion dynamics decreases over time. For instance, the views were altered multiple
times at the beginning of the COVID-19 pandemic due to many unknown variables. Now,
however, the opinion in society is crystalized, and only a few undecided people are chang-
ing their opinions. That fact might lead us to introduce varying opinion timesteps vstep(t).
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Furthermore, one could take advantage of the available empirical datasets in two ways.
First, these could be used to construct the underlying topology of the multiplex network,
for instance, using a Bluetooth contact network as the epidemic layer and Facebook contacts
as the opinion layer. Second, these could be used to collect surveys about people’s attitudes
towards restrictions and use these as the initial fraction of positive agents. Moreover, we
plan to reformulate the meaning of the opinion as views on vaccination and incorporate
the political orientation of the agents. By leveraging the election dataset, one could study
the correlation between epidemic spread and political views.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
e24010105/s1, Figure S1: Example multiplex visualization with the agents’ states at the beginning of
the simulation. N = 10,000, Figure S2: Example multiplex visualization with the agents’ states at the
end of the simulation. N = 10,000, Figure S3: Example multiplex visualization with the agents’ states
at the beginning of the simulation. N = 1000, Figure S4: Example multiplex visualization with the
agents’ states at the end of the simulation. N = 1000.
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