
control cohort. Additionally, MUC5B status and expression
correlated with a UIP pattern on histology and computed
tomography, suggesting its role in mediating a particular type of
fibrosis independent of disease etiology.

So what can we take away from this avalanche of gene expression
data? Clinically, CHP can be difficult to distinguish from IPF. The
contrasting elements in this study provide more evidence that
molecular classification of these difficult-to-diagnose entities will be
possible and that we need to continue to move in that direction.
Although “a rose by any other name might smell as sweet,” for ILDs,
it may be more important to understand their shared features in
order for targeting therapies to have the broadest effect,
while using their distinguishing features to help define them. n
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A New “TYK” Tok Era for the Study of Long Noncoding RNAs in
Pulmonary Hypertension

Pulmonary arterial hypertension (PAH) is a progressive
disease characterized by increased pulmonary arterial pressure
and pulmonary vascular resistance, ultimately leading to right
heart failure and death. This increased vascular resistance leads
to pulmonary vascular wall thickening and remodeling via phenotypic
changes in proliferation and apoptosis in pulmonary arterial smooth
muscle cells (PASMCs), pulmonary arterial endothelial cells (PAECs),
pericytes, and fibroblasts (1). Over the past decade, appreciation has
increased regarding the pervasive importance of noncoding RNA
biology in controlling pulmonary vascular function and the
pathogenic progression to PAH (2). Though studies of microRNAs

in PAH have dominated the literature, the biologic roles of long
noncoding RNAs (lncRNAs) increasingly are emerging as
pathogenic hubs of disease (3).

TYKRIL and lncRNA Biology
Tens of thousands of lncRNA transcripts are encoded by the
human genome. They are transcripts over 200 nucleotides
long without predicted protein-coding potential. lncRNAs
typically bind either proteins or other RNA molecules to enact
epigenetic, transcriptional, and posttranscriptional regulation of
gene expression, affecting a wide range of biological processes
ranging from cell proliferation, apoptosis, and differentiation (4).
lncRNAs have dynamic and specific expression patterns, are
expressed in both the nucleus and cytoplasm, and are released at
detectable and reproducible quantities into the circulating plasma
(5). A crucial challenge in the study of these molecules is their poor
sequence conservation across mammalian species, thus making
analysis of their in vivo mechanisms of action particularly
challenging.

Though a number of lncRNAs have been reported as
dysregulated in tissue and plasma of subjects with PAH, the
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actions of only a few lncRNAs thus far have been implicated
in pulmonary vascular pathophysiology. In this issue of the
Journal, Zehendner and colleagues (pp. 1445–1457) screened
the landscape of lncRNAs in human PAH lung tissue; they
characterized the novel lncRNA TYKRIL (tyrosine kinase
receptor–inducing lncRNA) in pulmonary vascular remodeling
and suggest it as a new therapeutic target (6). The team began
by conducting RNA-sequencing analysis of PASMCs and lung
pericytes exposed to hypoxia and derived from patients with
idiopathic PAH. This global screening approach allowed for
the identification of numerous dynamically altered lncRNAs,
including TYKRIL. In cultured PASMCs and pericytes and in
lung slices from patients with PAH, the team demonstrated
that TYKRIL regulates tyrosine kinase signaling by binding the
tumor suppressor p53 and facilitating the transcription of platelet-
derived growth factor receptor PDGFRb, thus promoting the

hyperproliferative and apoptosis-resistant phenotypes of these cells
in PAH (Figure 1A).

Overall, this study offers a glimpse into the next generation
of studies that are fast approaching to characterize lncRNA
biology in PAH. As the first known lncRNA to regulate the
central p53/PDGFRb axis, TYKRIL may indeed serve as a key
mediator across multiple cell types of PAH. Yet, because this
lncRNA is not conserved in rodents, traditional approaches to
study its mechanisms of action were not possible in live animals.
Instead, the team used an ex vivo precise cut lung slice model (7),
whereby explanted human lung slices containing all lung cell types
could be cultured and manipulated at the molecular level. As such,
the use of precision lung slices here served as a clever method
to gain insight into this lncRNA’s role in controlling vascular
remodeling. Such a discovery platform may open up key avenues to
study other nonconserved lncRNAs in human lung diseases.

TYKRIL Function in
PDGFRβ Signaling

In Situ Human Biology Models
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Therapeutics
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Figure 1. A new era for studies in long noncoding RNA (lncRNA) biology for pulmonary arterial hypertension. (A) Representation of TYKRIL (tyrosine
kinase receptor–inducing lncRNA) function in the p53/PDGFRb signaling axis under physiologic and pulmonary hypertension conditions. (B) Advancing
methodologies for creating three in situ models to study human pathophysiology driven by nonconserved lncRNAs: precision-cut lung slices, humanized
mouse models, and human organoid models. (C) Currently proposed therapeutic technologies and their drawbacks for inhibiting lncRNAs
(Gapmers/antisense oligonucleotides [ASO] and CRISPR/Cas9 genome editing). Priorities for understanding lncRNA biology to develop more effective
RNA therapies include systems biology analyses for defining RNA secondary structure, binding partners, and cell type–specific expression and function.
3D= three-dimensional.
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Furthermore, given the well-documented limitations of current
animal models of PAH (8), such work highlights the potential for
future development of complex in situ or synthetic human biology
models of PAH that otherwise have not been possible to date.
For example, such approaches could be envisioned using three-
dimensional human organoid modeling (9) or humanized mice
engrafted with human biological tissues, often useful in modeling
human immune cell interactions with the vasculature (10)
(Figure 1B).

lncRNA Therapeutics
These novel discovery platforms may also open a door for
development of specific lncRNAs as therapeutic targets in
PAH. However, stemming from the number of unknowns that
still exist in noncoding RNA biology, current technology for lncRNA
inhibition may not yet be advanced enough for true therapeutic
performance. Here, Zehendner and colleagues inhibit TYKRIL using
gapmers, chimeric antisense oligonucleotides that engage target
lncRNA and induce RNase H-based degradation (11). These can be
particularly useful in targeting nuclear RNAs as compared with
siRNAs that target cytoplasmic messenger transcripts. Nonetheless,
gapmers and other existing RNA interference methods are difficult
to implement therapeutically because of low bioavailability and off-
target effects (12). Those off-target effects are further compounded
by the innate biology of lncRNAs that often employs extreme and
varied pleiotropic cellular reprogramming, as this group also found
by RNA sequencing of cells after TYKRIL knockdown. Finally, the
cell-type specificity of actions of lncRNAs such as TYKRIL can
further complicate the biology. For instance, in this study, beyond
pericytes and PASMCs, TYKRIL was also found to be upregulated in
PAECs. However, because TYKRIL’s target p53 displays divergent
expression patterns and activity in PAECs in PAH (13), TYKRIL’s
ultimate actions may be more nuanced and distinct, depending
on cell type.

Ultimately, for more reliable therapeutic development in this
space, a better system would be necessary to catalog and discern the
key regulatory targets and pathways of an individual lncRNA across
its multilayered pleiotropy. Improvements in our ability to predict
the secondary structure of lncRNAs and their binding potential
to other RNAs and proteins should be prioritized. Furthermore,
the development of therapeutic delivery systems in vivo to target
or genomically edit lncRNAs in specific cells or cell types may
also be warranted (Figure 1C). Despite these challenges, this
study exemplifies the progress being made toward a more
complete understanding and druggable landscape for lncRNAs
in PAH. n
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