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Abstract: As evidenced in parasitism, host and niche shifts are a source of genomic and phenotypic
diversification. Exemplary is a reduction in the core metabolism as parasites adapt to a particular
host, while the accessory genome often maintains a high degree of diversification. However, selective
pressures acting on the genome of organisms that have undergone recent lifestyle or host changes
have not been fully investigated. Here, we developed a comparative genomics approach to study
underlying adaptive trends in oomycetes, a eukaryotic phylum with a wide and diverse range
of economically important plant and animal parasitic lifestyles. Our analysis reveals converging
evolution on biological processes for oomycetes that have similar lifestyles. Moreover, we find that
certain functions, in particular carbohydrate metabolism, transport, and signaling, are important for
host and environmental adaptation in oomycetes. Given the high correlation between lifestyle and
genome properties in our oomycete dataset, together with the known convergent evolution of fungal
and oomycete genomes, we developed a model that predicts plant pathogenic lifestyles with high
accuracy based on functional annotations. These insights into how selective pressures correlate with
lifestyle may be crucial to better understand host/lifestyle shifts and their impact on the genome.

Keywords: oomycetes; lifestyle; evolution

1. Introduction

The adaptation of organisms as they evolve to occupy different niches or adopt
different lifestyles is reflected in their genome. Expansion or contraction of gene families
has been cited as a general mechanism for such adaptations [1,2]. Expansions arise mainly
from gene duplication and, in some cases, from acquisition via horizontal gene transfer,
whereas gene loss can happen by accumulation of loss-of-function mutations through
genetic drift [3–5]. Fundamentally, both of these processes are driven by adaptive evolution,
whereby beneficial mutations are selected for and deleterious ones removed from the gene
pool, ultimately leading to phenotypic diversification [6]. More concretely, trends in the
evolution of coding genes can be studied by measuring the ratio of non-synonymous (dN)
to synonymous (dS) amino acid rates in the comparison to closely related sequences, usually
represented as ω [7]. A ratio higher than one (dN/dS = ω > 1) implies positive selection
and thus functional diversification, while a ratio lower than one (dN/dS = ω < 1) indicates
the presence of purifying selection and thus a tighter constraint for the diversification of the
gene sequence. Most genes in an organism are under strong purifying selection, as a change
in a key amino acid of a protein would have a detrimental effect [8]. However, a small
portion of them, those that have been subject to recent diversification, show signs of an
increased nonsynonymous mutation rate. Codon models that take into account statistical
rate variations are commonly used in comparative genomic studies [9]. When performed
on related organisms that have different lifestyles and hosts, the study of positively selected
genes together with their functional annotation illustrates which gene functions played
important roles in the adaptation process.

Pathogens 2021, 10, 807. https://doi.org/10.3390/pathogens10070807 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-9938-9444
https://orcid.org/0000-0002-7924-116X
https://doi.org/10.3390/pathogens10070807
https://doi.org/10.3390/pathogens10070807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10070807
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10070807?type=check_update&version=1


Pathogens 2021, 10, 807 2 of 24

Oomycetes are eukaryotic organisms belonging, together with diatoms and brown
algae, to the group of stramenopiles [10,11]. Since their origin from a marine autotrophic
common ancestor around 400 million years ago, oomycetes have adapted to multiple
environments and lifestyles, and many of them are economically impactful plant and
animal parasites [12–14]. Therefore, they represent a relevant and appropriate system to
study the genetic impact of lifestyle and host adaptation on genetically close genomes.
Four phylogenetic families, representative of oomycete’s large diversity, are the target of
most current research efforts: Albuginaceae, Peronosporaceae, Saprolegniaceae, and Pythi-
aceae. The Albuginaceae and most Peronosporaceae independently evolved the ability to
survive exclusively on living host material, also known as obligate biotrophy [15]. How-
ever, some Peronosporaceae, particularly in the Phytophthora genus, are hemibiotrophs, i.e.,
they display an initial biotrophic phase followed by a necrotrophic one, during which they
feed on the decaying living matter of their host [16]. Additionally in the Peronosporaceae,
the early divergent clade of Globisporangium consists of plant necrotrophs previously clas-
sified as Pythiaceae. All Albuginaceae, Peronosporaceae, and most Pythiaceae are plant
parasitic organisms [17]. On the contrary, most Saprolegniaceae are capable of infecting
animals, with few exceptions including plant-causing root rot Aphanomyces and the free-
living saprophyte Thraustotheca clavata, which does not need a host at any point in its life
cycle [18–20].

Obligate biotrophs have a considerably reduced primary metabolism. Comparative
genome studies have reported a significant and convergent loss of the enzymatic arsenal
in independent lineages of the oomycetes following this lifestyle [21]. The picture is not
so clear for the heterotrophs and their adaptation to different hosts. Pythium insidiosum,
a mammal parasite responsible for pythiosis, shows a relatively recent divergence from
Pythium aphanidermatum and Pythium arrhenomanes, both of which are plant pathogens [22].
There are many theories that explain how such drastic host shifts can occur in a small
evolutionary timescale [23]. Particularly in oomycetes, large reservoirs of noncoding DNA
material can readily evolve into small secreted proteins, known as effectors, facilitating new
oomycete–host interactions [24]. Additionally, the readiness to take up genetic material
through horizontal gene transfer from fungi and bacteria has been reported at multiple time
points in the oomycete lineages [25–27]. However, the impact of host shifts on genomic
selective pressures has not been extensively studied.

There is a high degree of convergent evolution between oomycetes and fungi [28].
Both share many of the niches mentioned, including pathogenic niches of animals and
plants, as well as lifestyles, including saprotrophy, hemibiotrophy, and obligate biotrophy.
Oomycetes and fungi have developed similar strategies to overcome the same challenges,
including comparable filamentous and reproductive morphology, as well as akin infection
strategies [29]. As mentioned above, convergence is probably promoted by genetic ex-
change, as the source of many oomycete genes with a role in host adaptation can be traced
back to pathogenic fungi [30]. Because of the parallels between the adaptive strategies of
these two eukaryotic phyla, we can infer underlying mechanistic principles in oomycetes
on the basis of those further characterized in fungi.

How genome information relates to lifestyle and host adaptation is one of the big
questions in ecology, and may be relevant to predict the appearance of new emerging
diseases. Understanding the genome characteristics and selective pressures in organisms
that have undergone host and niche shifts may offer insights into this question. In this
study, we report the first whole-genome positive selection screening of the proteome of
the oomycetes phylum, including 34 representative members and an outgroup of eight
non-oomycete stramenopiles described in Appendix A. We compared the genes inferred
as being under positive selection to the background annotated genes to identify enriched
biological functions that may correlate to their adaption to different hosts and lifestyles.
Additionally, we developed a method to predict plant pathogenic lifestyle with high
accuracy from the genome of fungi and oomycetes, based on the presence or absence of
key annotated functions.
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2. Materials and Methods
2.1. Data Selection and Functional Annotation

We downloaded stramenopile genetic data from the NCBI and FungiDB databases
setting as cutoff assemblies with reported gene annotation, resulting in a dataset of 42 total
proteomes. We screened the genomes using BUSCO for high abundance of key orthologs
in the stramenopile dataset as a form of quality control [31]. We performed functional an-
notation of the proteomes using InterProScan version 5.50–84.0 [32]. We validated proteins
discussed in the manuscript through comparison with matches from the NCBI datatabase
using BLAST [33]. We annotated the effectors in the stramenopile dataset by predicting
the secretion signal using the tool SignalP 5.0b followed by an annotation with the model
EffectorO [34,35]. We annotated the presence/absence of functional annotations from each
genome with the Genome Properties database, performed the clustering with the Python
library SciPy and visualized it with the package Seaborn [36,37]. We compared Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) clusterings of the genome properties
and genome properties with added positive selection information to the phylogenetic tree
using the Robison–Foulds metric based on clusters with the application TreeCmp [38,39].

2.2. Phylogeny Inference

We constructed the concatenated stramenopile tree using IQ-TREE 2 with automated
partitioned model selection on inferred one-to-one orthogroups present in at least 25 of the
taxa in the dataset [40]. We assessed full branch support in all nodes of the phylogenetic
tree with 1,000 ultrafast bootstrap repetitions using the IQ-TREE 2 software and displayed
it rooted on the outgroup of non-oomycetal stramenopiles.

2.3. Orthogroup Classification and Positive Selection Analyses

We developed a pipeline for whole genome positive selection analysis in Python
using the Snakemake modular workflow framework [41]. It uses as input the coding
nucleotide sequences as well as their corresponding predicted proteins from each proteome.
The code and documentation are available at https://github.com/danielzmbp/wsgups
(accessed on 24 June 2021). The steps of the pipeline include: grouping of sequences into
ortholog families, their alignment with MAFFT, phylogenetic tree inference using FastTree,
codon alignment using PAL2NAL, and finally two positive selection algorithms from the
HYPHY package [42–44]. The first step, consisting of the classification of these proteomes
into ortholog groups was performed with the software Proteinortho version 6, using the
synteny parameter and the Diamond algorithm for homology search [45]. The first HYPHY
algorithm used in the pipeline is FUBAR, a site-based program that scans the alignment for
pervasive positive selection [46]. Families with at least one codon position under positive
selection were subsequently analyzed on all branches with the aBSREL algorithm to relate
selective pressures to specific lineages [47]. Taxa downstream of nodes with a corrected p
value of less than 0.05 were considered under positive selection for this particular gene.

2.4. Enrichment Analyses

We used the Gene Ontology (GO) released in 1 February 2021 [48,49]. We performed
GO enrichment using the Python package Goatools based on the InterPro database annota-
tions [50,51]. The background dataset corresponded to the sum of all proteome annotations
for the corresponding taxa and the study dataset to the genes found to be under selection.
Terms that did not have representative sequences in all analyzed taxa were filtered out.
We used as a significance cutoff the negative base 10 logarithm of Holm–Bonferroni cor-
rected p values that were higher than 1.3 (p value < 0.05). Broad and non-informative GO
terms like biological or cellular processes were not included in the enrichment tables.

2.5. Machine Learning Model

The multilayered deep learning models were constructed using the Tensorflow version
2.3 library with the Keras application programming interface [52]. The dataset consisted

https://github.com/danielzmbp/wsgups
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of 324 proteomes from fungi and oomycete plant pathogens as well as saprobes. We la-
beled each proteome as one of the four respective plant pathogenic classes based on the
literature consensus: saprotroph, necrotroph, hemibiotroph and biotroph. For the genome
properties model, we extracted the features of each genome and encoded them based on
the presence or absence of all the identified pathways, which resulted in an array of 5024
binary features each. Removal of duplicated entries resulted in 319 unique samples. For the
Carbohydrate-Active enZyme (CAZyme) model, we annotated the proteomes using the db-
CAN2 database and encoded the absence or abundance of annotated CAZymes that were
identified with the three implemented methods: HMMER, DIAMOND and Hotpep [53].
After removal of duplicates, 313 samples of 593 features were used for training and testing
of the model. In both models, we performed a stratified split of the dataset into the training
dataset, corresponding to 60% of the total, and the optimization and validation datasets,
each corresponding to half of the remaining 40%. Hyperparameter optimization, namely
of the learning rate, activating functions and dense layer units, was carried out using Keras
Tuner and its implementation of the Hyperband algorithm [54,55].

3. Results
3.1. Proteome Annotation and Clustering

We downloaded the genomes of 34 oomycete species and eight non-oomycete stra-
menopiles from the NCBI and FungiDB databases and annotated their proteomes by the
presence or absence of known functional signatures to gain insights into the divergence of
the dataset (Figure 1) [56,57]. The UPGMA clustering based on the Euclidean distance along
with midpoint rooting resulted in two main groups, one corresponding to the oomycetes
and the other to the remaining stramenopiles. The main difference among them was the
lack of photosynthesis-related annotations in the oomycetes, such as chlorophyll biosyn-
thesis (Figure S1). In the oomycetes, we defined three clusters based on their distance (1–3
in Figure 1): obligate biotrophs, Saprolegniaceae, and a final one grouping most of the
Perosporanaceae and Pythiaceae of the dataset. The obligate biotroph cluster consisted
of the Albuginaceae and the downy mildews from the Peronosporaceae (Bremia lactucae,
Plasmopara halstedii, Peronospora effusa and Hyalopernospora arabidopsidis). The most striking
characteristic was an overall reduction in their metabolism, evident by the lack of many
functional annotations in comparison with other oomycetes. This lack of core biosynthetic
pathways, including vitamin and cofactor biosynthesis, makes them reliant on their host for
growth and survival (Figure S1). The Saprolegniaceae group differed from other oomycetes
mainly in the presence of steroid biosynthesis pathways (Figure S2). In the third cluster,
we defined two subclusters, labeled as 3.1 and 3.2 in Figure 1. The first contained four
of the Pythium and Globisporangium species of the dataset, and the second one included
exclusively all Phythophthora in the dataset (except for Phytophthora megakarya). The Pythium
and Globisporangium species in the dataset also had biosynthetic pathways that most other
oomycetes lacked and that they often shared with the Saprolegniaceae, as a result most
likely of their common facultative lifestyles. The hemibiotroph group, consisting of most
of the Phytophthora species in the dataset, showed significant metabolic reduction, but not
as extensive as in the obligate biotrophs [58].

These clusters and subclusters roughly reflected the lifestyles of the taxa in the
dataset, mostly highlighted by the hemibiotrophs and obligate biotrophs. To a lesser
extent, this was evident in the other two groups as most Saprolegniaceae in the dataset are
facultative animal necrotrophs, and most Pythium and Globisporangium species facultative
plant necrotrophs. Interestingly, T. clavata, the free-living organism in the dataset, clustered
as an outgroup of the other phylogenetically close Saprolegniaceae, showing the greatest
distance to its animal and plant-infecting neighbours. The most notable differences in the
presence/absence of cellular pathways of this T. clavata assembly when compared to other
Saprolegniaceae were the absence of the endopeptidase ClpXP complex and RuvB-like
helicase I (Figure S2). However, there were some exceptions to this arrangement, with some
taxa clustering with a different lifestyle or failing to cluster with their own lifestyle. For
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example, the clustering of the two plant infecting necrotrophs of the Saprolegniaceae
follows the phylogeny of the Aphanomyces genus. Additionally, Globisporangium splendes
appears as an outgroup of group 3.1 despite having a similar plant necrotrophic lifestyle
and being phylogenetically closely related to other members in this clade (Figure S3). An
explanation for this could be its long-read sequencing-based assembly. Long-read sequenc-
ing technology has been shown to produce much larger genomes in oomycetes when
compared to the classical short-read sequencing, as hard-to-assemble repeat-rich regions
are a common feature of their genomes [59]. However, other long-read assemblies in the
dataset (B. lactucae, Saprolegnia parasitica, Phytopythium vexans and Phytophthora fragariae)
show no apparent influence in the clustering (Figure 1).
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Figure 1. Presence/absence of functional attributes in the genomes of the stramenopile dataset correlated with phylogeny.
Equal distance cladogram constructed from conserved families inferred by the maximum likelihood on the left and clustering
by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) of genome properties of the dataset on the right. In the
equal distance phylogenetic tree, colored lines match phylogeny to the clustered taxa with annotated lifestyles. All nodes
in the tree have a 100-bootstrap support. In the heatmap, different colors represent the presence or absence of particular
functional groups belonging to the specified categories. Names in grey represent long-read sequencing assemblies in the
dataset for that species.
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3.2. Ortholog Group Classification

To infer positive selection from the stramenopile dataset of 42 genomes, we classified
the proteomes into ortholog groups by taking sequence similarity and in addition gene
order into account. We selected protein clusters that had at least five members from
different taxa to obtain a good balance between a representative number of families and
results that are statistically robust. This corresponded to 29,123 protein families, which
cover about half (49.02%) of the total proteins in the dataset (Figure 2a). The orthogroups
were mainly composed of one-to-one orthologs (78.70% of families); however, we detected a
significant number of paralogs in some oomycetes, particularly for Nothophytophthora sp., as
well as for Phytophthora nicotianae, G. splendens and Phytophthora parasitica (Figure 2b). This
might be related to the reported whole genome duplications in Phytopthora species [60], as
well as the recent hybridization event that gave rise to Nothophytophthora [61]. Additionally,
the diatom Fistulifera solaris’s large presence of gene duplications highlights its recent
whole genome duplication [62]. The larger presence of duplicates in P. insidiosum and G.
splendes in comparison to their peers may originate from their long-read sequencing-based
assembly, which is better able to resolve gene duplications.

The most abundant orthogroups had between five and nine members (Figure 2c).
Orthogroups corresponding to all taxa were a minority. Instead, most orthogroups were
present in closely related five- to ten-member clades. When looking at the number of genes
not assigned to orthogroups in the oomycetes, the Phytophthora genus had the highest
count (Figure 2a). This may be related to the large arsenal of unique effectors that lack
conserved domains or homologs outside of their own species and play a large role in host
adaptation. Aphanomyces astaci also had a high amount of genes outside of the orthogroups,
most likely because of the recent expansions in its genome [63]. In summary, this highlights
a patchy ortholog distribution in the dataset, with most protein families conserved only
in phylogenetically close members of clades (Figure 2c). Despite this, a significant pool of
ortholog protein families representative of the stramenopile genomes in the dataset could
be inferred from the analysis as further discussed below.

3.3. Positive Selection Analyses

Positive selection screening for orthologous groups was performed by using first
a site-specific codon model to detect families under selection. This was followed by a
branch-site-specific codon model to detect the taxa experiencing positive selection on
those genes. The number of genes under selection varied for the different phylogenetic
clades. Members of the Saprolegniaceae and Pythiaceae, together with the necrotrophic
Globisporangium had a higher count and therefore more genes under selection in or-
thogroups (mean = 1222, std = 152) than the remaining Peronosporaceae and the Albugi-
naceae (mean= 577, std = 245) (Figure S5). A special case was the hybrid Nothophytophthora
sp., which had a comparable amount of positively selected genes to Pythiaceae and Sapro-
legniaceae, however, composed in great part by duplicated genes after speciation, 44.45% of
the total (orange bar). When comparing necrotrophs, hemibiotrophs, and obligate biotrophs
within the Peronosporaceae family (mean = 1344, 663, and 269, respectively), the trend
was that of a decrease in the number of genes under positive selection with the increase in
biotrophic potential (Figure 3).

To infer potential biases in our analyses, we tested for a correlation between the num-
ber of genes under positive selection and the amount of proteins classified into orthogroups
for each taxa (Pearson’s correlation, r = 0.50, p value < 0.01). A correlation of 0.5 suggested
that there may be a larger number of positives because of more extensive testing in the
oomycete species, as they have on average more members in the ortholog dataset. This bias
is more evident in the non-oomycetes (Pearson’s correlation, r = 0.52, p value = 0.18) than
when considering just the oomycetes (Pearson’s correlation, r = 0.15, p value = 0.39). As the
proteomes of the non-oomycetes are overall smaller compared to oomycetes (Figure S4),
we hypothesize that less extensive testing renders them more prone to this bias.
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Figure 2. Orthogroup classification in the stramenopile dataset. (a) Protein-encoding genes from the dataset grouped into
ortholog families. Number of genes classified into orthogroups (protein families of five or more members), not classified
into orthogroups (protein families of less than five members), or unique (not in a protein family) are displayed per taxa. (b)
Duplicates in protein families of the dataset. Number of ortholog families with five or more members from different taxa
that contain paralogs (two or more genes from the same taxa). (c) Distribution of protein family size in the dataset. Number
of families with the same member size are represented as a histogram.

Out of the 32,661 detected genes under positive selection, 21,247 were successfully
annotated with at least a GO term (65%). We performed GO enrichment on the four main
oomycete lifestyles in the stramenopile dataset. The results are discussed below. As a
control for the reliability of the pipeline, we performed the same analyses in a subset of
26 plant pathogens from a dataset of 65 basidiomycete fungi (Table S1). Highly enriched
terms included processes known to be associated with virulence in such pathogenic fungi,
like fatty acid and certain amino acid biosynthesis, ion transport, and protein targeting and
transport (Table S3) [64–66].
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In summary, we could identify signatures of positive selection in 4.14% of all genes
analyzed in the stramenopile dataset. A significant number could be functionally annotated
and potential functions assigned.
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represented as bars. One-to-one orthologs are in green, duplicated genes inside the same family under positive selection in
orange. Names in grey represent long-read sequencing assemblies in the dataset for that species.

3.4. Enriched Biological Functions under Selection

To gauge the selective pressures for adaptation to a parasitic lifestyle in the oomycetes,
we explored the enriched GO terms that were pervasive in all oomycetes (Figure 4a). Highly
enriched term categories related to response to stress, signal transduction, transmembrane
transport, protein modification processes (phosphorylation, in particular), and localization,
as well as numerous carbohydrate, lipid, nitrogen, and sulfur metabolism-related terms.
Within the metabolism, abundant terms relating to biosynthesis are present. In the cellular
compartment GO category, highly enriched terms include protein-containing complexes
(for which transferase complexes show the larger significance), nucleus, intracellular
organelles (for which ribosome shows the largest significance), and membranes (Figure 4b).

Additionally, we performed similar enrichments on the oomycete groups as defined
by their lifestyle. We found the largest amount of unique GO terms to belong to the plant
and animal necrotrophs (36 and 21, respectively). In the plant necrotrophs, these included
terms related to ion transport, carbohydrate biosynthesis, protein modification, and gene
expression regulation. In the animal necrotrophs, unique terms had to do with vitamin
biosynthesis, cilium movement, and protein localization. There were three unique terms in
the hemibiotrophs related to response against stress and transmembrane transport while
no unique terms were identified in the obligate biotrophs. We observed the largest overlap
between animal and plant facultative necrotroph groups (59 common terms). These terms
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related to cell communication, glycolysis, organelle assembly, protein import, regulation of
response to stimulus, translation, and numerous and diverse metabolic processes. This was
followed by a smaller overlap of enriched functions in all four lifestyle groups, amounting
to 33 terms (Figure 4c). The significant terms for each lifestyle are all listed in Tables S4–S9.
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Figure 4. Functional and location enrichment of positively selected genes in the oomycetes. Significantly enriched (a)
biological processes and (b) cellular compartments in all oomycetes that show signals of positive selection in the stramenopile
dataset. Included are gene ontology (GO) terms with a corrected negative base 10 logarithm of the p value higher than 1.5
ordered by category using the GO slim database. The color represents the GO depth. GO depth is a measure of the number
of parent nodes in the GO tree. That is, the more specific the GO term, the higher its depth. The size of the dots corresponds
to the total number of proteins under selection in the stramenopile dataset that belong to said term. (c) Upset plot showing
number of overlapping biological functions under selection in the oomycetes. The four groups correspond to the major
lifestyles in the oomycetes of the stramenopile dataset.
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We also studied the enrichment of biological functions in the expanded gene families
of the dataset independently of whether the genes were under positive selection. In gen-
eral, we found that it reflected positive selection enrichment; however, the terms were
highly variable when comparing different species (Table S10). In the obligate biotrophs,
these related to phospholipid metabolism, cell wall biosynthesis, protein modification,
biological regulation, and transmembrane transport. In the hemibiotrophs, they related
to lipid metabolism, signaling, protein modification, and again to biological regulation,
and transmembrane transport. Finally, in the plant necrotrophs, they related to DNA
integration and localization.

3.5. Lifestyle Prediction

We visualized in a heatmap all functional annotations with added information of
positive selection by performing the same clustering as we did for the genome properties
(Figure 5). We find that adding the positive selection data improves the clustering by
lifestyle, particularly of the plant necrotrophs in the Pythiaceae and Globisporangium, which
now form a single cluster that is closer to the other facultative necrotrophs of the dataset,
the Saprolegniales, than to the obligate biotroph and hemibiotroph oomycetes in the dataset.
Using the Robison–Foulds metric for clusters, we observed that there is a higher congruence
between the phylogenetic tree and the genome properties clustering than to the positive
selection one (Table 1).
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Figure 5. Heatmap of positive selection ratio of functional annotations in the stramenopile dataset. The color gradient from
black to red in the heatmap represents the ratio of genes with a particular functional annotation that are under selection.
Cream-colored cells represent the absence of the annotation for that species. The phylogenetic equal distance cladogram is
represented on the left while UPGMA-based clustering of the distance between the taxa is represented on the right. Colored
lines representing the phylogenetic family connect both clusterings.

Although positive selection information improved lifestyle clustering, we argue that
it is impractical to implement as a prediction method because of its computationally
demanding calculation and poor reproducibility when using different backgrounds for
positive selection analyses. Therefore, we constructed a model to predict lifestyle in plant
pathogenic fungi and oomycetes based on the genome properties alone. We assembled
a dataset comprising 324 genomes from 115 plant pathogenic and saprotrophic fungal
and oomycetal species (Table S2). We used the annoted genome properties as features
to build a deep neural network classifier with four output classes corresponding to their
lifestyle consensus in the literature: saprotroph, necrotroph, hemibiotroph and biotroph.
We found a high accuracy on the validation dataset for the optimized model (loss = 0.11,
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accuracy = 0.95), failing to predict two genomes in the hemibiotrophs and one in the
biotrophs of the validation dataset (Figure 6). For comparison with published models, we
additionally constructed a predictor based on Carbohydrate-Active enZymes (CAZymes),
which also resulted in a high accuracy for the random validation dataset and performed
better in the prediction of hemibiotrophs (loss = 0.14, accuracy = 0.97). Both models
and the steps to reproduce them together with the entire dataset can be found at https:
//github.com/danielzmbp/lspred (accessed on 24 June 2021).

Table 1. Distance comparisons in the clusterings of the stramenopile dataset. Phylogenetic and
genome properties clustering is shown in Figure 1 and positive selection clustering in Figure 5.

Clustering 1 Clustering 2 Robison–Foulds Distance Metric

Phylogenetic Genome properties 28
Phylogenetic Positive selection 30

Genome properties Positive selection 24
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Figure 6. Confusion matrix of lifestyle predictor models. Prediction results in the random validation
sets for the constructed models based on (a) genome properties and (b) Carbohydrate-Active enZymes
(CAZymes), corresponding to 64 and 63 annotated proteomes, respectively (20% of the total dataset).
True values are represented on the x-axis and predicted values on the y-axis.

4. Discussion
4.1. Functional Genome Annotations Largely Correlate with Lifestyle

Convergence of the presence/absence of key functional annotations in species that
do not share the same phylogenetic history but have similar lifestyles has been shown
before for different sets of organisms [67,68]. Distant species with the same lifestyle require
similar functional biological processes, which results in similar selective pressures that
analogously shape their genome, often leading to convergent evolution. Comparable
to the study by Rodenburg et al. (2020) [69], we have shown the tight clustering of
some oomycete groups with a similar lifestyle, most strikingly for the obligate biotrophs
and hemibiotrophs. Conversely, we find a few exceptions in our dataset, such as the
hemibiotroph P. megakarya and the necrotroph G. splendens, which do not clearly cluster
with any of the other oomycetes. We hypothesize this may be partly due to the quality of
their gene annotation. Both have a significantly lower number of complete key orthologs
than the reference stramenopile BUSCO database as compared to other Phytophthora and
Globisporangium species in the dataset (Table A1).

https://github.com/danielzmbp/lspred
https://github.com/danielzmbp/lspred


Pathogens 2021, 10, 807 12 of 24

4.2. Generalists Have More Genes under Positive Selection

A higher number of genes under selection was found for the more generalist families
of Saprolegniaceae, Pythiaceae, and necrotrophic Peronosporaceae, including the Globis-
porangium and Phytopythium clades, when compared to the higher number of specialists
remaining in Peronosporaceae and Albuginaceae (Mann–Whitney test, p < 0.01). Within
the Peronosporaceae, hemibiotrophs have a lower number of genes under selection than
the facultative necrotrophs, and obligate biotrophs have in turn a lower number than
hemibiotrophs (ANOVA one-tailed test, p < 0.01) (Figure S5). Thus, the number of genes
under selection is inversely correlated to the biotrophic potential. With biotrophic potential,
we refer to the capability of the pathogen to survive exclusively on a living host, such that
no obligate biotroph can be cultured in vitro, while for some hemibiotrophs this is the case.
On the opposite side of the spectrum, facultative plant necrotrophs thrive as saprotrophs
without the need for a host. This correlation cannot be explained alone by the different sizes
of the proteomes in the dataset or by their phylogenetic closeness (Figure S4). However,
we hypothesize that both of these factors confound our results to a large extent. Smaller
proteomes in the dataset, as is the case of the non-oomycetes, show a larger correlation
of their size to the number of genes under positive selection. The phylogeny influence
is highlighted by the similar number of genes under positive selection of taxa within the
same genus as shown in Figure S4.

While all hemibiotrophs and biotrophs are obligate plant parasites, the necrotrophs in
the Peronosporacea, Pythiaceae and Saprolegniaceae families show adaptation to a variety
of lifestyles. They are facultative parasites of either animals, plants, or other fungi and
oomycetes. Facultative parasites can live as saprotrophs on decaying matter but also as
opportunistic necrotrophs on a suitable host [70]. The higher number of potential niches
they are able to successfully occupy may drive a larger number of genes to be under
positive diversifying selection. Additionally, when compared to the obligate biotrophs
and hemibiotrophs, which are highly adapted to infect a particular species, e.g., lettuce for
B. lactucae and soybean for Phytophthora sojae, most of the necrotrophs are able to infect a
wide range of hosts. For instance, A. astaci is capable of infecting up to twelve genera of
crayfish and is known for its ease of host jumping [71]. Having a higher number of genes
under positive selection could be therefore correlated with this higher host flexibility.

4.3. Selective Pressures in the Ooomycetes Help Explain Host Adaptation

Biological functions under selection for all oomycetes in the stramenopile dataset,
shown in Figure 4, give insight into which of these are important for the diversification in
this clade. Many biosynthetic functions, particularly related to carbohydrates, are found
to be enriched. Different cell wall carbohydrate composition has been found for different
clades in the oomycetes, likely associated to different lifestyles [72]. Lipid metabolism,
known also to be important for host adaptation in plant pathogenic fungi and oomycetes,
is also enriched [73]. Transport-related proteins, and in particular cation transport, are also
prominently enriched in these terms. As an example, the role of the expanded calcium
transporter genes in the oomycetes has been extensively studied in the context of host
interaction [74]. Overall, many of these terms allude to important virulence factors known
for the oomycetes: transmembrane transport, effector protein processing and secretion,
cell wall synthesis and remodeling, and lipid localization [75].

4.3.1. Selective Pressures Relate to Lifestyles in Oomycetes

The enriched terms common to the Albuginaceae and downy mildews greatly relate
to known virulence factors for these plant pathogens, including carbohydrate metabolism,
protein modification, transport, negative regulation of gene expression, and response
to stimuli (Table S4). This suggests that these biological functions are under selection
and played a big role in the adaptation of oomycetes to an obligate biotrophic lifestyle.
Some of these, particularly carbohydrate metabolism, transport, and protein modification,
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are common to the other plant pathogens in the hemibiotrophs and plant necrotrophs
(Tables S5–S7), highlighting a broader mechanism of adaptation to a plant-parasitic lifestyle.

One of the most often found terms and among the most enriched in both the obligate
biotrophs and the hemibiotrophs of the dataset corresponds to regulation of biosynthetic
and metabolic processes, and particularly negative regulation. This may underscore the
fitness advantage for rapid growth during the hyphal stage and its need for activation
or deactivation according to the circumstances. When the hyphal stage takes place after
colonization, the salvaging and biosynthesis of carbohydrates, nucleic acids, and lipids
with the resources obtained from the plant host is key for a successful infection. Beta-
glucan, for example, is an important component of the oomycete’s cell wall and is also
an elicitor of the plant immune response [76]. Its biosynthesis features prominently in
the enriched terms for the hemibiotrophs. Following the hyphal stage and massive host
colonization, there is a reproductive, mainly sporulating stage which needs to be tightly
regulated. The latent period between infection and sporulation has been shown recently
to correlate to different pathogenic lifestyles in leaf pathogens [77]. A widely diversified
family of proteins in the oomycetes that take part in transcriptional activation and help
regulate sporulation are Myb transcription factors [78,79]. The ortholog family of the gene
Myb3R7, which was shown in P. infestans to be upregulated during sporulation, shows high
rates of positive selection for the Aphanomyces and Pythium clades. Another gene associated
to sporulation, classified as CDC5, was also found to be under selection in the oomycetes
of the stramenopile dataset.

Secretion of small effector proteins, as in other fungal filamentous pathogens, is key
for host adaptation in plant pathogenic oomycetes [80]. Many unique effector proteins have
been characterized in the oomycetes that contribute to virulence by modulating the immune
response of the plant [81]. Therefore, this dependence on the secretion machinery of the cell
for successful infection and thus survival has led to high selective pressures on their genome.
We observed significant enrichment of the effectors in the positively selected terms in all
oomycetes of the dataset (hypergeometric test, p < 0.01). When looking at the enrichment
per species; the majority of the Phytophthora and plant necrotrophs, which significantly
depend on effector proteins for host infection, were also enriched (Figure 7a). The obligate
biotrophs, which also depend greatly on secreted effectors, do not show enrichment in
our analysis. This may be due to the lack of orthologs on host specific effectors and thus
not them not being analyzed in the positive selection screen. There is a small correlation
between the number of positively selected genes compared to those predicted to be effectors
(Pearson’s correlation, r = 0.22, p = 0.22), so these results may be slightly skewed due to
testing bias (Figure 7b). In the GO enrichment of all oomycetes, there were several processes
directly related to protein secretion under selection, including protein modification. Other
secretion-related terms, although more general, also showed enrichment, including those
relating to microtubule-based processes in the obligate biotrophs, and transmembrane
transport in the hemibiotrophs.

Another interesting term indirectly related to effector proteins is sulfur amino acid
biosynthesis. This term is highly enriched in the hemibiotrophs and the necrotrophs of the
dataset. This may be associated with the abundance of cysteine-rich proteins in the effector
arsenal of the plant pathogens with a necrotroph phase [82]. The disulfide bonds that link
cysteine residues help maintain the structural integrity of the proteins released into the
extracellular space called apoplast, a hostile environment that is slightly acidic and rich in
plant proteases [83]. In general, elevated amino acid biosynthesis has been shown to be an
important factor during infection of plant hemibiotrophs such as P. infestans [84]. We found
enzymes related to amino acid biosynthesis, namely methionine synthase and ketol-acid
reductoisomerase, to be under pervasive positive selective pressure in most oomycetes in
the stramenopile dataset. These were previously found to be upregulated during early
infection and the switch to necrotrophic phase in P. infestans [84].

When looking exclusively at the necrotroph groups, many terms in the plant pathogens
overlap with the animal pathogens, most likely relating to their facultative saprobe lifestyle.
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These include glycolysis, generation of energy, cell communication, as well as amino acid,
tetrapyrrole, and amide biosynthetic processes. The latter group is most likely enriched as
a result of their autotrophic and more developed secondary metabolism compared to that
of other oomycetes, which makes them suited to a free-living lifestyle [85]. The highest
enriched term under positive selection for both groups corresponds to the inosine salvage
pathway, in particular the enzyme inosine 5’-monophosphate-specific 5’-nucleotidase.
Nucleoside accumulation in the plant apoplast has been shown to increase susceptibility to
the plant fungal necrotroph Botrytis cinerea [86]. A similar case in oomycete necrotrophs
could have led to high selective pressure on this enzyme. Equally interesting is the
term DNA ligation involved in DNA repair, which may be related to the defense against
oxidative stress that is key to the immune response in plants and animals against such
pathogens [87].
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Figure 7. Effector proteins in the oomycetes of the stramenopile dataset. (a) Enrichment of genes
coding for effector proteins under positive selection in oomycetes. The color gradient represents
significant p values from hypergeometric tests per taxa corrected for multiple testing using Bonferroni.
A lighter shade represents a more significant enrichment. The numbers within the cells represent
the total effectors per proteome in the stramenopile dataset that were analyzed for positive selection.
(b) Correlation between genes under selection and effectors in the oomycetes. Pearson correlation is
represented as a straight line and the confidence interval is represented as a lighter shade (r = 0.22,
p value = 0.22).

4.3.2. Biosynthetic Repertoire Is Important for Lifestyle Adaptation

As shown in Figure 1, the biosynthetic repertoire of each taxa plays a big role in
defining the lifestyle of the organisms in the stramenopile dataset. Particularly interesting
in oomycetes is the evolutionary history of sterol de novo biosynthesis. It is present in
Saprolegniales and absent in other oomycete lineages due to their inability to synthe-
size oxidosqualene [88,89]. The squalene synthase shows hints of positive selection in
Aphanomyces (Figure S6). Furthermore, positive selection is pervasive in the enzymes that
take part in sterol biosynthesis in the stramenopile dataset.
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Vitamin biosynthesis as well plays a big role in the evolution of pathogen adaptation
to its host. Vitamins are expensive to produce and often require dedicated pathways.
Heterotrophs that have adapted to obligate biotrophic lifestyles, such as Albugo and the
downy mildews, circumvent this by losing their biosynthetic capabilities and developing
ways of utilizing host vitamin supply, also known as auxotrophy [90]. Meanwhile, those
that live without a host at any point in their lifecycle must maintain these pathways under
strong purifying selection. In our dataset we found signatures of positive selection in
several enzymes relating to tedrahydrofolate (THF) salvage and biosynthesis, namely
dihydrofolate synthase and phosphoribosylglycinamide formyltransferase (Figure S7).
As THF is a derivative of Vitamin B9 or folic acid, it is crucial for the synthesis of several
amino acids such as serine and methionine as well as for purines and thiamine [91]. It is
therefore likely that oomycetes that are not able to obtain THF from a living host have strong
selection to maintain THF metabolism in order to ensure their own amino acid biosynthesis.

Molybdopterin cofactor is important for the production of certain detoxification en-
zymes [92]. In oomycete obligate biotrophs, molybdopterin-related biosynthetic pathways
have been lost independently several times in the oomycetes’ lineage due to host adap-
tation [15]. Molybdopterin metabolism was found under high selective pressure in the
facultative necrotrophs and autotrophs of the stramenopile dataset, including Saproleg-
niaceae and Pythiaceae families, and Phytophthora genus (Figure S8). The biosynthesis of
molybdopterin cofactor also features as an enriched GO term in the plant necrotrophs
(Tables S6 and S7).

Proteins relating to the glycolysis pathway and amino acid biosynthesis have a special
evolutionary history in the oomycetes [93]. Many of these enzymes originated from
horizontal gene transfer from plants or bacteria. This might explain their high rate of
positive selection, which is usually the case for genes recently acquired by horizontal
transfer, as they need to be adapted to the new host. In the glycolysis pathway, we detected
signatures of positive selection for most oomycetes in the stramenopile dataset, particularly
in the enzymes glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate
aldolase (Figure S9).

4.3.3. Protein Family Enrichment Reflects Lifestyle Selective Pressures

The large overrepresentation of paralogs as positively selected genes is evident in
many of the taxa (Figure 3). After a gene duplication event occurs, there is usually an
increase in the selective pressure on one of the copies that maintains the function. Mean-
while, in the other one, these constraints are relaxed, freeing it for potential divergent
evolution [94]. Interestingly, many of the enriched functions in the paralogs correlated with
terms under positive selection for their specific lifestyle (Table S11). In the Phytophthora
lineages these include biological regulation, glycolipid biosynthesis, and transmembrane
transport. In Albugo and other obligate biotrophs, protein modification, carbohydrate
metabolism, biological regulation, and glutamine metabolism.

4.4. A Model Based on Genome Properties Accurately Predicts Lifestyle

The genome convergence of phylogenetically diverse fungi and oomycetes allowed us
to create a model that can predict plant pathogenic lifestyle based on annotations from both
eukaryotes. Assessment of lifestyle from genomic properties in plant pathogens has been
traditionally performed by characterizing cell wall-degrading enzyme annotations [95].
To our knowledge, there is only one other published model that attempts to predict lifestyle
from genomic features [96]. This model predicts trophic categories based on principal
component analysis of CAZyme annotations. We find that our model, which in contrast
is based on entire genome annotations, allows for better overall accuracy. However, its
better performance may be partly related to its four output lifestyles compared to the
seven classes in the model from Hane et al. (2020), since when comparing the genome
properties model to a four-class model trained using similar parameters on CAZymes,
the prediction is comparably precise (Figure 6). An advantage of the genome properties
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model is that having trained it on a larger number of features per sample allows for
a more accurate prediction of incompletely annotated specimens that may result from
environmental sampling. Given the availability of increasing proteomic and transcriptomic
data of unknown fungal and oomycetal origin, such prediction tools will become crucial to
identify the pathogenic potential of facultative and obligate parasites.

5. Conclusions

The presence/absence of metabolism-related genes is known to converge for phy-
logenetically distant organisms that follow the same lifestyle [69,97]. Here, we report
a similar case for our dataset of stramenopiles. We developed a pipeline for seamless
throughput analysis of positive selective pressures using genome data as input and em-
ployed it to show that patterns of selective pressure also converge on hosts that cannot be
explained by phylogeny alone. Clustering the taxa by their positive selection predictions,
we showed improvement in the prediction of their lifestyle. Furthermore, we identified a
number of biological functions that are commonly found under selection for all oomycetes
independently of lifestyle. We explored and discussed lifestyle-specific adaptive genes
that corresponded to biological regulation, transport, protein modification and metabolite
biosynthesis. Finally, we described a model based on genome properties that is able to
accurately predict the plant pathogenic lifestyle of filamentous fungi and oomycetes.

Overall, we believe our results highlight to date unexplored genes that could lead to
further understanding of lifestyle evolution in oomycetes, and more broadly in filamentous
pathogens. Experimental exploration on the impact these adaptations may have in the
function and behaviour of the encoded proteins could improve prevention and prophy-
laxis against new emerging pandemic threats. Particularly, the enzymes reported in this
manuscript, due to their likely adaptation as a consequence of a shift in host or lifestyle,
may present interesting new targets which could be further explored for disease control.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10070807/s1, Figure S1: Differences in annotated cellular pathways from the
stramenopile dataset. Shown are pathways which have up to 36 repeated values per taxa. The clusters
from Table 1 are encapsulated in a labeled square, Figure S2: Differences in annotated cellular
pathways for the members of the Saprolegniaceae family in the stramenopile dataset. Shown are
pathways which are different in at least one taxa and have at least one complete loss in any of the
taxa, Figure S3: Differences in annotated cellular pathways for the members of the Pythiaceae family
and Globisporangium genus in the stramenopile dataset. Shown are pathways which are different in at
least one taxa and have at least one complete loss in any of the taxa, Figure S4: Correlation between
genes under positive selection and proteome size in the stramenopile dataset. Oomycetes are in
blue (Pearson’s correlation, r = 0.15, p value = 0.39) and non-oomycetes in red (Pearson’s correlation,
r = 0.52, p value = 0.18). Pearson correlation is represented as a straight line and the confidence
interval is represented as a lighter shade, Figure S5: Comparison of the distribution of positive genes
under selection for different lifestyles. Significance between the different categories is p < 0.01 in
both the upper graph (Mann–Whitney test) and the lower graph (ANOVA one-tailed test), Figure S6:
Sterol biosynthesis-related enzymes in stramenopiles. Heatmap of the presence and absence of
the enzymes relating to the sterol biosynthesis pathway in the stramenopiles. The yellow gradient
represents the normalized ratio of the predicted positive selection in genes with this annotation,
Figure S7: Tetrahydrofolate salvage and biosynthesis-related enzymes in stramenopiles. Heatmap of
the presence and absence of the enzymes relating to tetrahydrofolate metabolism in the stramenopiles.
The yellow gradient represents the ratio of predicted positive selection in genes with this annotation,
Figure S8: Molybdopterin biosynthesis-related enzymes in stramenopiles. Heatmap of the presence
and absence of the enzymes relating to molybdopterin biosynthesis in the stramenopiles. The
yellow gradient represents the ratio of predicted positive selection in genes with this annotation,
Figure S9: Glycolysis I, II and III-related enzymes in stramenopiles. Heatmap of the presence and
absence of the enzymes relating to the glycolysis pathway in the stramenopiles. The yellow gradient
represents the normalized ratio of predicted positive selection in genes with this annotation, Table S1:
Summary of the basidiomycete dataset, Table S2: Summary of genomes used for the lifestyle model
construction, Table S3: Significant GO terms with a depth higher than 7 found enriched in the
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positively selected proteins in plant fungal pathogens, Table S4: Significantly enriched terms relating
to biological processes in the positively selected obligate biotroph proteins, Table S5: Significantly
enriched terms relating to biological processes in the positively selected hemibiotroph proteins,
Table S6: Enriched terms relating to biological processes in the positively selected plant necrotrophs,
Table S7: Enriched terms relating to biological processes in the positively selected plant necrotrophs
(continued), Table S8: Enriched terms relating to biological processes in the positively selected animal
necrotrophs, Table S9: Enriched terms relating to biological processes in the positively selected animal
necrotrophs (continued), Table S10: Significant enriched terms relating to biological processes in the
stramenopile dataset’s paralogs.
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Appendix A. Stramenopile Dataset

Table A1. Stramenopile genomes dataset used for positive selection analyses.

Phylogenetic Family Species Name Accession Lifestyle Complete
BUSCOs

Complete and
Single-Copy BUSCOs

Complete and
Duplicated BUSCOs Reference

Non-oomycete

Ectocarpus siliculosus GCA_000310025.1 Autotroph 97 97 0 [98]
Fistulifera solaris GCA_002217885.1 Autotroph 97 14 83 [62]
Fragilariopsis cylindrus GCA_001750085.1 Autotroph 95 95 0 [99]
Hondaea fermentalgiana GCA_002897355.1 Autotroph 95 90 5 [100]
Microchloropsis salina GCA_004565275.1 Autotroph 92 90 2 [101]
Phaeodactylum tricornutum GCA_000150955.2 Autotroph 97 95 2 [102]
Thalassiosira oceanica GCA_000296195.2 Autotroph 90 90 0 [103]
Thalassiosira pseudonana GCA_000149405.2 Autotroph 97 95 2 [102]

Saprolegniaceae

Achlya hypogyna GCA_002081595.1 Animal necrotroph [20] 99 98 1 [20]
Aphanomyces astaci GCA_000520075.1 Animal necrotroph [104] 100 82 18
Aphanomyces euteiches GCA_009835175.1 Plant necrotroph [19] 99 99 0
Aphanomyces invadans GCA_000520115.1 Animal necrotroph 100 83 17
Aphanomyces stellatus GCA_009835185.1 Plant necrotroph [19] 97 96 1
Saprolegnia diclina GCA_000281045.1 Animal necrotroph [105] 99 98 1
Saprolegnia parasitica GCA_000151545.2 Animal necrotroph [105] 99 99 0 [106]
Thraustotheca clavata GCA_002081575.1 Free-living saprotroph [20] 99 98 1 [20]

Albuginaceae Albugo candida GCA_001078535.1 Obligate biotroph [107] 98 86 12
Albugo laibachii PRJEA53219 Obligate biotroph [107] 95 82 13 [108]

Peronosporaceae

Bremia lactucae GCA_004359215.1 Obligate biotroph [109] 96 90 6 [110]
Globisporangium irregulare GCA_000387425.2 Plant necrotroph [111] 98 96 2 [112]
Globisporangium splendens GCA_006386115.1 Plant necrotroph [113] 91 74 17 [114]
Globisporangium ultimum GCA_000143045.1 Plant necrotroph [115] 94 93 1 [112]
Hyaloperonospora arabidopsidis GCA_000173235.2 Obligate biotroph [116] 89 82 7 [116]
Nothophytophthora sp. GCA_001712635.2 90 28 62 [61]
Peronospora effusa GCA_003843895.1 Obligate biotroph [117] 94 93 1
Phytophthora cactorum GCA_003287315.1 Hemibiotroph [118] 100 98 2 [119]
Phytophthora capsici GCA_000325885.1 Hemibiotroph [120] 98 97 1 [121]
Phytophthora cinnamomi GCA_001314365.1 Hemibiotroph [122] 96 94 2 [123]
Phytophthora fragariae GCA_009729455.1 Hemibiotroph 94 93 1 [124]
Phytophthora infestans GCA_000142945.1 Hemibiotroph [125] 100 99 1
Phytophthora kernoviae GCA_001712645.2 Hemibiotroph [126] 96 96 0 [61]
Phytophthora megakarya GCA_002215365.1 Hemibiotroph 91 90 1 [127]
Phytophthora nicotianae GCA_001483015.1 Hemibiotroph [128] 99 86 13 [129]
Phytophthora parasitica GCA_000247585.2 Hemibiotroph [130] 98 87 11
Phytophthora rubi GCA_009733145.1 Hemibiotroph 100 98 2 [124]
Phytophthora sojae GCA_000149755.2 Hemibiotroph [131] 99 98 1 [132]
Phytopythium vexans GCA_000387545.2 Plant necrotroph [17] 94 92 2 [17]
Pythium brassicum GCA_008271595.1 Plant necrotroph [133] 100 99 1
Plasmopara halstedii GCA_900000015.1 Obligate biotroph [134] 100 100 0

Pythiaceae
Pythium aphanidermatum GCA_000387445.2 Plant necrotroph [135] 94 93 1 [17]
Pythium insidiosum GCA_001029375.1 Animal necrotroph [136] 99 87 12 [137]
Pythium oligandrum GCA_005966545.1 Fungal necrotroph [138] 100 100 0 [139]
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