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Abstract: The exponential growth of commercial flights
has resulted in a sharp rise of air travellers over the last
2 decades, including passengers with a wide range of
cardiovascular conditions. Notwithstanding the ongoing
COVID-19 pandemic that had set back the aviation
industry for the next 1 to 2 years, air travel is expected
to rebound fully by 2023-2024. Guidelines and evi-
dence-based recommendations for safe air travel in this
group vary, and physicians often encounter situations
where opinions and assessments on fitness for flights are
sought. This article aims to provide an overview of the
stressors of commercial passenger flights with an
impact on cardiovascular health for the general cardiol-
ogist and family practitioner, when assessing the suit-
ability of such patients for flying fitness. (Curr Probl
Cardiol 2021;46:100746.)
Introduction

T
he exponential growth of commercial flights, both in terms of

accessibility and cost, has resulted in a sharp rise of air travellers

over the last 2 decades.1,2 Notwithstanding the ongoing COVID-

19 pandemic that will set back the aviation industry for the next 1 to

2 years, air travel is expected to rebound fully by 2023-2024. Passengers
icts of interest.
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with a wide range of cardiovascular conditions, are also rising in parallel,

due to a globally aging population and improvements in cardiovascular

healthcare. Guidelines and evidence-based recommendations for safe air

travel in this group vary,3,4,5 and physicians attending to such patients

often encounter situations where their opinions and assessments on fitness

for flights are sought.6 This review article aims to provide an overview of

the stressors of commercial passenger flights with an impact on cardio-

vascular health, and to summarize the management approach of the vari-

ous cardiovascular conditions for the general physician.
Epidemiology of In-Flight Cardiovascular Emergencies
The principal concern regarding passengers with chronic cardiovas-

cular conditions undertaking commercial flights is the risk of acute

decompensation in-flight, with sudden cardiac arrest or death being the

most worrisome outcome.7 Given the large denominator of air travellers

annually, the incidence of such events is exceptionally low. However,

due to the heterogeneous nature of the aviation industry and regulatory

bodies, and the lack of any centralized or international registry to track

the true incidence and nature of in-flight medical emergencies (IMEs)

worldwide,8,9 we are left to extrapolate the risks from studies that are

region or airline specific. From a review of 11,920 passenger medical

consultations from 317 PubMed indexed articles, a prevalence of 1 in

604 flights of IMEs was observed.10 Other IMEs estimates ranged from

24 to 130 per 1 million passengers.11,12 However, these figures most

probably underestimate the true prevalence of all IMEs, since minor

events, especially those that resolve in-flight and do not require tele-

medicine consultations or aircraft diversions, are unlikely to be reported

or monitored in any registry.13

Notably, acute cardiac presentations constituted 7% of all IMEs on

commercial flights, with the most frequent reported symptoms related to

suspected arrhythmias (sensation of fast, slow or irregular heartbeats) or

acute coronary syndromes (chest pain with or without arm/jaw radiation,

breathlessness).9-12,14-20 Based on the above figures, a ballpark incidence

of cardiac IMEs of 5 per 1 million passengers can be roughly derived.

Clearly, such an estimate guides only generic advice for the air traveller,

and further risk stratification needs to be considered for the individual

based on his or her overall profile. The attending physician must be

mindful to holistically assess the stability of the passenger’s existing car-

diovascular conditions, in-flight impact on the disease, and pre- and post-

travel environments, when conducting the pre-flight assessment. The key
2 Curr Probl Cardiol, March 2021



focus is to reduce this remote IME risk to an even lower probability prior

to embarkation of air travel.21

Stressors of Air Travel
The aviation environment is substantially different from the terrestrial

existence that man is accustomed to and physically designed for. Beyond

the obvious in-flight milieu subjecting passengers to physiological stres-

sors, peri-flight situations also impose pressures on the mental and physi-

cal realm.22 At the risk of oversimplifying the subject, the 2 main

categories of air travel stressors to the cardiovascular system are broadly

divided into: (1) Psychological and physical stressors, and (2) physiologi-

cal stressors.

Psychological and Physical Stressors
Mental stress and psychological duress have been shown to be causally

linked to myocardial ischemia in individuals with pre-existing coronary

artery disease.23 The pre- and postflight environments present various

stress points, especially for the international traveller. Stricter security

clearances, long queues at immigration lines, and tightened infection con-

trol measures (due to the recent COVID-19 pandemic) translate to longer

wait times and increased anxiety and frustration for passengers. In addi-

tion, aerobic stress imposed by the activity of luggage transfer within the

airport and transit areas results in a higher physical workload, which may

be exacerbated by elevated altitudes or warmer climates at the foreign

destinations. These levels of exercise may be beyond what the passenger

is accustomed to, and in cardiac patients, may be a trigger for ischemic

events. Consequent to the psychological and physical stressors, the body

responds with an adrenergic surge and sympathetic activation, resulting

in elevated blood pressure and heart rates, further aggravating ischemic

stress on the diseased cardiovascular system.

The development of fatigue consequent to acute sleep deprivation with

or without circadian disruption is common challenges during transconti-

nental flights. Early morning departure and arrival timings and multiple

time zone crossings are the predominant contributors to such diurnal stress,

and may result in an increased risk for acute coronary and arrhythmic

events due to adverse effects on the chronobiological regulation of the car-

diovascular system.24,25,26 Contrary to this, another study has shown that

sudden death in heart failure was not strongly influenced by circadian sym-

pathetic activation,27 suggesting that there is no direct increase in cardiac

vulnerability secondary to short-term sleep-wake interruption in airline
Curr Probl Cardiol, March 2021 3



passengers. However, this trial focused on an advanced heart failure popu-

lation and may not be representative of the full spectrum of patients with

cardiovascular disease. Beyond such contrasting findings, a more pertinent

problem faced by passengers with cardiovascular conditions is the time

dosing of their medications, especially with abrupt changes in time zones,

meals, and wakefulness in transcontinental flights.22 Certain nonprescrip-

tion sleep supplements (such as melatonin) consumed by passengers for

sleep adjustment have also been observed to interfere or interact with car-

diovascular medications,28,29 and dose titration of the implicated cardiac

medications may be required to maintain optimal effects. Some (such as

temazepam, zaleplon, etc) may also have direct effects on the cardiovascu-

lar system,30 and discontinuation or avoidance of such pharmacological

sleep aids should be strongly advised.

Physiological and Environmental Stressors
Physics of Air Travel and Impact on Cardiovascular
Physiology

To appreciate the physiological stressors experienced during air travel,

it is important to understand the basic laws of physics at high altitudes.

The 2 main physical laws are: Boyle’s law (governing the pressure and

volume relationship of gases), and Dalton’s law (governing the partial

pressure of gases within a shared space). The volume of a gas is also

related to its temperature (Charles’ law), but such effects are nominal in

the commercial flight settings as cabin temperature is artificially and

tightly regulated.

Boyle’s law31 defines the relation concerning the compression and

expansion of a gas at constant temperature. This empirical relation states

that the pressure (p) of a given quantity of gas varies inversely with its vol-

ume (v) at constant temperature; that is, in equation form, pv = k, a con-

stant. Simply put, for any given amount of gas at a constant temperature,

the volume is inversely proportional to the pressure. Air containing cavities

within the body is thus subjected to volumetric changes from the changing

altitudes and accompanying cabin pressures during commercial flights.

While this usually has no direct bearing on the heart and circulatory sys-

tem, it does have consequences for passengers that had recently undergone

surgical procedures, where trapped air within the potential spaces of the

thorax or pericardium may expand during hypobaric conditions.

Dalton’s law32 states that the total pressure of a mixture of gases is

equal to the sum of the partial pressures of the individual component
4 Curr Probl Cardiol, March 2021
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gases. The partial pressure is the pressure that each gas would exert if it

alone occupied the volume of the mixture at the same temperature. The

earth’s atmosphere comprises different gases, predominantly nitrogen,

oxygen, and carbon dioxide, with oxygen being most biologically rele-

vant for the maintenance of homeostasis and life. As the altitude

increases and atmospheric pressure drops, the partial pressure of oxygen

falls in tandem. Hypobaric hypoxia presents the biggest health risk at

altitude in unpressurised flights.33 The development of pressurized air-

craft cabins enabled the carriage of passengers and aircrew to altitudes

previously considered incompatible, with conventional commercial

flights now cruising between 6,000m (20,000 ft) and 13,500 m (44, 000

ft). Aviation regulations stipulate that cabin ambient pressures must not

exceed 2438m (8000 ft) at the maximum operating altitude of the air-

plane,34,35 which most airliners were found to be able to maintain

consistently.36,37

At 8000 ft cabin altitude, the approximated partial pressure of oxygen

is 16 kPa, while the arterial partial pressure of oxygen (pO2) in a healthy

individual is between 8 to 9 kPa (Table 1).38 Juxtaposed against the stan-

dard oxygen dissociation curve (of an individual under normal homeo-

static conditions and without anemia or other blood dyscrasias), at a

cabin pressure altitude of 2438 m (8000 ft), the cabin oxygen partial pres-

sure is 118 mm Hg, arterial pO2 is 62-67 mm Hg and oxygen saturation is

maintained at 90%-93%, which is still at the shallow aspect of the curve.

These values arterial pO2 have been found to be concordant during in-

flight measurements with pulse oximeters.39 Evidently, passengers with

pre-existing cardiopulmonary conditions (eg, systolic heart failure, cya-

notic heart disease, chronic obstructive lung disease or poorly controlled

asthma), especially with abnormal sea level oxygen saturations, are in a

precarious position when exposed to even mild hypobaria.40,41 As such,

physicians assessing these passengers for medical clearance for flights

must be mindful to evaluate for preconditions fulfilling the criteria for in-

flight supplemental oxygen.7,42-48
Table 1. Relationship between atmospheric pressure, aircraft cabin pO2, and arterial pO2 in
healthy subjects (data from Slonim and Hamilton38)

Altitude Atmospheric pressure Aircraft cabin pO2 Arterial pO2

Feet Meter mm Hg kPa mm Hg kPa mm Hg kPa

0 0 760 101 160 21.3 95-100 12.7-13.4
8000 2438 564 75 118 15.7 62-67 8.2-9

Curr Probl Cardiol, March 2021 5



Hypoxia and Myocardial Ischemia
The physiological consequences of hypoxia on the cardiovascular sys-

tem are myriad, and ranges from vasoactive effects on the coronary, neu-

rological and pulmonary vascular beds, to chronotropic and blood

pressure responses, as well as salutary effects on cardiac contractil-

ity.21,48-55 Acute hypoxia induces compensatory mechanisms56 to counter

the hypoxemic state � this includes sinus tachycardia, systemic vasocon-

striction, pulmonary vasodilation, and increased minute ventilation. It

also stimulates sympathetic activation with resultant increase in cardiac

chronotropy and inotropy, and further exacerbates hypertensive response.

All these responses converge to increase cardiac workload and place the

hypoxic individual at risk of supply-demand mismatch, with potential

adverse coronary and arrhythmic events.57-59 Some of the referenced

studies in aviation related papers derived observations from hypoxia dur-

ing severe sleep apneic episodes, significantly different mechanistically

from the hypobaric hypoxia at altitude,60,61 and care must be taken in

interpreting such results in the aviation context. In addition, most of these

reported physiological responses do not manifest until marked hypoxemia

when arterial pO2 drops below 40 mm Hg (corresponding to an arterial

oxygen saturation <70%),51,62 which is improbable in a commercial

cabin unless acute decompression occurs (secondary to either a breach in

cabin integrity, or catastrophic failure of aircraft cabin pressurization sys-

tems � both being highly remote occurrences in modern aviation).
Hypoxia and Electrophysiology
There is a paucity of well-designed randomized trials to evaluate

arrhythmic risks in humans in a hypobaric environment, and most studies

inferring increased arrhythmic risks at high altitudes are usually con-

ducted at barometric pressures much lower (such as during extreme

mountaineering) than that within commercial aircraft cabins, or were con-

ducted in animals, and may not be directly applicable to the aviation con-

text.63-65 Arrhythmias are postulated to be triggered by sympathetic

nervous system activation in susceptible passengers, especially those

with underlying structural heart disease,66 and commercial flying presents

multiple precipitants (hypoxia, tachycardia, hyperventilation, missed

medications, etc) for such scenarios. Two volunteer-based studies67,68

from the Netherlands demonstrated a linear correlation between increas-

ing altitudes and ventricular and supraventricular ectopy, in a population

of healthy middle-aged and elderly men (50-64 years old). The investiga-

tors also observed that these findings did not extend to sustained or
6 Curr Probl Cardiol, March 2021



hemodynamically significant ventricular arrhythmias. Extrapolating this

data, it is reasonable to expect passengers with cardiomyopathies, espe-

cially those more than 50 years old, to be more predisposed to arrhyth-

mias during commercial flights, even though the absolute risk increment

is probably nominal.
Aviation Environment and Electrophysiology
In terms of environmental interactions with cardiac implantable elec-

tronic devices (“CIEDs” � comprising pacemakers, defibrillators, loop

recorders) in the aircraft cabin, insufficient large-scale studies currently

exist. From a smaller trial conducted in the early 2000s, pacemakers

(each embedded within an artificial thorax) were exposed to the cockpit

environs of a single engine fixed wing aircraft to assess for electromag-

netic interference (EMI) by the avionics system on device function, with

all found to be working normally during and after the test flight.69 A fol-

low-up study looking at implantable cardioverter defibrillators function

under comparable circumstances was conducted by the same group in

2017, with similar findings.70 Nine mountaineers who scaled Mount

Everest base camp (up to 5600 m) were implanted with subpectoral loop

recorders as part of a study to assess altitude related arrhythmias, with all

the loop recorders explanted in working condition.63

Another study subjected 13 patients with implantable pacemakers to a

simulated altitude of 4000 m in a hypobaric chamber, with pacemaker

interrogation and arterial blood gas analyses performed at predetermined

altitudes.71 The investigators reported that ascent to 4000 m resulted in

arterial desaturation (79%§ 2.5%) but without affecting pacemaker stim-

ulation thresholds or strength-duration curve (a measure of pacing thresh-

old to stimulus pulse duration). Given that conventional aircraft cabin

altitudes do not exceed 2438 m (8000 ft), this provides sufficient support

that pacemakers will likely operate safely within the aircraft confines, an

opinion shared by similar studies and expert consensus papers.72,73

In contradistinction, it is the preflight ground conditions that subject

passengers with CIEDs to risk of device malfunction. The EMI from air-

port security scanners are known to cause inhibition of pacing on occa-

sions,74,80 which would be disastrous for a patient who is pacing

dependent. However, such occurrences are rare and larger studies refute

any significant EMI on CIEDs for either handheld or walk-through metal

detectors of airport security systems.75,76,77 It must be noted that expo-

sures to such EMI are usually brief, and passengers with CIEDs must be

cautioned to inform security personnel of their devices to avoid
Curr Probl Cardiol, March 2021 7



prolonged contact with the security equipment,78,79 and to avoid unneces-

sary stress from the inadvertent alarm trigger when the security devices

detect the metallic CIEDs.79,80,81
Hypoxia and Systolic Heart Failure
Passengers with heart failure with reduced ejection fraction (HFREF),

defined as a left ventricular ejection fraction <40%,82,83 presents an at-

risk group for IMEs during commercial flights.21,84,85 Hypoxia has dele-

terious effects on HFREF, but large populations trials of heart failure

patients under hypobaric conditions presently do not exist. Hobkirk et

al86 showed that in a small group of patients with HFREF and NYHA

functional class II (74%) or III (26%) statuses, inducing isocapnic hyp-

oxia (via inspiration of 15% oxygen) did not cause worsening of baseline

symptoms despite reductions in arterial oxygen tension (to 86% § 4%).

However, it must be noted that this small study was conducted for a very

short duration (1 hour), and the author proposed that further research was

required to assess the hemodynamic and echocardiographic responses to

longer durations of hypoxia in a larger sample size of heart failure pas-

sengers. In another retrospective survey-based study,87 HFREF passen-

gers of various underlying etiologies (ischemic, dilated, hypertensive or

valvular) responded favorably on tolerating the in-flight phase of air

travel. In fact, the main negative experiences were from ground destina-

tions related activities, such as the carriage of luggage across airport ter-

minals, than the flights themselves (25% vs 9% of respondents). Even at

increased workloads under experimental conditions, stable HFREF

patients with more advanced disease (NYHA III and IV) were able to

complete cardiopulmonary exercise tests uneventfully when exposed to

an altitude equivalent to 3000 m (9842 ft).88 In the Ideal Cabin Environ-

ment (ICE) project,89 conducted under the auspices of the European

Commission, volunteers with stable HFREF (all NYHA II functional sta-

tus) were subjected to a 7-hour simulated flight. The mean oxygen satura-

tion at 8000 ft cabin altitude was measured at 91%, but none of the

subjects reported new or worsening symptoms.

In general, current evidence indicates that passengers with stable

HFREF, regardless of functional class, are likely able to tolerate conven-

tional commercial flights with in-flight physical levels commensurate

with their activities of daily living.

Standalone right heart failure (defined as right ventricular fractional

area change of <35%,90,91 traditionally derived from echocardiographic

evaluation), and heart failure with preserved ejection fraction (“HFPEF”
8 Curr Probl Cardiol, March 2021



� left ventricular ejection fraction >50%), are less common entities, and

literature on safety of commercial flights in such a niche population is

scarce. More research needs to be conducted in this realm to assess the

effects of commercial flights on such conditions before firmer recommen-

dations can be made.
Hypoxia and Thrombogenicity
From a cardiovascular standpoint, the chief concern of hypoxia

induced procoagulable state is the formation of occlusive coronary

thrombus in already atherosclerotic segments, or deep vein thrombosis

(DVT) with risk of embolic events (pulmonary embolism from peripheral

DVT, or systemic embolism if right-to-left shunt is present).4,21,46,50,79,85

Both transient and chronic exposure to extreme altitudes (>5000 m) have

been shown to result in increased activation of clotting factors,92,93 with

increased release of thromboxane and prostacyclin, and elevated levels of

factor VIII and D-dimer. However, such in-vivo findings did not translate

to real-world clinical consequences,94 including 2 small studies of

healthy volunteers in simulated flights.95,96 A more sizeable trial97

involving 73 subjects in a hypobaric chamber recreating the cabin envi-

ronment of a long haul flight (8 hours) at an altitude of 2438 m (8000 ft)

did not demonstrate any significant differences in prothrombotic states of

mild hypoxia on low risk, healthy individuals.

In summary, majority of commercial air travellers exposed to hypoba-

ria in-flight do not appear to be at increased risk of cardiovascular events

despite mildly reduced arterial oxygen content, including myocardial

ischemia, acute decompensation of heart failure, or significant cardiac

dysrhythmias. In addition, passengers with CIEDs are also unlikely to

experience device malfunctions during the flying phase of travel. These

assertions are adequately supported by current evidence-based studies for

short to medium range flights (up to 8 hours), but data regarding flight

risks for super long-haul flights (duration >12 hours) in the modern era

of high endurance aircraft are presently lacking.21,98
Conclusion
Knowledge of the aviation environment and its attendant physiological

consequences, as well as commercial flying associated stressors, underpins

the decision-making process for the clinician in certifying any passengers

fit for flight prior to their air travel. This review has summarized the key

aerospace principles and evidence relevant for the attending physician to
Curr Probl Cardiol, March 2021 9



develop an understanding of the various factors that will impact cardiovas-

cular health for the patient undertaking commercial flights.
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