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Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play
an essential role in intercellular communication by delivering cellular components including
DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs
play a vital role in the pathogenesis of depression by transporting miRNA and effector
molecules such as BDNF, IL34. Considering that some herbal therapies exhibit
antidepressant effects, EVs might be a practical delivery approach for herbal medicine.
Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated
herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs
can transfer herbal medicine into the brain cells. This review focuses on discussing the
roles of EVs in the pathophysiology of depression and outlines the emerging application of
EVs in delivering CHM for the treatment of depression.

Keywords: phytochemials, herbal therapies, extracellular vehicles, exosomes, ectosomes, microvescicles,
depressive disorder

1 INTRODUCTION

1.1 The Potential Application of Extracellular Vesicles for Promoting
Herbal Medicine in Treating Depressive Disorder
Characterized by severe and persistent emotional symptoms, cognitive symptoms, and somatic
symptoms (Bhatt et al., 2020), depression is negatively impacting more than 264 million people as
one of the most prevalent psychiatric disorders (James et al., 2018). The coronavirus disease 2019
(COVID-19) pandemic has also exacerbated the prevalence of depression (Salari et al., 2020).
“Depression” can refer to any of several depressive disorders (DD). Thus, we comprehensively
included depression-related works of literature by searching Mesh term “depressive disorder” and all
entry terms in PubMed. DD requires long-term treatment, placing a heavy burden on public
healthcare systems worldwide. While western medicines, such as tricyclic antidepressants (TCAs),
are often prescribed for DD, efficacy can vary among individuals, in addition to detrimental impact
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due to their anticholinergic properties (McClintock et al., 2010)
(Prado et al., 2018). Thus, complementary and alternative
therapies with fewer adverse effects in treating DD are
urgently needed. Traditional Chinese medicine (TCM)
treatment includes Chinese herbal medicine (CHM),
acupuncture, moxibustion, and naprapathy. The
complementary and alternative approach to treating
depression is widely applied in China with fewer severe side
effects. Many preclinical and clinical studies have demonstrated
the antidepressant effects of different Chinese herbal medicine
(Wang et al., 2017; Milajerdi et al., 2018; Ruan et al., 2019;
Ghasemzadeh Rahbardar and Hosseinzadeh 2020). This paper
mainly discusses the potential of herbal therapeutics in TCM for
treating DD.

Extracellular vesicles (EVs) are lipid bilayer membrane
structures that can carry various nucleic acids, lipids, proteins,
and other small metabolisms. All cells, including both
prokaryotes and eukaryotes, can release EVs as intercellular
communication molecules. EVs play vital roles in interrelated
physiological and pathophysiological processes, including
intercellular communication in the brain. The classification of
different EV types is continuously evolving with advances in
relevant research (Théry et al., 2018). For example, a study by E.
Cocucci suggested that EVs should be broadly categorized as
ectosomes or exosomes based on their size and mechanism of
formation (Théry et al., 2018) (see Figure 1). Ectosomes are
vesicles shed from the superficies of the plasma membrane by
budding outside. These structures can vary in diameter from ~50
to 1,000 nm and thus include microparticles, microvesicles and
large vesicles (Zhang H. et al., 2018). Exosomes originate from
endosomes recycled by exocytosis or endocytosis and range from
~40 to 160 nm in diameter. The formation of exosomes goes
through four stages. Firstly, the cup-shaped early-sorting
endosome (ESE) consists of soluble proteins related to the

extracellular environment and cell surface proteins are formed
by endocytosis. Secondly, late-sorting endosomes (LSEs) are
matured from ESE. Thirdly, intracellular multivesicular bodies
(MVBs) are formed by inward invagination of ESE’s membrane.
Finally, MVBs are released by ectocytosis eventually generate
exosomes (Kalluri and LeBleu 2020). One hypothesis about the
function of EVs proposes that exosomes may take off excessive
components in cells to preserve cellular homeostasis (Kalluri and
LeBleu 2020). Although the physiological purpose of exosome
production remains largely unknown, the studies reviewed in this
article indicate that the function, targeting, and particular
constituent in exosomes suggest that they could play a
significant part by adjusting cell-to-cell communication.

In this article, we deliberate about the application potential of
EVs in herbal therapies for DD by summarizing the body of work
available in PubMed published over the last 10 years. Hence, this
review provides a reference for further research of EVs,
particularly in developing CHM for treating DD.

2 THE PATHOGENIC ROLE OF
EXTRACELLULAR VESICLES IN
DEPRESSION
Depending on the cellular sources, different subcellular
components containing DNA, RNA, proteins, lipids,
metabolites et al. are delivered into recipient cells by EVs,
which can effectively alter the biological response to diseases.
The pathogenesis of depression mainly involves synaptic
plasticity, oxidative stress, intestinal flora, dysregulation of the
hypothalamic pituitary adrenal (HPA) axis, and altered
neurotransmitter metabolism and neuroinflammation (Bhatt
et al., 2021; Zhang et al., 2021). Signal transmission from one
nerve cell to another is essential for synaptic plasticity (Chivet

FIGURE 1 | Formation mechanisms of two types of extracellular vesicles (EVs). Ectosomes and exosomes are two significant classifications of EVs. Ectosomes are
formed by plasma membrane budding, and their diameter range from ~50 to 1,000 nm. Exosomes range from ~40 to 160 nm and originate in the endosomal pathway
via the formation of early-sorting endosomes (ESEs), late-sorting endosomes (LSEs), and ultimately multivesicular bodies (MVBs). Exosomes are formed when MVBs are
released by ectocytosis. The exosome population in cells can be highly heterogeneous. Exosomes exhibit different abilities to produce complicated biological
responses in recipient cells depending on their cellular origins and specific content (e.g., amino acids, proteins, lipids, metabolites, cytoplasm).
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et al., 2012). Given their prominent role in regulating intercellular
communication, more and more researches have explored the
potential parts of circulating EVs in the etiopathogenesis of
depression via the regulation of neurotransmitters. It has been
reported that exosomes are associated with cell-to-cell
communication, neuroinflammation, neurogenesis and
synaptic plasticity in the brain (Saeedi et al., 2019). These
pathophysiological changes in the central nervous system
(CNS) reflect EVs’ functional potential and emerging
significance in developing DD (see Figure 2). In particular,
most preclinical studies have focused on the roles of
microRNA (miRNA, see Table 1) or protein (Table 2)
contents of EVs in DD.

2.1 Extracellular Vesicle-Associated
microRNAs in Depressive Disorders
MiRNAs are small noncoding RNAs(~22 nucleotides) that
perform as post-transcriptional gene regulators through
uniting with target messenger RNAs, typically leading to
their degradation and subsequent silencing of the target
gene (Ramshani et al., 2019). Small (~30–150 nm), secreted
EVs transport miRNAs between cells (Valadi et al., 2007;
Mathivanan et al., 2010; Théry et al., 2018), enabling these
miRNA cargoes to target genes that directly or indirectly
contribute to pathological processes (such as accelerating
neuroplasticity and brain development) related to
depression. For example, one study showed that exosomes
isolated from DD patients could cause depressive-like
behaviors in normal mice, while exosomes isolated from
healthy volunteers and exosomal miR-139-5p apparently
alleviated these behavioral changes (Wei ZX. et al., 2020).
In addition, exosomal miR-207 was found to alleviate
depressive symptoms of stressed mice through targeting
Tril, resulting in inhibition of NF-κB signaling in astrocytes
(Li et al., 2020). These findings thus supported a relationship
between miRNA-bearing exosomes and depression-like
behaviors (Li et al., 2020). Collectively, these findings
suggest that miRNA-bearing exosomes can attenuate or
exacerbate the pathogenesis of depression, although clinical
studies are needed to explore these possibilities in humans (see
table 1).

FIGURE 2 | EVs associated pathogenic changes in DD. EV associated
microRNAs and proteins can regulate neurogenesis, neuroinflammation, and
synaptic plasticity in the development of DD.

TABLE 1 | EV-associated miRNAs and their expression in DD.

miRNA Sample source Application
model/disease

Applied
species

Expression References

miR-139-5p Blood MDD human ↑ (Wei et al., 2020b; Liang et al., 2020)
miR-207 NK cells CMS mice ↑ Li et al. (2020)
miR-17-5p Blood Subthreshold depression human ↑ Mizohata et al. (2021)
miR-29c Whole-brain lysates and

hippocampal
Flinders Sensitive Line depression model rats ↑ Choi et al. (2017)

miR-149 Whole-brain lysates Flinders Sensitive Line depression model rats ↑ Choi et al. (2017)

TABLE 2 | EV-associated proteins and their potential targets in DD.

Proteins Molecular weight Model/disease/intervention Species Sample source Expression References

Aldolase C ~39 kDa Restraint rat serum ↑ Gómez-Molina et al. (2019)
Aldolase C ~39 kDa Immobilization rat serum ↓ Gómez-Molina et al. (2019)
astrocytic GFAP ~51 kDa Restraint rat serum ↑ Gómez-Molina et al. (2019)
astrocytic GFAP ~51 kDa Immobilization rat serum ↓ Gómez-Molina et al. (2019)
synaptophysin 38 kDa Restraint rat serum ↓ Gómez-Molina et al. (2019)
synaptophysin 38 kDa Immobilization rat serum ↓ Gómez-Molina et al. (2019)
reelin ~388 kDa Restraint rat serum ↓ Gómez-Molina et al. (2019)
reelin ~388 kDa Immobilization rat serum ↓ Gómez-Molina et al. (2019)
BDNF ~13 kDa Ketamine rat astrocytes ↓ Stenovec et al. (2016)
IL34 39 kDa MDD human blood ↑ Kuwano et al. (2018)
L1CAM 200–220 kDa MDD human plasma ↑ Nasca et al. (2020)
IRS-1 180 kDa MDD human plasma ↑ Nasca et al. (2020)
Sig-1R 25 kDa MDD human plasma ↑ Wang et al. (2021b)
CD40 ligand 33 kDa MDD human plasma ↑ Wallensten et al. (2021)
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2.2 Extracellular Vesicle-Associated
Proteins in Depressive Disorders
Clinical and preclinical proteomics studies have indicated that
proteins carried by EVs could potentially serve as biomarkers for
depression (Kuwano et al., 2018; Gómez-Molina et al., 2019;
Nasca et al., 2020). A study by comparing the proteins in small
EVs in two animal models of stress response with depressive-like
behaviors has revealed aldolase C, astrocytic GFAP (glial fibrillary
acidic protein), synaptophysin (SYP, a synaptic protein), and
reelin among the different treatment groups significantly changed
(Gómez-Molina et al., 2019; Li et al., 2020). In addition, a study
established that SYP, tumor necrosis factor receptor 1 (TNFR1),
and interleukin 34 (IL-34) in DD patients’ neuron derived
exosomes (NDE) were all positively correlated with the
exosomes surface marker cluster of differentiation 81 (CD81)
(Kuwano et al., 2018). Another clinical study reported more
insulin receptor substrate 1 (IRS-1) in L1 Cell Adhesion
Molecule + (L1CAM) exosomes from DD patients. The
increased IRS levels in the L1CAM + exosomes were
associated with suicidality and anhedonia (Nasca et al., 2020).
In addition to screening for EV-associated protein biomarkers of
DD, other studies have explored mechanistic connections
between MDD and EV protein cargoes. One such study
reported that ketamine could suppress the secretion of BDNF
and ATP-triggered EV fusion through decreasing astrocytic Ca2+

excitability and elevating the possibility of oping narrow fusion
pore (Stenovec et al., 2016). Furthermore, Stenovec et al. found
that ketamine can diminish the cytoplasmic mobility of EVs to
alter the astroglial ability to regulate extracellular K+ (Stenovec
et al., 2020). These cumulative findings suggest that protein-
bearing EVs contribute to the development of DD (possibly
related to the EV fusion process) and could be potential
clinical biomarkers for DD (see Table 2).

3 HERBAL THERAPIES FOR DEPRESSIVE
DISORDERS

Herbal therapies are an integral component of traditional Chinese
medicines (TCM). Currently, herbal therapies are widely used in
China as essential alternative medicine and have been reported to
ameliorate clinical symptoms of COVID-19 (Hu et al., 2021).
Herbal remedies can be taken in many forms in TCM, and studies
into their mechanisms of action and therapeutic efficacy are
typically categorized by whether they are administered as
herbal formulas (multiple herbs prescriptions), individual
herbs, or specific phytochemicals (bioactive herbal
constituents) (Hirshler and Doron 2017; Lin et al., 2019).
Below, we discuss the antidepressant effects of these three
types of herbal therapies.

3.1 Herbal Formulas for Treating Depressive
Disorders
Numerous preclinical and clinical studies of herbal formulas have
described the antidepressant effects of herbs such as Yueju (Ren
and Chen 2017), Chai Hu Shu Gan San (Sun et al., 2018), or lily

bulb and Rehmannia Decoction (Chi et al., 2019). The
antidepressant mechanisms differ among these herbal
formulas. For example, Bangpungtongsung-San was shown to
reduce levels of nitric oxide (NO), inducible nitric oxide synthase
(iNOS), cyclooxygenase (COX)-2, tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in a dose-
dependent manner via decreased expression of nuclear factor
(NF)-κB p65, which suggested that its antidepressant effects were
likely related to the suppression of neuroinflammation (Park
et al., 2020). By contrast, the antidepressant mechanisms of
Jiaweisinisan appeared to be associated with regulating
immune-mediated inflammation, cell apoptosis and synaptic
transmission (Chen et al., 2020). In addition, Xiaoyaosan
exhibited synergistic antidepression effects by adjusting
Caspase-3 and Nitric oxide synthase-3 (Liu et al., 2021). These
studies provide mechanistic evidence that at least partially
explains the therapeutic effects of these herbal formulas,
although further analytical chemistry is needed to narrow
down the contributions of each herbal component.

3.2 Individual Herbs for Treating Depressive
Disorders
While herbal formulas comprised of multiple herbal components
are commonly prescribed for DD, several herbal therapies
reported to provide antidepressant effects use individual herbs,
such as Cistanche (Wang et al., 2017), rosemary (Ghasemzadeh
Rahbardar and Hosseinzadeh 2020), Angelicae Sinensis Radix
(Gong et al., 2019). Senegenin (Li H. et al., 2017), Panax ginseng
(WangW. et al., 2018), Lonicera japonica Thunb (Liu et al., 2019),
Polygonum aviculare L. (Park et al., 2018), Hemerocallis citrina
(Li CF. et al., 2017), Ginkgo (Zhao et al., 2015) and Armillaria
mellea (Vahl) P. Kumm. (Lin et al., 2021). exert the
antidepression effect through inhibiting neuroinflammation.
Lycium barbarum deploys a protective effect on depression by
promoting neurogenesis (Po et al., 2017). Baicalin exerts an
antidepressant effect through enhancing neuronal
differentiation (Zhang R. et al., 2019). Perilla frutescens (Ji
et al., 2014a), Tribulus terrestris (Wang Z. et al., 2013), and
Rehmannia glutinosa Libosch (Wang JM. et al., 2018) alleviate
depression by regulating neuroendocrine. Angelicae Sinensis
Radix manifests an antidepression effect by modulating the
hematological anomalies (Gong et al., 2019). Agarwood
exhibits the antidepressive effect by suppressing the HPA axis
(Wang S. et al., 2018). Here we listed herbs that were reported to
be effective in treating depression published in the past 10 years
(see Table 3).

3.3 Phytochemicals for Treating Depressive
Disorders
Although many herbs can exhibit various biological responses,
the specific molecular mechanisms of these activities are still
mainly uncharacterized. Because of the complexity of multiple
chemicals and their efficacies, few herbal pharmacokinetic
parameters have been applied successfully for therapeutic
monitoring. From the herbal formulas to the individual

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8434124

Wu et al. EVs-CHM-DD

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


phytochemicals, the object of study becomes more precise.
Because the structure of phytochemicals is explicit, it is gained
more and more attention recently. As chemical compounds
produced by herbs, phytochemicals can be used as the basic
unit of herbal research. Table 4 presents antidepressant
mechanisms of reported phytochemicals in recently 10 years
(see Table 4).

4 EXTRACELLULAR VESICLES AND
HERBAL THERAPIES

Herbal formulas are composed of various herbs, and the
individual herb is composed of a variety of phytochemicals.
Due to the complex composition of herbal formulae and
individual herbs, it is challenging to use EVs to deliver herbal
formulas. There are studies using EVs to deliver phytochemicals.
A study reported that EVs packaged with curcumin preserve mice
from septic shock provoked by lipopolysaccharide (LPS), and it
also shown EVs can increase their bioavailability stability and
solubility when served as vehicles of curcumin (Sun et al., 2010).
Another study reported daily intranasal delivery of curcumin-
loaded EVs diminished experimental autoimmune
encephalomyelitis, whose mechanism may resulted from
increasing induction of apoptosis in microglial cells (Zhuang
et al., 2011). These studies demonstrate the potential of EVs for
delivering phytochemicals.

In addition, the EVs secreted from cells treated with herb and
herb-derived EVs exhibit a therapeutic effect. Ruan et al. found
Suxiao Jiuxin pill promotes cardiac mesenchymal stem cells
(CMSC) secret exosome through a GTPase-dependent
pathway (Ruan et al., 2018a). Exosomes extracted from Suxiao
Jiuxin pill-treated CMSC can also decline the expression of
H3K27 demethylase UTX, furthermore, enhance

cardiomyocyte proliferation (Ruan et al., 2018b). Besides EVs
secreted by cells treated with herbal formulas, the EVs isolated
from plant samples also had therapeutic functions (Kim et al.,
2021). Vesicles derived from plants are structural units
composed of various primary and secondary metabolites,
which play a synergistic role in biological transport and
pharmacodynamics (Cao et al., 2019b). Zhang et al. reported
that plant cell secrets, EVs, and plant-derived EVs could be a
new therapeutic method against diseases (Zhang et al., 2016c).
For example, EVs-liked ginseng-derived nanoparticles
(GDNPs) can be recognized and internalized with
macrophages and induce M1-type polarization of
macrophages to inhibit melanoma growth in mice (Cao
et al., 2019c). Exosomes derived from ginseng can promote
the neural differentiation of bone marrow derived mesenchymal
stem cells (Xu et al., 2021). In addition, the targeting specificity
of plant-derived EVs can also be improved by modifying their
surface. For example, folate-conjugated arrowtail pRNA-3WJ
were reported to facilitate the binding and uptake of ginger-
derived exosome-like nanovesicles to NK cells (Li et al., 2018).

Moreover, EVs are used as biomarkers in herbal research. For
example, Platelet-derived microvesicles (PMVs) were the
indicator of platelets activation in a study that explores
Tanshinone IIA’s function in a cluster of differentiation 36
(CD36) and mitogen-activated protein kinase kinase 4/c-Jun
NH 2 terminal kinase (MKK4/JNK2) signaling pathway
(Wang H. et al., 2020). Tanshinone IIA also elicited its
impacts by the eicosanoid metabolism pathway and provoking
endothelial microparticles production (Liu et al., 2011).
Macropinocytosis is known to be a form of actin-dependent
endocytosis, which is an endocytic procedure that typifies the
engulfment of macropinosomes. Macropinosomes are large
vesicles that consist of extracellular fluid. Tubeimoside-1
(TBM1), a low toxic triterpenoid saponin isolated from

TABLE 3 | Antidepressant mechanism of herbs.

Herbs Model Species Antidepressant mechanism References

Senegenin CUMS mice ↑ BDNF and NT-3. ↓NF-κB, NLRP3 Li et al. (2017c)
Lycium barbarum DXM rats ↑hippocampal neurogenesis induced by DXM. Po et al. (2017)
Panax ginseng LPS mice ↓IL-6 and TNF-α in serum; IκB-α, NF-κB.↑BDNF, TrkB, Sirt 1 in the hippocampus; SOD. Wang et al.

(2018d)
Lonicera japonica Thunb CUMS mice ↑NLRP3, IL-1β, caspase-1 in the hippocampus Liu et al. (2019)
Perilla frutescens CUMS mice ↑5-HT and 5-HIAA in the hippocampus. ↓IL-6, IL-1β, TNF-α Ji et al. (2014a)
Polygonum aviculare L RS mice ↓CORT, 5-HT, adrenaline, noradrenaline in the brain and serum; CD68, Ibal-1, TNF-α, IL-6, and

IL-1β in the brain
Park et al. (2018)

Hemerocallis citrina LPS mice ↓NF-κB, iNOS, COX-2 in the prefrontal cortex Li et al. (2017a)
Ginkgo LPS mice ↓TNF-α, IL-1β, IL-6, IL-17A.↑BDNF, IL-10 in hippocampus Zhao et al. (2015)
Tribulus terrestris CMS rats ↓CRH and CORT in serum Wang et al.

(2013b)
Rehmannia glutinosa
Libosch

CUMS rats ↓CORT in serum.↑protein and mRNA of BDNF, mRNA of TrkB in the hippocampus Wang et al.
(2018b)

Agarwood RS mice ↓IL-1α, IL-1β, IL-6 in serum; nNOS mRNA in the cerebral cortex and hippocampus; nNOS
protein in the hippocampus

Wang et al.
(2018c)

Armillaria mellea (Vahl) P.
Kumm

FST,
UCMS

rats ↓IL-1β, TNF-α in the serum and cerebrum; IBA1 Lin et al. (2021)

Angelicae Sinensis Radix CUMS rats ↓PDK-1, LDHA Gong et al. (2019)
Baicalin CUMS mice ↑p-Akt, FOXG1, and FGF2 Zhang et al.

(2019b)
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TABLE 4 | Antidepressant mechanism of phytochemicals.

Phytochemicals Molecular
weight

Original medical
herbs

Model Species Antidepressant
mechanism

References

Trans-cinnamaldehyde 132.16 g/
mol

Ramulus Cinnamomi FST mice ↑5-HT, Glu/GABA; ↓COX-2, TRPV1, CB1 Lin et al.
(2019)

Trans-cinnamaldehyde 132.16 g/
mol

Cinnamomum cassia CUMS rats ↓ TLR4, NF-κB-1, p-p65, TNF-α, NLRP3,
ASC, caspase-1, IL-1β, and IL-18 in the
prefrontal cortex and hippocampus

Wang et al.
(2020b)

Perillaldehyde 150.22 g/
mol

Perilla frutescens LPS mice ↓ the levels of TNF-α and IL-6 in both the
serum and the prefrontal cortex; ↑ 5-HT
and NE in the prefrontal cortex

Ji et al.
(2014b)

Perillaldehyde 150.22 g/
mol

Perilla frutescens CUMS rats ↓ TXNIP, NLRP3, Cleaved caspase-1 and
p-NF-κB p65 in the hippocampus

Song et al.
(2018)

Ferulic acid 194.18 g/
mol

Radix Glycyrrhizae CUMS mice ↓IL-1β, IL-6,TNF-α, NF-κB, NLRP3 in the
prefrontal cortex

Liu et al.
(2017b)

Resveratrol 228.24 g/
mol

Veratrum album Ouabain mice ↓ IL-1β, IL-17A, IL-8, TNF-α in plasma Wang et al.
(2018a)

Resveratrol 228.24 g/
mol

Veratrum album CUMS rats ↓ CORT in plasma and CRH mRNA in the
hypothalamus; ↑IL-6, CRP, TNF-α in
plasma

Yang et al.
(2017)

Honokiol 266.3 g/mol Magnolia officinalis LPS mice ↓ TNF-α, IL-1β, IDO, IFN-γ, free calcium in
brain tissue; ↑quinolinic acid

Zhang et al.
(2019a)

Baicalein 270.24 g/
mol

Scutellaria
baicalensis

EAP mice ↓mRNA of TNF-α, IL-1β, IL-6, IL-8 Du et al.
(2019)

Helicid 284.2 g/mol Helicia nilagirica CUMS rats ↑cAMP, PKA C-α, and p-CREB the
proliferation of neurons; ↓SERTs

Li et al. (2019)

Gastrodin 286.28 g/
mol

gastrodia elata CUS rats ↑NSCs proliferation in the hippocampus;
↓p-iκB, NF-κB, IL-1β

Wang et al.
(2014b)

Salidroside 300.3 g/mol Rhodiola rosea Olfactory
bulbectomized

rats ↓IL-1β, IL-6; ↓NF-κB Zhang et al.
(2016d)

Salidroside 300.3 g/mol Rhodiola rosea Olfactory
bulbectomized

rats ↑GR, BDNF in the hippocampus; ↓CRH in
hypothalamus

Yang et al.
(2014)

Z-guggulsterone 312.4 g/mol Commiphora mukul CUS mice ↑ERK1/2, CREB, pAkt, BDNF in the
hippocampus, hippocampal
neurogenesis

Liu et al.
(2017a)

3-(3,4-methylenedioxy-5-
trifluoromethyl phenyl)-2E-
propenoic acid isobutyl amide

315.29 g/
mol

Piper laetispicum
C. DC

LH and SDS mice ↑TSPO, VADC1, Park, Beclin 1, KIFC2,
Snap25

Wei et al.
(2020a)

Sinomenine 329.4 g/mol Sinomenium acutum CUMS mice ↑NE and 5-HT in the hippocampus,
NLRP3; ↓IL-1β, IL-6, and TNF-α in the
hippocampus

Liu et al.
(2018)

Andrographolide 350.4 g/mol Andrographis
paniculata

CUMS mice ↓NO, COX-2, iNOS, IL-1β, IL-6, TNF-α,
p-p65, p-IκBα, NLRP3, ASC, caspase-1
in the prefrontal cortex

Geng et al.
(2019)

Curcumin 368.4 g/mol Rhizoma Curcumae
longae

CUMS rats ↓ IL-1β, IL-6, TNF-α and NF-κB Fan et al.
(2018)

Curcumin 368.4 g/mol Rhizoma Curcumae
longae

CUMS rats ↓ mRNA of IL-1β, IL-6, TNF-α, NF-κB Zhang et al.
(2019c)

2,3,5,4′-Tetrahydroxystilbene-2-
O-beta-D-glucoside

406.4 g/mol Polygonum
multiflorum

CRS mice ↓TNF-α, IL-1β, IL-6 in hippocampal and
prefrontal cortex

Jiang et al.
(2018)

2,3,5,4′-Tetrahydroxystilbene-3-
O-beta-D-glucoside

406.4 g/mol Polygonum
multiflorum

LPS mice ↓ IL-1β, IL-6, TNF-α, and oxido-
nitrosative stress hippocampus and
prefrontal cortex

Chen et al.
(2017)

Puerarin 416.4 g/mol Radix Bupleuri CUS rats ↑ progesterone, allopregnanolone, 5-HT,
and 5-HIAA in the prefrontal cortex and
hippocampus

Qiu et al.
(2017)

Baicalin 446.4 g/mol Scutellaria
baicalensis Georgi

CUMS mice ↑ neurogenesis, p-Akt, FOXG1, FGF2 Zhang et al.
(2019b)

Baicalin 446.4 g/mol Scutellaria
baicalensis Georgi

CUMS mice ↓IL-1β, IL-6, TNF-α in the hippocampus,
and TLR4; ↑PI3K, AKT, and FoxO1

Guo et al.
(2019)

Baicalin 446.4 g/mol Scutellaria
baicalensis Georgi

CUMS rats ↑DCX, NSE, BDNF in the hippocampus,
SOD; ↓caspase-1, IL-1β in the
hippocampus, MDA.

Zhang et al.
(2018b)

Baicalin 446.4 g/mol Scutellaria
baicalensis Georgi

Corticosterone mice ↑ the protein of 11β-HSD2 in the
hippocampus, mRNA, and protein of GR

Li et al. (2015)

(Continued on following page)
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Bolbostemma paniculatum (Maxim.), efficiently lead to in vitro
and in vivo micropinocytosis, which is able to traffic small
molecules into colorectal cancer (CRC) cells (Gong et al.,
2018). Another study demonstrated that matrine could
induce macropinocytosis and the regulation of adenosine
triphosphate (ATP) metabolism (Zhang B. et al., 2018). In
Fructus Meliae Toosendan -induced liver injury mice, serum
exosomal miR-222 and miR-370-3p were reported as
significantly downregulated miRNAs (Zheng et al., 2018; Yu
et al., 2020). By suppressing TGF1 exosomes transferring from
Glomerular mesangial cells to glomerular endothelial cells,
Tongxinluo can impede renal fibrosis in diabetic
nephropathy (Wu et al., 2017). Buyang Huanwu Decoction
can enhance angiogenic by elevating miRNA-126 levels in
mesenchymal stem cell secreted exosomes (Yang et al., 2015).

5 FUTURE PERSPECTIVES

5.1 Extracellular Vesicles: A New Delivery
Approach for Treatments of Depression?
Blood-brain barrier (BBB) restricts the substances passing
between the CNS and the vascular circulation system, thereby
protecting the CNS from exposure to overactive immune
responses or toxic substances (Obermeier et al., 2013;
Andreone et al., 2015). Since the substrates from the blood
to the CNS is controlled by the BBB (Kadry et al., 2020),
effective drug transfer to the brain poses a challenge for
treating CNS disorders, including neurodegenerative
diseases, stroke, autoimmune diseases, or neuropsychiatric
diseases like DD (Abbott et al., 2006; Upadhyay 2014). Almost
all large molecule biologics and about 98% of small molecule

TABLE 4 | (Continued) Antidepressant mechanism of phytochemicals.

Phytochemicals Molecular
weight

Original medical
herbs

Model Species Antidepressant
mechanism

References

and BDNF; ↓SGK1 in the hippocampus
and serum

Iridoids 456.4 g/mol Gardeniae fructus SRS mice ↑GluA1, p-Akt/Akt, p-mTOR/mTOR,
p-P70S6K, PSD-95, Synapsin-1

Xia et al.
(2021)

Paeoniflorin 480.5 g/mol Radix Paeoniae Alba Interferon-alpha mice ↓ IL-6, IL-10,TNF-α in the medial
prefrontal cortex

Li et al.
(2017d)

Senegenin 537.1 g/mol Polygala tenuifolia
Willd

CUMS mice ↑BDNF, NT-3; ↓ IL-1β Li et al.
(2017c)

Icariin 676.7 g/mol Epimedium herb Ovary remove
and CUS

rats ↑AKT, p-AKT, PI3K (110 kDa, 85 kDa),
Bcl-2 in the ovaries; ↓Bax

Cao et al.
(2019a)

Icariin 676.7 g/mol Herba Epimedii CMS rats ↓ TNF-α, IL-1β, NF-κB, NLRP3, mRNA of
iNOS.

Liu et al.
(2015)

Salvianolic acid B 718.6 g/mol Salvia militiorrhiza
Bunge

CMS rats ↓NLRP3, MDA; ↑CAT, SOD, GPx Huang et al.
(2019)

Salvianolic acid B 718.6 g/mol Salvia militiorrhiza
Bunge

CMS mice ↓ IL-1β, TNF-α, apoptosis, and microglia
activation in the hippocampus and
cortex; ↑IL-10, TGF-β in the
hippocampus and cortex

Zhang et al.
(2016a)

Saikosaponin A 781 g/mol Bupleurum chinense MCAO with CUMS
and isolation

rats ↓Bax, Caspase-3, hippocampal neuronal
apoptosis; ↑BDNF, p-CREB and Bcl-2

Wang et al.
(2021a)

Saikosaponin-D 781 g/mol Bupleurum chinense LPS mice ↓ HMGB1 translocation from nuclear to
extracellular, TLR4, p-IκB-α, NF-κBp65

Su et al.
(2020)

Saikosaponin-D 781 g/mol Bupleurum chinense CUMS rats ↑ DCX, p-CREB, BDNF. Li et al.
(2017b)

Ginsenoside Rg3 785 g/mol Panax ginseng LPS mice ↓ mRNA of pro-inflammatory cytokines,
IDO; ↓ IL-6, TNF-α in plasma

Kang et al.
(2017)

Ginsenoside Rg3 785 g/mol Panax ginseng CUS rats ↑ progesterone, allopregnanolone, 5-HT
in the prefrontal cortex and
hippocampus; ↓ CRH, CORT, ACTH.

Xu et al. (2018)

Ginsenoside-Rg1 801 g/mol Panax ginseng CUMS rats ↑SOD, GSH-Px; ↓MDA, NO, ROS, 4-
HNE, 8-OHdG

Cao et al.
(2019b)

Ginsenoside-Rg1 801 g/mol Panax ginseng CUMS rats ↓CORT in serum; ↑testosterone in serum,
GR protein in the PFC and hippocampus

Mou et al.
(2017)

Ginsenoside-Rg1 801 g/mol Panax ginseng CSDS mice ↓iNOS, COX2, caspase-9, caspase-3,
Iba1 in the hippocampus, IL-6, TNF-α,
IL-1β

Jiang et al.
(2020)

Chiisanoside 955.1 g/mol Acanthopanax
sessiliflorus

LPS mice ↓IL-6, TNF-α in serum, BDNF, TrkB, NF-
κB in hippocampal; ↑SOD and MDA.

Bian et al.
(2018)

Crocin 977 g/mol Gardenia
jasminoides and
Crocus sativus

LPS mice ↓ CD16/32 (M1), iNOS, NF-κB p65,
NLRP3, cleavage caspase-1; ↑CD206
(M2) in the hippocampus

Zhang et al.
(2018d)
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drugs cannot traverse the BBB (Pardridge 2012). Nevertheless,
the BBB permits transmembrane diffusion of lipid soluble
(lipophilic) molecules smaller than 400 Da and can selectively
transport some compounds into and out of the brain
(Sanchez-Covarrubias et al., 2014). In this context, EVs
could have advantages as drug vehicles, such as their small
size, low immunogenicity, and ability to cross the BBB
carrying cellular components or pharmacological agents
(see Figure 3). Since EVs have the regenerative ability, they
can also be exploited to potentially inhibit ongoing
neurodegenerative processes associated with DD (Bhatt
et al., 2021). Previous researches have established the
successful transmission of exosomes to the brain in mice
via intranasal injection or intravenous administration
(Zhuang et al., 2011; Yuan et al., 2017). Another study also
showed that exosomes could pass over the BBB and
communicate bi-directionally between the brain and the
rest of body (Bhatt et al., 2021). Despite the expected
benefits of EVs for the treatment of DD, precise
mechanisms of action and routes of delivery still require
careful and rigorous investigation (Bhatt et al., 2021).

Herbal compounds are derived from diverse natural products.
Since Chinese herbal concoctions are complex and undefined

mixtures, it is challenging to demonstrate which component of
the herbal therapy is responsible for a given effect (Corson and
Crews 2007; Xu 2011). In particular, small phytochemicals could
serve as viable cargoes for EV delivery (Liu et al., 2021) (Li et al.,
2021). Indeed, studies exploring the application of EVs as vehicles
for drug delivery have already begun. For example, curcumin-
loaded EVs were found to protect mice from lipopolysaccharide
(LPS)- induced septic shock (Sun et al., 2010). However, very few
studies have examined DD treatment with phytochemical-loaded
EVs, suggesting great potential for this line of research. For
further references of phytochemical-loaded EVs research of
DD, we screened potential phytochemicals from Table 4 by
Lipinski’s rule of five, the rule of thumb to evaluate if a
chemical compound has chemical properties and physical
properties would make it an orally active drug in humans (see
Table 5).

Besides serving as cargoes for EV delivery, herbs can also be
applied to be the vehicle of EV. Distinct from artificially
fabricated liposomes, plant-derived nanovector was reported to
transport chemotherapeutic agents through mammalian
hindrances such as BBB, and refrain from inflammatory
response or necrosis (Wang Q. et al., 2013). Moreover, the
lipid bilayer structure of plant-derived nanovector can protect

FIGURE 3 | EVs for DD treatment by drug delivery. Phytochemicals such as Trans-cinnamaldehyde (TCA), Baicalein (BAI), Helicid (HEL), Z-guggulsterone (ZGU)
and Sinomenine (SIN) can be packaged into extracellular vesicles and conveyed through the BBB to the brain cells (neurons and neuroglial cells), and exert
antidepressant effect by regulating neuroinflammation, neurogenesis and neurotransmitter metabolism through a variety of pathways.
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the cargo from the enzymatic decomposition of proteinases and
nucleases (Wang et al., 2015). Since plants do not retain zoonotic
or human pathogens, plant-derived EVs take advantage of non-
immunogenic and innocuous compared with mammalian cell-
derived EVs(Schuh et al., 2019; Dad et al., 2021). On the other
side, plant-derived EVs do not have cell targeting specificity
because they have no ligands in comparison to mammalian
cell-derived EVs. Previous studies reported that plant-derived
EVs arrive at the liver and intestines through their natural
biodistribution properties (Wang B. et al., 2014; Zhuang et al.,
2015; Zhang et al., 2016b). Fortunately, plant-derived EVs can
obtain specific cellular targeting by modification (Wang Q. et al.,
2013).

5.2 Herb-Derived Extracellular Vesicles:
Emerging Therapeutics for Depression?
As mentioned before, plant-derived EVs are beneficial to be the
vehicle of phytochemicals since they are innocuous, low
immunogenicity, and editable for target specificity. They
can also promote cellular uptake and have higher stability
in the GI tract (GIT) (Fujita et al., 2018), and the versatile
therapeutic potential of plant-derived EVs rooted in their
active source plants (Mu et al., 2014). Moreover, EVs
extracted from the plant have been reported to be
introduced via oral (Wang B. et al., 2014; Zhang et al.,
2017), intravenous (Li et al., 2018), intramuscular, and
intranasal administration (Wang Q. et al., 2013; Ju et al.,
2013). This is another advantage of herb-derived EVs
compared with Chinese herb decoction because the
component complexity is always troubling applying effective
Chinese herb to intramuscular, intravenous, and intranasal
administration. These characteristics above make herb-
derived EVs attractive to be an emerging therapeutic.
Although many research have explained the anti-depressant
mechanism of Chinese herbs (see table 3), few studies explored
the effect of Chinese herb-derived EVs in treating depression,
which is an exciting direction required to be followed.

5.3 Extracellular Vesicles: Potential
Biomarkers for Diagnostic Depression
The unique property of EVs that can easily traverse BBB makes
EVs a potential early diagnostic marker of CNS disorders like
depression (Chen et al., 2016; Yao et al., 2018; Cufaro et al., 2019).
Candidate protein biomarkers and potential diagnostic miRNAs
for DD have been suggested (Al Shweiki et al., 2017;
Tavakolizadeh et al., 2018; Saeedi et al., 2019). Besides
miRNAs and proteins, exosomes as nanocarriers own the
potential to be diagnostic biomarkers in various CNS disorders
including DD (Perets et al., 2018; Wallensten et al., 2021).

The reasons why exosomes have the potential to be clinical
diagnostics and biomarker are as follow (Kanninen et al., 2016):
Firstly, exosomal contents can be changed along with disease
conditions, which can reflect the dynamic state of disease in real-
time; Secondly, exosomes can be easily extracted non-invasively
from biological fluids (Bhatt et al., 2021), which is particular
important because non-invasive availability is beneficial to early
diagnosis of DD; Thirdly, exosomal contents are protected by the
membranous structure, which keeps off the degradation of
potential biomarkers (Kanninen et al., 2016); Fourthly,
exosomes are very stable and can be preserved for prolonged
periods (Grapp et al., 2013), making their clinical application
feasible; Fifthly, exosomes can express their original cellular
surface markers, so that they can be traced to their origin;
Last but not least, since exosomes are able to pass over the
BBB, which provide information of CNS cells that is hard to
obtain without invasive techniques (Boukouris and Mathivanan
2015; Kawikova and Askenase 2015; Lin et al., 2015; Aryani and
Denecke 2016). Because exosomes are distributed in all biological
fluids and all cells can secret them, their biogenesis enables the
arresting of the complex extracellular and intracellular molecular
cargo (Kalluri and LeBleu 2020), rendering exosome-based liquid
biopsy attractive in diagnosing the prognosis of DD. Liquid
biopsies can allow us to understand the pathophysiology
change of DD and diagnose the progressive disorders in the
early stages (Topuzoğlu and Ilgın 2020). Moreover, studies
relating the biomarkers associated with EVs in the context of

TABLE 5 | Potential phytochemicals screened by Lipinski’s rule.

Phytochemicals Molecular
weight

Hdon Hacc AlogP RBN Lipinski’s
rule

OB (%) BBB

Honokiol 266.3 g/mol 2 2 4.83 5 Yes 60.67 0.92
Z-guggulsterone 312.4 g/mol 0 2 3.75 0 Yes 42.45 0.33
Ferulic acid 194.18 g/mol 2 3 2 3 Yes 40.43 0.56
Perillaldehyde 150.22 g/mol 0 1 2.67 2 Yes 39 1.57
Baicalein 270.24 g/mol 3 5 2.33 1 Yes 33.52 −0.05
Trans-
cinnamaldehyde

132.16 g/mol 0 1 1.95 2 Yes 31.99 1.48

Sinomenine 329.4 g/mol 1 5 1.32 2 Yes 30.98 0.43
Resveratrol 228.24 g/mol 3 3 3.01 2 Yes 19.07 −0.01
Gastrodin 286.28 g/mol 5 7 -0.95 4 Yes 8.19 −2.29
Salidroside 300.3 g/mol 5 7 -0.47 5 Yes 7.01 −1.41
Curcumin 368.4 g/mol 3 6 3.36 7 Yes 5.15 −0.76

Hdon and Hacc are possible number hydrogen-bond donors and acceptors, respectively; RBN, means the number of the bonds allowing free rotation around themselves; AlogP value is
the partition coefficient between octanol and water, which is crucial for measuring hydrophobicity of molecule; OB: oral bioavailability; BBB: blood-brain barrier, BBB ＜-0.3 were
considered as non-penetrating (BBB-), from -0.3 to +0.3 moderate penetrating (BBB±), and ＞0.3 strong penetrating (BBB+).
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DD still need more exploration. However, with the utility of
liquid biopsy in diagnosing the prognosis of DD, the
multicomponent analysis of EVs in the future may determine
the disease progression and response to treatment.

5.4 Extracellular Vesicles: A Connection
Bridge Between Herbal Therapies for
Depression andMetabolomics, Proteomics,
Transcriptomics and Epigenetics Studies
Metabolomics is a discipline to obtain all information of
metabolites in a biological sample and would give mechanistic
insights into the etiology of DD (Nedic Erjavec et al., 2018; Du
et al., 2022). For example, nine potential biomarkers involved the
depression pathogenesis were identified based on metabolomics
analysis by comparing the rats’ serum metabolites of
CUMS(chronic unpredictable mild stress) model group and
Xiao-Chai-Hu-Tang group (Xiong et al., 2016). Proteomics
includes all levels of protein composition, structure, and
activity exploration of proteomes. Shweiki et al. summarized
42 differentially regulated proteins in DD and discussed the
diagnostic potential of the biomarker candidates and their
association with the suggested pathologies (Al Shweiki et al.,
2017). Transcriptomics is the study associated with the process of
all RNA transcripts during the biological process of transcription,
and many transcriptomics studies provide insight into DD
(Belzeaux et al., 2018; Cho et al., 2019; Rainville et al., 2021).
By transferring key miRNAs, exosomes from the neuron,
astrocyte, and neural progenitor cell exhibited significant
efficiency in promoting neurogenesis (Takeda and Xu 2015;
You et al., 2020; Yuan et al., 2021). Xu et al. systematically
identified the miRNAs of exosomes from the juice of ginseng
by transcriptomic technology, and found 44 kinds of miRNAs
perfectly match to the ginseng genome database (Xu et al., 2021).

Epigenetics covers heritable phenotype changes that are not
involved in alterations of the DNA sequence, which is
associated with DD reported by numerous studies (Yeshurun
and Hannan 2019; Wheater et al., 2020; Xu et al., 2020). As
discussed above, EVs are ideal herbal drug carriers due to their
remarkable biocompatibility. Moreover, since DNA, RNA, lipids,
proteins, cytoplasm, and metabolites are delivered by EVs, it can
be taken as the critical point connecting herbal therapies to
metabolomics, proteomics, transcriptomics and epigenetics in
DD (see Figure 4).

6 CONCLUSION

Although CHM has been applied in China for thousands of years
to help people fight many diseases, and some of Chines herbal
original phytochemicals such as artemisinin have already been
proved effective, composition complexity still remains a
strenuous challenge for the mechanistic studies of CHM.
Opportunely, the cargos and ligands of EVs can be
determined by metabolomics, proteomics, and transcriptomics
technologies, which means that the composition of herb-derived
EVs can be specified for further mechanism study. Once the
composition is precise, it can also be applied to different delivery
routes such as intravenous or intranasal administration, which
used to be limited to explore by the composition complexity of
CHM. In addition, non-immunogenic, innocuous, and target-
specific features make herb-derived EVs attractive to be
therapeutic agents.

EVs can serve as drug vehicles for phytochemicals and
biomarkers in developing the treatment for DD. Trials in
intranasal administration of EVs indicate their significance in
CNS diseases and show high promise to be a new medical way to
transfer phytochemicals across the BBB. Since there are no

FIGURE 4 | EVs application for CHM. Combined with metabolomics, proteomics, transcriptomics, and epigenetics, extracellular vesicles can be applied to explore
the mechanism when treating DD with herbal formulas and act as the potential diagnose biomarkers in the clinic and preclinic studies.
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specific biomarkers available for DD, the diagnosis has to depend
on the combination of psychiatric evaluation, physical exam and
lab tests. However, combined with metabolomics, proteomics,
transcriptomics, and epigenetics technologies, the specifically
altered contents in EVs from DD patients can be measured.

Even though EVs own promising advantages for delivering
CHM, especially effective phytochemicals for treating DD, the
components complexity of herbs and herbal formulas makes it
challenging to be delivered by EVs. Moreover, there are few
studies on pharmacological functions and in vivo transport
pathways of CHM-derived EVs, which need more exploration
before clinical practice. Therefore, the CHM study of EVs is still
in the initial stage. More in-depth study in different CHM-
derived EVs will be helpful to explain the complicated
pharmacology of CHM and develop a new administration mode.

This review has summarized the reported effective CHM for
treating DD and the advantages of EVs in facilitating CHM for
DD treatment. Currently, few studies have been focused on herb-
derived EVs in treating DD, which is exciting but remains to be
explored in this area.
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GLOSSARY

4-HNE 4-hydroxynonenal

5-HIAA 5-hydroxyindoleacetic acid

5-HT 5-hydroxytryptamine

8-OHdG 8-hydroxy-2′-deoxyguanosine

11β-HSD2 11β-hydroxysteroid dehydrogenase-2

ACTH adrenocorticotropic hormone

AKT protein kinase B

ASC Anti-TMS1

ATP adenosine triphosphate

Bax Bcl-2-associated X protein

BBB blood brain barrier

Bcl-2 B-cell lymphoma 2

BDNF brain-derived neurotrophic factor

CA1 the first region in the hippocampal circuit

CAT Catalase

CD36 cluster of differentiation 36

CD81 cluster of differentiation 81

CHM Chinese herbal medicine

CMS chronic mild stress

CMSC cardiac mesenchymal stem cells

CNS central nervous system

CORT CORT

COVID-19 coronavirus disease 2019

COX Cyclooxygenase

CRC colorectal cancer

CRH corticotropin-releasing hormone

CRP C-reactive protein

CRS chronic restraint stress

CSDS Chronic social defeat stress

CUMS chronic unpredictable mild stress

CUS chronic unpredictable stress

DCX doublecortin

DG dentate gyrus

DXM dextromethorphan

EAP experimental autoimmune prostatitis

EVs extracellular vesicles

FGF2 Fibroblast growth factor

FOXG1 Forkhead box transcription factor

FoxO1 forkhead box protein O 1

FST forced swimming test

GDNPs ginseng-derived nanoparticles

GFAP glial fibrillary acidic protein

GluA1 Glutamate Receptor 1

GPx Glutathione peroxidase

GR glucocorticoid receptor

GSH-pX glutathione peroxidase

HPA hypothalamic pituitary adrenal

Iba1 Ionized calcium binding adaptor molecule 1

IBA1 Ionized calcium binding adaptor molecule 1

IDO indoleamine 2,3-dioxygenase

IFN-γ interferon γ

IL-18 interleukin-18

IL-1β interleukin-1β

IL-34 interleukin 34

IL-6 interleukin-6

iNOS inducible nitric oxide synthase

IRS-1 insulin receptor substrate 1

IκB-α inhibitor of κB-α

JNK2 c-Jun NH 2 terminal kinase

KIFC2 Kinesin Family Member C2

Kir4.1 inward rectifying potassium channel

L1CAM L1 Cell Adhesion Molecule

LDHA lactate dehydrogenase A

LH learned helplessness

LPS lipopolysaccharide

Maxim. Bolbostemma paniculatum

MCAO middle cerebral artery occlusion

MDA malondialdehyde

MDD major depressive disorder

miRNAs microRNAs

MKK4 mitogen-activated protein kinase kinase 4

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP3 oligomerization domain-like receptor family pyrin domain-
containing 3

nNOS neural nitric oxide synthase

NO nitric oxide

NSCs neural stem cells

NSE Neuron-specific enolase

NT-3 Neurotrophin-3

p-AKT phosphorylation-akt

p-CREB phospho-cAMP response element-binding protein

PDK-1 pyruvate dehydrogenase lipoamide kinase isozyme 1

PI3K phosphoinositide 3-kinase

p-iκB phospho-inhibitor of kappa B

PMVs platelet-derived microvesicles

p-p65 anti-p-NF-κB p65

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 84341216

Wu et al. EVs-CHM-DD

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


p-P70S6K Phospho-p70 S6 kinase

PSD-95 Postsynaptic density protein 95

ROS reactive oxide species

RS restraint stress

SDS social defeat stress

SERTs serotonin transporters

SGK1 glucocorticoid-regulated kinase 1

Sig-1R sigma-1 receptor

Sirt 1 sirtuin type 1

SOD superoxide dismutase

SRS spatial restraint stress

TBM1 tubeimoside-1

TCAs tricyclic antidepressants

TLR4 Toll Like Receptor 4

TNFR1 tumor necrosis factor receptor 1

TNF-α TNF-α

TrkB tropomyosin-related kinase B

TSPO translocator protein
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