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ABSTRACT
Bladder cancer (BLCA) is one of the most common cancers worldwide with high recurrence rate. 
Hence, we intended to establish a recurrence-related long non-coding RNA (lncRNA) model of 
BLCA as a potential biomarker based on multi-omics analysis. Multi-omics data including copy 
number variation (CNV) data, mutation annotation files, RNA expression profiles and clinical data 
of The Cancer Genome Atlas (TCGA) BLCA cohort (303 cases) and GSE31684 (93 cases) were 
downloaded from public database. With multi-omics analysis, twenty lncRNAs were identified as 
the candidates related with BLCA recurrence, CNVs and mutations in training set. Ten-lncRNA 
signature were established using least absolute shrinkage and selection operation (LASSO) and 
Cox regression. Then, various survival analysis was used to assess the power of lncRNA model in 
predicting BLCA recurrence. The results showed that the recurrence-free survival time of high-risk 
group was significantly shorter than that of low-risk group in training and testing sets, and the 
predictive value of ten-lncRNA signature was robust and independent of other clinical variables. 
Gene Set Enrichment Analysis (GSEA) showed this signature were associated with immune 
disorders, indicating this signature may be involved in tumor immunology. After compared with 
the other reported lncRNA signatures, ten-lncRNA signature was validated as a superior prog
nostic model in predicting the recurrence of BLCA. The effectiveness of the model was also 
evaluated in bladder cancer samples via qRT-PCR. Thus, the novel ten-lncRNA signature, con
structed based on multi-omics data, had robust prognostic power in predicting the recurrence of 
BLCA and potential clinical implications as biomarkers.
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1. Introduction

Bladder cancer (BLCA) ranks tenth among cancers 
in incidence, with an estimated 549,000 new cases 
and 200,000 deaths worldwide in 2018 [1]. 
Transitional cell carcinomas account for over 
90% in BLCA [2]. Approximately 70% of patients 
with transitional cell carcinomas were diagnosed 
as non-muscle-invasive bladder cancer (NMIBC), 
the others were diagnosed as muscle-invasive blad
der cancer (MIBC) [2,3]. Despite the development 
in multimodal treatment, both NMIBC and MIBC 
have the high rates of recurrence [3–6]. NMIBC 
presents high risk of recurrence ranging from 31% 
to 78% at five years, but are generally not life 
threatening [2,7]. For MIBC, recurrence-free sur
vival (RFS) and 5-year overall survival (OS) rates 

after radical cystectomy are 68.0% and 57.7%, 
respectively [5]. The high risk of recurrence and 
progression contributes to high mortality in MIBC 
[4,8,9]. Thus, it is clinically significant to screen 
for key biomarkers to assess the possibility of 
recurrence in patients with BLCA.

Long non-coding RNAs (lncRNAs), a major class 
of non-coding RNAs, are RNA transcripts with 
more than 200 base pairs [10]. Recent studies have 
also validated the roles of lncRNA in BLCA. Zhan 
et al. have reported that significantly upregulated 
expression of lncRNA SOX2OT was closely related 
with stemness phenotype in BLCA [11]. Wang et al. 
have verified that upregulation of BLACAT2 made 
contributions to the BLCA lymphatic metastasis by 
upregulating the expression of VEGF-C in 
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epigenetic mechanisms [12]. LNMAT1 can promote 
lymphatic metastasis through epigenetically activat
ing CCL2-dependent macrophage recruitment in 
BLCA [13]. These findings demonstrated that aber
rant expression of lncRNAs was involved in BLCA 
initiation and progression, which represented their 
potential as diagnostic and prognostic biomarkers. 
Thus, many researchers have focused on predicting 
the prognosis of patients with BLCA basing on 
lncRNA profiles. For instance, Joep J et al. revealed 
that lncRNAs profiling could provide additional 
information for BLCA subtyping, which contribu
ted to precision patient management [14]. Du et al. 
[15] constructed an epithelial-mesenchymal transi
tion (EMT)-associated lncRNA signature to predict 
the prognosis of BLCA patients. Besides, Mao et al. 
[16] developed a ten-lncRNA signature to predict 
the outcome and immune status of BLCA. 
Additionally, Gao et al. [17] identified a six- 
lncRNA signature as a robust prognostic marker 
in BLCA through COX regression analysis. 
However, limited data on tumor etiology was 
taken into consideration when only transcriptome 
data was comprehensively analyzed with clinical 
features. Recently, some studies have paid attention 
to distinguish cancer patients with different clinical 
outcomes via multi-omics data [18–21]. 
Manikandan et al. [22] identified that amplified 
P4HA1 gene was related to hypoxia in breast cancer 
via multi-omics analysis. Zhao et al. [23] provided 
a novel insight into molecular subtypes for lung 
adenocarcinoma basing on multi-omics data (geno
mics, epigenomics, and transcriptomics). 
Chaudhary et al. [24] evaluated prognosis features 
of hepatocellular carcinoma patients via multi- 
omics data, which showed robustness in several 
external cohorts. However, multi-omics analysis 
has not been performed in constructing the 
lncRNA-associated prognostic model in patients 
with BLCA.

The previous studies have indicated the critical 
roles of lncRNAs in BLCA, and prompted the 
potential value of multi-omics analysis on con
structing prognostic model. Hence, we assumed 
that multi-omics analysis may contribute to con
struct a robust lncRNA predictive model for BLCA 
recurrence, and intended to construct a novel 
lncRNA signature on the basis of multi-omics 

data, including transcriptome data, clinical data, 
copy number variation (CNV) data and mutation 
annotation data in the cohort of BLCA patients 
from The Cancer Genome Atlas (TCGA) database 
and GSE31684 dataset. We successfully con
structed a ten-lncRNA signature for RFS of 
BLCA patients by a contemporary clinical- 
practical statistical method, least absolute shrink
age and selection operation (LASSO), and COX 
regression model. Our results validated that the 
ten-lncRNA signature could act as an independent 
prognostic predictor of BLCA recurrence. Besides, 
the novel lncRNA signature may be associated 
with tumor immunology. We present the follow
ing article in accordance with the TRIPOD report
ing checklist.

2. Materials and methods

2.1. Pre-processing of lncRNA-associated 
information and clinical data from public 
databases

The RNA expression profiles, clinical data and 
genomic copy number variation data in the 
TCGA database were obtained via the UCSC can
cer browser (https://xenabrowser.net/datapages/). 
And the mutation annotation file (MAF) was 
extracted via GDC client. After downloading the 
‘fragments per kilobase of transcript per million 
fragments sequenced’ (FPKM) data of RNA-Seq 
from TCGA database, we obtained the lncRNA 
expression profiles by cross-referring to ensemble 
ID of lncRNAs from GENCODE project [25]. 
Then, ‘transcripts per million’ (TPM) values were 
calculated according to the FPKM values. Finally, 
the TPM values were normalized by Z-score.

In addition, we downloaded the clinical data 
and transcriptome profiles of Series GSE31684 
from GEO database (https://www.ncbi.nlm.nih. 
gov/geo/) [26]. The microarray raw data were 
downloaded from GEO database. We obtained 
the lncRNA probes from the manufacturer’s web
site (http://www.affymetrix.com), and mapped the 
probe sequences to the human genome (hg19) 
without mismatch. Next, 5076 probes fell into 
lncRNAs through re-annotation. Eventually, the 
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expression data was normalized via the quantile- 
normalization approach [27,28].

Herein, we concentrated on BLCA recurrence. 
Hence, we excluded the BLCA samples whose RFS 
time was unknown, not described or less than 
30 days. We randomly selected three-quarters of 
samples from the BLCA cohort in TCGA database 
as the training dataset. The main reason for select
ing three-quarters of samples is to include more 
samples in the training dataset in order to obtain 
more stable results. To avoid the selection bias, we 
performed the re-randomizations for 1000 times, 
and calculated the AUC distribution of each data
set, mainly ranging from 0.65 to 0.76 
(Supplemental figure 1A). Eventually, 303 cases 
from TCGA database and 93 cases from Series 
GSE31684 in GEO database were included in this 
study. We randomly selected 227 cases from all 
303 cases in the TCGA database as the training 
datasets (n = 227). The first testing datasets con
sisted of all 303 patients in the TCGA database. 
The second testing datasets were the 93 samples 
from Series GSE31684 in GEO database. We con
structed the lncRNA-related prognosis model on 
the basis of the training dataset. The prognosis 
model was validated in the testing datasets. This 
study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

2.2. Gene CNV analysis

As for the copy number variation data obtained 
from TCGA database, the genomic regions with 
somatic copy number alterations (SCNA) were 
determined by GISTIC 2.0 [29]. The GISTIC 
peaks of amplification or deletion with p-value < 
0.05 were regarded as significance. Next, in order 
to identify lncRNAs with CNV in BLCA, we 
mapped the genomic regions to GISTIC peaks.

2.3. Identification of lncRNAs associated with 
significantly mutated genes (SMGs)

Based on the MAF files from TCGA database, we 
identified SMGs with q-value < 0.05 using Mutsig 
2.0 algorithms [30]. In order to identify the SMGs- 
related lncRNAs, we labeled the samples in the 
training datasets with the mutation or non- 
mutation of each SMG. Abnormal expression of 

lncRNAs associated with each SMG was deter
mined by rank sum test with p-value < 0.01.

2.4. Identification of BLCA recurrence-associated 
lncRNAs

Univariate COX regression analysis was performed 
to screen out the lncRNAs associated with RFS. So 
as to further assess which lncRNA could act as the 
dependent variable factor, multivariable COX 
regression analysis was conducted. R software 
and bioconductor were utilized for analysis. 
P-value < 0.05 was considered as significant.

2.5. Construction of the lncRNA signature

On the basis of univariate COX regression analysis, 
gene CNV analysis and identification of SMGs- 
related lncRNAs, the lncRNAs associated with 
CNV, gene mutation and RFS time in BLCA were 
screened out as candidate genes for developing the 
lncRNA signature. Next, we intended to further select 
the candidate genes and construct a prognostic model 
with high accuracy by utilizing LASSO model [31]. 
The ‘glmnet’ package and R software were applied to 
perform LASSO regression algorithm.

After further selecting the candidate genes by 
LASSO regression algorithm, multivariable Cox 
regression analysis was performed on reserved can
didate genes. Those lncRNAs with the lowest Akaike 
information criteria (AIC) value were screened out 
as the final candidate genes [32]. Next, the following 
formula was utilized to compute the risk score:

Risk Score ¼
Xn

i¼1
CoefficientlncRNAi � ExpressionlncRNAið Þ

On the basis of training dataset, we performed ROC 
(receiver-operating characteristic) curves analysis 
with the AUC (area under curve) at five years of 
RFS. Next, the Youden’s index was calculated as the 
optimal cutoff point to distinguish BLCA cases into 
high or low recurrence risk sets [33]. Kaplan-Meier 
RFS curve analysis and the log-rank test were 
applied in comparing RFS in two sets. The survft 
and survdif function of ‘survival’ packages and 
R software were applied to perform Kaplan-Meier 
RFS curve analysis and the log-rank test.
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2.6. Validation of the prognosis power of lncRNA 
signature

We validated the signature in the validation datasets, 
namely the entire TCGA datasets and GSE31684 
datasets. We utilized the Youden’s index to distin
guish the cases in validation datasets into high and 
low recurrence risk sets. Next, we compare the RFS 
in high and low recurrence risk sets via Kaplan- 
Meier RFS analysis, log-rank test and further strati
fied analysis. In order to assess the prognostic power 
of lncRNA signature, we performed univariate and 
multivariate COX regression analysis in training 
dataset and testing datasets.

2.7. Functional enrichment analysis and tumor 
immune microenvironment characteristics

Gene Set Enrichment Analysis (GSEA) was per
formed based on the training dataset [34,35]. The 
RNA expression profiles were used as the input file 
and labeled with lncRNA signature-based risk 
score. The CIBERSORT method was performed 
to evaluate the relative abundance of immune cell 
profiling [36]. To evaluate the components in each 
sample, we applied the ESTIMATE algorithm to 
calculate the score of stromal, immune and 
ESTIMATE score in each sample [37]. In addition, 
the correlation was further analyzed with 
Spearman Rank correlation.

2.8. Clinical samples and cell lines

The 33 cases of BLCA specimens used in our 
study were collected from the Shanghai Tenth 
People’s Hospital of Tongji University, China. 
The 33 patients underwent radical cystectomy 
from May 2014 to June 2014. The 33 cases 
were staged based on the 7th AJCC staging sys
tem. This study was approved by the Ethics 
committee of the Shanghai Tenth People’s 
Hospital of Tongji University (SHSY-IEC-4.1/ 
19-120/01). Prior informed consent was obtained 
from all of the patients. The bladder transitional 
cell carcinoma cell lines (UM-UC-3 and T24) 
were cultured in DMEM (Gibco, USA) contain
ing 10% fetal bovine serum (FBS; Gibco, USA).

2.9. Transfection and qRT-PCR

In order to knockdown the expression of AGAP2- 
AS1, small interfering RNA (siRNA) was pur
chased from GenePharma (Shanghai, China). The 
siRNAs were transfected into cells using 
Lipofectamine 2000 (Invitrogen) according to the 
manufacturer’s instructions. We isolated the total 
RNA from cell lines and tissues using TRIzol 
(Takara, Japan) based on the manufacturer’s 
instructions. LncRNA reverse transcription were 
conducted with a New Poly(A) Tailing Kit 
(ThermoFisher Scientific) and PrimeScript RT 
Master Mix Kit (RR036A, TaKaRa), respectively. 
qRT-PCR was performed using a Universal SYBR 
Green Master Mix (4,913,914,001, Roche) with 
a 7500 Real-Time PCR System (Applied Biosy- 
stems, USA). We normalized the relative lncRNA 
expression levels to GAPDH, respectively. The 
sequences of siRNAs and primers in this study 
were listed in Supplemental table 6.

2.10. Cellular proliferation assay and transwell 
assay

For the CCK-8 assay (CCK-8, Dojindo, Kumam- 
oto, Japan), we first seeded cells in triplicate in 
a 96-well plate at a density of 2000 cells per well. 
At the indicated time points, we added 10 μL 
CCK-8 solution to each well. After a 2 h incuba
tion, the absorbance was determined using 
a microplate reader. For the colony formation 
assay, we seeded cells in six-well plates at 
a density of 500 cells per well and cultured the 
plate for 2 weeks. Subsequently, we fixed the cells 
in 75% ethanol and stained them with crystal vio
let. Colonies were observed and counted under 
a light microscope. Cell migration was analyzed 
using Transwell chambers (Corning, USA). Cells 
were cultured in serum-free DMEM in upper 
chamber to inhibit cell proliferation.

3. Results

In this study, we performed the comprehensive 
analysis of transcriptome data, clinical data, CNV 
data and mutation annotation data in the cohort of 
BLCA patients from TCGA database and 
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GSE31684 dataset. We constructed a ten-lncRNA 
signature for RFS of BLCA patients via LASSO and 
Cox regression model. Next, our results validated 
that the ten-lncRNA signature could act as 
a robust and independent prognostic predictor of 
BLCA recurrence in the training and testing data
sets. Further analysis indicated that the novel 
lncRNA signature may be associated with tumor 
immunology. In addition, we verified that ten- 
lncRNA signature constructed via multi-omics 
analysis had better performance in predicting 
BLCA recurrence than the two reported lncRNA 
signature models.

3.1. Screening of BLCA relapse-associated 
lncRNAs

We pre-processed a series of information from the 
public database, including extraction of the RNA 
expression profiles, array re-annotation, exclusion 
of the samples with unclear RFS state, and ran
domly assigning cases into the training or valida
tion cohorts as mentioned in the Materials and 
Methods. Next, we overviewed the clinical data of 
the training dataset and testing datasets, and dis
played relevant clinical information including age, 
relapse state, gender, TNM stage, subtype, grade 
and tumor stage for each dataset in supplemental 
table 1. Next, univariate Cox regression analysis 
was conducted to identify those lncRNAs related 
to RFS in training dataset. 38 lncRNAs were cho
sen as the candidates for the subsequent study, and 
the results of univariate Cox regression analysis 
were shown in table 1 and supplemental table 2.

3.2. Analysis of gene CNV in BLCA

In past decades, more and more evidences demon
strated that genomic alterations could contribute 
to aberrant expression of lncRNA in various can
cer [38–40]. Here, we identified the genes with 
significant genomic amplification or deletion in 
BLCA. Significant amplifications were shown in 
Figure 1(a). We documented genes with significant 
amplifications in supplemental table 3, such as 
significant amplification of LINC00709 on seg
ment 10p14 (q-value = 1.23e-19), significant 
amplification of LOC101929622 on segment 
8p11.23 (q-value = 2.05e-12) and significant 

amplification of LINC01195 on segment 16p13.2 
(q-value = 7.49e-07). Eventually, 717 genes were 
identified as amplified genes. The significant dele
tions in BLCA were shown in Figure 1(b). The 
genes significantly deleted on each fragment were 
recorded in supplemental table 4, such as signifi
cant deletion of LOC100286922 on segment 2q 
37.1 (q-value = 3.05e-21), significant deletion 
of LOC101929066 on segment 8p21.3 (q- 
value = 2.96e-32) and significant deletion of 
LINC00208 on segment 8p23.2 (q-value = 3.28e- 
31). We identified 875 deleted genes in total.

3.3. Mining of lncRNAs associated with 
significantly mutated genes (SMGs)

We identified significant mutations according to 
TCGA mutation annotation data via Mutsig 2.0, and 
obtained 32 genes with significant mutations. Based 
on the TCGA training dataset, the distribution of 
synonymous mutations, missense mutations, frame 
insertions or deletions, frame movements, nonsense 
mutations, splice sites and other nonsynonymous 
mutations in the 32 genes were analyzed and shown 
(Figure 1(c)). The upper graph showed the amount of 
nonsynonymous and synonymous mutations of the 
32 genes in every case. And the right histogram 
showed the number of clinical samples with muta
tions in each gene among the 32 genes. It has been 
reported that some of the 32 genes were closely asso
ciated with tumor initiation and progression, such as 
CDKN1A, CDKN2A, ELF3, HRAS, PIK3CA, RB1 and 
so on. Then, we intended to identify the lncRNAs 
related to gene mutation in the 32 genes. We used 
the mutation state in each gene as a label and analyzed 
the difference between the expression of each lncRNA 
in the mutant and non-mutant sets via rank-sum test. 
lncRNAs with p-value < 0.01 were considered to be 
significantly associated with the mutation in some 
gene. As a result, we identified 2665 lncRNAs whose 
expression was related to gene mutation (supplemen
tal table 5).

3.4. Establishment of the relapse-associated 
lncRNA signature

According to above results, we found that 20 
lncRNAs were related to genomic CNVs and 
gene mutation among 38 lncRNAs associated 
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with recurrence (Figure 2(a)). In order to further 
select the candidate genes and construct 
a prognostic model while maintaining high accu
racy, LASSO model was applied in developing 

a predictive signature with these screened 20 
lncRNAs. LASSO method could build a penalty func
tion to construct a refined model. LASSO evaluations 
of the coefficients of variables could effectively shrink 

Figure 1. CNVs and mutations analysis of genome loci in BLCA. (a) The significantly amplified fragments (red) in BLCA genome were 
shown. (b) The significant deleted fragments (blue) in BLCA were shown. The rows are arranged according to the genome loci. (c) 
Distribution of mutations in 32 genes with significant mutation frequencies on basis of training dataset. Upper bar graph showed the 
total number of non-synonymous and synonymous mutations of 32 genes in each patient. And right histogram showed the number 
of clinical samples with mutations in each gene among the 32 genes.
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coefficients and set some coefficients to zero. Hence, 
LASSO regression model retained the advantages of 
subset shrinkage and was an approach for biased 
estimation in processing the multi-collinearity data, 
which could select variables while estimating the 
model parameters and handle the multi-collinearity 
better. LASSO model performed the analysis of the 
change trajectory of each variable. More coefficients 
of independent variable approached zero with the 

lambda increasing gradually (Figure 2(b)). Then, we 
intended to construct the model with 3-fold cross- 
validation and analyzed the confidence interval under 
each lambda. We found that the model was optimal at 
lambda = 0.03046723 and selected the corresponding 
16 lncRNAs as the candidate genes (Figure 2(c)).

Afterward, multivariate COX regression was 
performed on the 16 lncRNAs, and 10 lncRNAs 
with AIC: 841.77 (the lowest AIC value) were 

Figure 2. Construction and evaluation of the lncRNA signature based on multi-omics data. (a) Venn diagram about lncRNAs 
associated with genomic CNVs, gene mutation or BLCA recurrence. (b) The change trajectory of every independent variable. 
Horizontal axis represents the log value of independent variable lambda, and vertical axis represents the coefficient of independent 
variable. (c) Confidence intervals under each lambda. (d) Distribution of risk score, RFS and lncRNA expression of each case. (e) ROC 
curve analysis base on ten-lncRNA signature. (f) Kaplan-Meier RFS curve analysis.
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eventually selected as candidate genes whose 
details was displayed in Table 2. We computed 
risk score for each patient via the following 
formula:

RiskScore¼7:021�expLINC01711þ5:153�
nexpMAFG� DT� 12:12�expZSCAN16� AS1
þ22:9�expAC005229:4þ0:4837�expFGD5�
AS1þ4:255�expAGAP2� AS1þ8:5�
expLINC01356� 9:161�expAL392172:1
� 10:86�expAL450384:2� 5:485�expPSMB8� AS1 

In the Cox regression analysis, LINC01711, 
MAFG-DT, AC005229.4, FGD5-AS1, AGAP2-AS1 
and LINC01356 had positive coefficients, indicat
ing that upregulation of these 6 lncRNAs was 
related to shorter RFS time. However, ZSCAN16- 
AS1, AL392172.1, AL450384.2 and PSMB8-AS1 
with negative coefficients were considered as ben
eficial prognostic factors in BLCA.

The RFS status, risk score and expression of 10 
lncRNAs in each patient from the training datasets 
were shown in Figure 2(d). According to the 
5-year RFS prediction AUC in the training data
sets, the Youden’s index (−0.4533178) was calcu
lated as the optimal cutoff point to classify the 
samples into high (n = 84) or low (n = 143)-risk 
sets (Figure 2(e)), and Kaplan-Meier RFS analysis 
was performed (log-rank test p-value < 0.0001, 
HR = 3.229) (Figure 2(f)).

3.5. Validating prognostic power of the 
relapse-associated lncRNA signature

Firstly, we verified ten-lncRNA signature in the 
entire TCGA dataset. We utilized the Youden’s 
index, calculated based on training dataset, to dis
tinguish the cases in the entire TCGA datasets into 
high (n = 105) and low (n = 196)-risk sets. We 
analyzed RFS, risk score and 10 lncRNAs’ expres
sion level of each case in the entire TCGA dataset 
(Figure 3(a)). AUC for ten-lncRNA signature was 
0.73 at the RFS in the fifth year (Figure 3(b)). As 
shown in Figure 3(c), we compared RFS time of 
high and low-risk sets (log-rank test p-value < 
0.0001, HR = 2.887).

Afterward, we used GSE31684 dataset as the 
other testing dataset. According to the same cutoff 

point (Youden’s index), the cases in GSE31684 
dataset were divided into high (n = 30) and low 
(n = 63)-risk sets. We analyzed RFS, risk score and 
10 lncRNAs’ expression level in the GSE31684 
dataset (Figure 3(d)), and AUC for RFS in the 
first, third, and fifth year was 0.71, 0.65, and 
0.67, respectively (Figure 3(e)). Kaplan-Meier RFS 
curve was utilized to compare RFS of high and 
low-risk sets (log-rank p value = 0.0023, 
HR = 2.587) (Figure 3(f)). These results suggested 
that the patients with higher risk score had shorter 
RFS time and higher recurrence rates in the testing 
datasets.

3.6. Evaluating whether ten-lncRNA signature 
had robust prognostic power in BLCA

Firstly, stratified analysis was conducted to assess 
the relapse-predictive power of ten-lncRNA signa
ture at different age, tumor stages or subtypes. All 
303 cases in entire TCGA dataset were divided 
into younger (n = 130) and elderly (n = 173) data
sets at the age (65 years old). As shown in 
Figures 4(a,b), ten-lncRNA signature could effec
tively distinguish each dataset into high and low 
relapse-risk sets. Next, all 303 cases were re- 
stratified into three different datasets according 
to the tumor stage (stage II, n = 108; stage III, 
n = 102; stage IV, n = 89). Ten-lncRNA signature 
could classify the tumor stage III or IV dataset into 
high and low relapse-risk sets via medium risk 
score (log-rank test p-value = 0.0017, Stage III; 
log-rank test p-value = 0.0049, Stage IV) 
(Figures 4(c,d)). However, ten-lncRNA signature 
could not distinguish these patients in stage II into 
different groups with different RFS (log-rank test 
p-value = 0.27, Stage II) (Supplemental Figure 1B). 
Finally, we stratified all 303 cases into non- 
papillary (n = 197) and papillary (n = 102) datasets 
based on subtypes. Ten-lncRNA signature could 
classify each dataset into high and low relapse-risk 
sets with different RFS (log-rank test 
p-value = 0.00025, Figure 4(e); log-rank test 
p-value = 0.019, Figure 4(f)).

To validate whether ten-lncRNA signature was 
an independent predictive factor for BLCA recur
rence, we performed Cox regression analysis in the 
training and testing datasets. As shown in Table 3, 
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Figure 3. Evaluating the prognostic power of ten-lncRNA signature in the testing datasets. (a) Distribution of risk score, RFS and 
lncRNA expression of each case in the entire TCGA dataset. (b) ROC curve analysis of ten-lncRNA signature in the entire TCGA 
dataset. (c) Kaplan-Meier RFS curve analysis of high and low relapse-risk sets in the entire TCGA dataset. (d) Distribution of risk score, 
RFS and lncRNA expression of every patient in GSE31684 dataset. (e) ROC curve analysis of ten-lncRNA signature in GSE31684 
dataset. (f) Kaplan-Meier RFS curve of high and low relapse-risk groups according to ten-lncRNA signature in GSE31684 dataset.
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we analyzed the association between RFS and clin
ical variables including ten-lncRNA signature.

In training dataset, univariate Cox regression 
analysis indicated that pathologic N stage, 

pathologic M stage, tumor stage and risk score 
were related to RFS of BLCA patients. And we 
found that risk score and pathologic N stage 
were related to RFS in the multivariate Cox 

Figure 4. Stratified analysis on the basis of age, stage or subtype. (a,b) Kaplan-Meier RFS curve analysis in the younger or elderly 
dataset. (c,d) Kaplan-Meier RFS curve analysis in Stage III or Stage IV cohorts. (e,f) Kaplan-Meier RFS curve analysis in the non- 
papillary or papillary dataset. (g) Results of GSEA analysis in the TCGA training dataset.
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regression analysis. In the entire TCGA dataset, 
univariate Cox regression analysis revealed that 
risk score, N stage, M stage and tumor stage 
were significantly associated with RFS of BLCA 
patients. And risk score and pathologic N stage 
were significantly associated with RFS in multi
variate Cox regression analysis. In the GSE31684 
dataset, we found that risk score was related to 
RFS in both univariate and multivariate Cox 
regression analysis. Taken together, ten-lncRNA 
signature has independent prognostic power for 
RFS prediction in patients with BLCA patients.

3.7. Pathway enrichment analysis and tumor 
immune microenvironment characteristics

In consideration of robust prognostic power of ten- 
lncRNA signature for BLCA recurrence, we sup
posed that these ten lncRNAs could take part in the 
progression of BLCA. We performed the Gene Set 
Enrichment Analysis (GSEA) among cohorts in the 
TCGA training datasets with the gene set named ‘c2. 
cp.kegg.v6.0.symbols’. The RNA expression profiles 
were used as input files and labeled with risk score of 
the ten-lncRNA signature. The pathways with sig
nificantly enrichment were shown in Table 4. As 
shown in Figure 4(g), GSEA revealed that some 
significantly enriched KEGG pathways were related 
to the tumorigenesis, tumor progression and 
immune disorders.

Considering the potential relationship between 
ten-lncRNA signature and immune disorders 
revealed in GSEA, we performed the analysis on 
the tumor microenvironment and the infiltration 
of immune cells. The CIBERSORT algorithm was 
performed to evaluate the abundance of diverse 
immune cells. As shown in Figure 5(a), the infil
tration of M2 macrophage was positively corre
lated with the risk score based on the ten- 
lncRNA signature (R = 0.303, P-value < 0.01). 
Next, the association between tumor microenvir
onment and the ten-lncRNA signature was 
assessed via the ESTIMATE algorithm. The results 
indicated that the risk score had the significant 
and weak correlation with the immune score, 
which was consistent with the worse prognosis in 
the patients with higher risk score (Figure 5(b)).

3.8. Comparing ten-lncRNA signature with 
reported lncRNA signatures in BLCA

By searching for literature about lncRNA signa
tures, we chose two models associated with recur
rence in BLCA: four-lncRNA signature (PMID: 
28,060,759) [41] and six-lncRNA signature 
(PMID: 31,338,862) [17]. We recalculated risk 
scores of each patient in training dataset according 
to lncRNAs in the two selected models. Next, we 
utilized ROC curve analysis to classify cases into 
high and low-risk sets by Youden’s index. The 
results suggested that the AUC for RFS in the 
fifth year was 0.69 for the six-lncRNA signature 
(p-value = 0.00041) (Figure 6(a,b)) and the AUC 
for RFS in the third year was 0.60 for the four- 
lncRNA signature (p-value = 0.012) (Figure 6(c, 
d)). On the other hand, the AUC of 3-year and 
5-year RFS prediction for the ten-lncRNA signa
ture was 0.75 and 0.76, respectively (Figure 3(e)). 
By comparing the results of four-lncRNA signa
ture, six-lncRNA signature and ten-lncRNA signa
ture, we confirmed that the ten-lncRNA signature 
developed in this study had better performance in 
predicting BLCA recurrence.

3.9. Survival analysis of the ten-lncRNA 
signature in BLCA samples

We determined the expression of the ten lncRNAs 
used to construct the relapse-associated lncRNA 
signature in the collected 33 BLCA samples. The 
clinicopathological characteristics of 33 patients 
was displayed in supplemental table 7. Based on 
the formula mentioned previously, we calculated 
the risk score for each sample. As shown in 
Figure 7(a), the survival analysis indicated that 
patients with higher risk score intended to have 
shorter RFS time, with marginal significance (P 
value = 0.047). In addition, we performed the 
survival analysis on the ten lncRNAs in the 33 
samples. The results indicated that higher expres
sion of AGAP2-AS1 and LINC01711 was signifi
cantly associated with higher possibility of BLCA 
recurrence (AGAP2-AS1, P value = 0.017; 
LINC01711, P value = 0.046) (Figure 7(b) and 
Supplemental figure 2).
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3.10. AGAP2-AS1 knockdown suppresses cell 
proliferation and migration in BLCA cells

On the basis of survival analysis, we chose 
AGAP2-AS1 for further experimental study, 
because AGAP2-AS1 was most significantly asso
ciated with BLCA recurrence (P value = 0.017). 
LncRNA qRT-PCR was applied to evaluated the 
knockdown of AGAP2-AS1 (Figure 7(c)). The 
CCK-8 assay revealed that downregulation of 
AGAP2-AS1 expression presented a lower growth 
rate than the negative control in UM-UC-3 and 
T24 cells (Figure 7(d)). The colony formation 
assay further confirmed that AGAP2-AS1 knock
down could significantly inhibit BLCA cell prolif
eration (Figures 7(e,f)). On the other hand, the 
Transwell assay indicated that AGAP2-AS1 

knockdown significantly inhibited cell migration 
compared with the control (Figures 7(g,h)). 
Results above suggested that AGAP2-AS1 knock
down could inhibit cell proliferation and migra
tion in BLCA cells.

4. Discussion

Due to the development of high throughput RNA 
sequencing, expression pattern of lncRNAs was 
uncovered in diverse cancers [42,43]. Many studies 
have documented that expression pattern of some 
lncRNAs were specific in some cancer, even in 
different stage of some tumor [44–50]. In the 
recent years, a great number of studies have high
lighted that dysregulation of lncRNAs was 

Figure 5. The analysis on the tumor immune microenvironment characteristics. (a) Evaluation of the correlation between the 
abundance of diverse immune cells and the ten-lncRNA signature via the CIBERSORT algorithm. (b) Evaluating the correlation 
between tumor microenvironment and the ten-lncRNA signature via the ESTIMATE algorithm.

BIOENGINEERED 11119



involved in cancer progression [51–54]. These evi
dences indicated that lncRNAs have the potential 
to act as biomarkers for prognostic prediction in 
human cancers. Hence, it is necessary to identify 
aberrant expression pattern of lncRNAs and reveal 
their possible roles in BLCA development and 
recurrence.

Herein, we performed multi-omics analysis of 
transcriptome, genomic CNV, mutation annota
tion and clinical data of BLCA in TCGA data
base, in order to find the lncRNAs whose 
aberrant expression was associated with BLCA 
recurrence. Our study uncovered that 38 
lncRNAs were significantly related to BLCA 

recurrence through univariate Cox regression 
analysis. Then, CNV analysis revealed that 1592 
genes had significant amplification or deletion in 
their genome loci and some genomic alterations 
contributed to the dysregulation of lncRNAs 
expression in BLCA. In addition, gene mutations 
analysis showed that there were a total of 32 
genes with significant mutation, including some 
genes closely related to tumor initiation and pro
gression. Further analysis indicated that expres
sion pattern of 2665 lncRNAs was associated with 
these genes’ mutations. On the basis of our ana
lysis mentioned above, we found that 20 lncRNAs 
were associated with gene mutation and CNV 

Figure 6. Comparing ten-lncRNA signature with two reported lncRNA signatures in BLCA. (a) ROC curve analysis and Kaplan-Meier 
RFS curve analysis on the reported 6-lncRNA signature in the TCGA training dataset. (b) ROC curve analysis and Kaplan-Meier RFS 
curve analysis on the reported 4-lncRNA signature in the TCGA training dataset.
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Figure 7. Survival analysis of the ten-lncRNA signature in BLCA samples and experimental study on the biofunction of AGAP2-AS1 on 
the BLCA cells. (a) Kaplan-Meier RFS curve analysis on the ten-lncRNA signature in the 33 BLCA samples. (b) Kaplan-Meier RFS curve 
analysis on the expression of AGAP2-AS1 in the 33 BLCA samples. (c) Evaluating the efficiency of AGAP2-AS1 knockdown via qRT- 
PCR. (d) CCK-8 assay on the effect of AGAP2-AS1 knockdown on cell proliferation. The OD value among different groups was found 
to be significantly different by two-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001. The data are expressed as the mean ± SD. (e, f) 
Colony formation assay on the BLCA cells transfected with siRNA. (g, h) Transwell assay was used to evaluate the migration of BLCA 
cells transfected with siRNA.
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among 38 lncRNAs associated with BLCA recur
rence. We further selected the 16 lncRNAs as 
candidates from the 20 lncRNAs using the 
LASSO model. Multivariate COX regression ana
lysis eventually selected out 10 lncRNAs to 
develop a recurrence-associated lncRNA signa
ture in BLCA.

Moreover, validation of the recurrence- 
associated lncRNA signature indicated that ten- 
lncRNA signature had predictive power for the 
recurrence of BLCA. We conducted Cox regres
sion analysis in training dataset and testing data
sets, and the analysis verified that ten-lncRNA 
signature was an independent prognostic factor 
for BLCA recurrence. Stratified analysis indicated 
that ten-lncRNA signature could effectively clas
sify cases into high and low recurrence-risk sets in 
different subgroups. Taken together, ten-lncRNA 
signature based on multi-omics analysis could act 
as a robust and independent predictor for BLCA 
recurrence.

Furthermore, we performed the GSEA to reveal 
the potential pathways related to ten-lncRNA sig
nature. The results of GSEA contained several sig
nificantly enriched BLCA-associated pathways, 
such as ‘gap junction’, ‘primary immunodefi
ciency’, ‘intestinal immune network for IgA pro
duction’, ‘autoimmune thyroid disease’ and ‘tight 
junction’. We supposed that ten-lncRNA signature 
may contribute to tumor immunity whose dysre
gulations could play a critical role in BLCA 
relapse.

By comparing ten-lncRNA signature with the 
reported four-lncRNA signature and six-lncRNA 
signature, we validated that ten-lncRNA signature 
had better performance in predicting BLCA recur
rence than the two reported lncRNA signature 
models, which suggested that our approach of 
multi-omics analysis on transcriptome data, geno
mic CNV data, mutation annotation data and 
clinical data may be superior in constructing the 
prognostic signature.

Above all, the ten-lncRNA signature had robust 
predictive power, which was an independent prog
nostic factor for BLCA relapse. Hence, ten- 
lncRNA signature could have potential implica
tions as prognostic markers for BLCA recurrence. 
On the other hand, the approach we utilized for 
developing biomarkers may contribute to studying 

cancer-associated RNA expression profiles in the 
future. Due to the limited samples collected from 
patients, the survival analysis based on the 33 
BLCA patients revealed that only AGAP2-AS1 
among the ten lncRNAs was associated with RFS 
in BLCA. Herein, we chose AGAP2-AS1 for 
further functional experiments, and the results 
revealed that AGAP2-AS1 knockdown could inhi
bit the cell proliferation and migration in BLCA 
cells for the first time. However, further investiga
tion should be performed to validate biological 
functions and potential mechanisms of ten 
lncRNAs in BLCA.

5. Conclusion

The novel ten-lncRNA signature, constructed 
based on multi-omics data, had robust prognostic 
power in predicting the recurrence of BLCA and 
potential clinical implications as biomarkers for 
personalized management of BLCA.

Research highlights

Multi-omics analysis on CNV, mutation annotation, RNA 
expression and clinical data.

Constructing a novel and robust lncRNA signature to 
predict BLCA recurrence.

The lncRNA signature may be associated with tumor 
immunology.

AGAP2-AS1 knockdown could inhibit cell proliferation 
and migration in BLCA cells.
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