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Abstract: Unmanned aerial vehicles (UAVs) can be deployed as base stations (BSs) for emergency
communications of user equipments (UEs) in 5G/6G networks. In multi-UAV communication
networks, UAVs’ load balancing and UEs’ data rate fairness are two challenging problems and can
be optimized by UAV deployment strategies. In this work, we found that these two problems are
related by the same performance metric, which makes it possible to optimize the two problems
simultaneously. To solve this joint optimization problem, we propose a UAV diffusion deployment
algorithm based on the virtual force field method. Firstly, according to the unique performance
metric, we define two new virtual forces, which are the UAV-UAV force and UE-UAV force defined
by FU and FV, respectively. FV is the main contributor to load balancing and UEs’ data rate fairness,
and FU contributes to fine tuning the UEs’ data rate fairness performance. Secondly, we propose a
diffusion control stratedy to the update UAV-UAV force, which optimizes FV in a distributed manner.
In this diffusion strategy, each UAV optimizes the local parameter by exchanging information with
neighbor UAVs, which achieve global load balancing in a distributed manner. Thirdly, we adopt the
successive convex optimization method to update FU, which is a non-convex problem. The resultant
force of FV and FU is used to control the UAVs’ motion. Simulation results show that the proposed
algorithm outperforms the baseline algorithm on UAVs’ load balancing and UEs’ data rate fairness.

Keywords: UAV deployment; load balancing; virtual force field; diffusion strategy; success convex
approximation

1. Introduction

By equipping wireless access network technology, Unmanned Aerial Vehicles (UAVs)
can be used as aerial BSs to serve the ground user equipment (UE) beyond the coverage
of ground BS [1–3]. Due to the flying nature, UAVs can be flexibly deployed to the on-
demand communication areas and adapt their positions according to the communication
requirements [4]. Since the UAVs operate at a high altitude, line-of-sight (LoS) links
dominate the UAV-UE channel, which brings higher channel capacity. Thus, it is attractive
to deploy UAVs in hotspots or disaster relief areas, where the UEs cannot be associated
with ground BSs due to limited communication resources or signal coverage, in order to
provide more wireless communication resources and enhance the network connectivity
and capacity [5].

The research on UAV communication networks can be classified into two categories.
In the first category, UAVs assist ground BSs in hotspots to improve network capacity.
Generally, only a single UAV is involved in the network for traffic offloading from ground
cellular networks [6–8]. In the second category, multiple UAVs work as a team to provide
efficient communication coverage without considering the ground BS [5,9–11]. Considering
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that the BSs may not work normally in the disaster relief areas, the second scenario is more
meaningful for emergency communication. Thus, we will study UAV communications in
the second scenario.

One of the key factors that affect multi-UAV wireless networks’ performance is the
fair coverage of UAVs. In our view, the fair coverage of multi-UAV networks has two
meanings, which are the load balancing of multiple UAVs and the data rate fairness of UEs.
The UAVs’ coverage fairness can be improved by optimizing the deployment of the UAVs,
which is also known as the UAV positioning or the trajectory design.

Recently, there are inspiring studies on UAV deployment optimization for UAVs’ fair
coverage. Liu et al. [12] proposed a deep reinforcement learning-based UAV deployment
algorithm for energy-efficient communication and fair UAV coverage. Chen et al. [11]
also optimized the UAV networks’ efficiency and fair using mean field deep reinforcement
learning. The above two methods are both centralized. However, in a large scale multi-UAV
network, a centralized algorithm requires a central controller and may result in too much
information exchange and high control latency. Little work has been done on distributed
fair UAV coverage optimization. Liu et al. [10] studied the distributed methods on UAVs’
motion control for long term coverage. Most of the above-related work studied one aspect
of fair coverage, which is load balancing of UAVs or fairness of UEs’ data rate.

The virtual force field is an efficient tool for UAV deployment optimization due to
its low computation complexity. Zhao et al. developed a distributed UAV deployment
algorithm considering UAVs’ load and UEs’ data rate at the same time [5]. In that work, by
considering the users’ center and the connectivity between UAVs, the positions of UAVs
are controlled by the synthesis of four virtual forces. These virtual forces are based on the
UEs’ distribution, UAVs’ distribution and distances between UAVs. It can be seen that
the virtual force-based UAV deployment algorithm is practical due to its low computation
complexity. However, these virtual forces are not constructed by any performance matrices.
Such work achieves some level of fair coverage, but the performance can still be further
improved. In this work, we will adopt the virtual force field method to optimize the UAVs’
deployment for fair coverage. The innovation of this work on the virtual force field method
is that we define two new virtual forces by performance metric.

The load of a UAV is determined by its serving UEs. UEs cannot be associated with
UAVs too far away. Thus, for any UAV in a multi-UAV network, the load can only be
balanced between neighbor UAVs. So, distributed load balancing algorithms are preferred
in multi-UAV networks. In this work, we consider adopting the diffusion strategy in load
balancing optimization. The diffusion strategy is a new distributed method that estimates
local parameters of interest through information exchange with neighbor nodes in the
network [13]. Diffusion LMS (Least Mean Square) has been successfully applied in many
signal processing problems [14]. The diffusion strategy is distributed and responds in real
time, which makes it fit for the UAV deployment problem [15]. The diffusion LMS aims
to achieve the same parameter for all nodes. However, in our problem, load balancing
between UAVs does not mean the same load between UAVs. Thus, we need to modify the
diffusion strategy with a new load balancing cost function and optimization process.

In this paper, we focus on joint UAV load balancing and UE data rate fairness opti-
mization in multi-UAV networks. To this end, we adopt the virtual force method to control
UAVs’ movement [5,16]. We propose a unified performance metric for both the UAV load
balancing and the UE data rate fairness problem. Meanwhile, based on the unified metric,
we define two new virtual forces, the namely UAV-UAV force and UE-UAV force, which
are denoted by FV and FU, respectively. The goal of FV is to balance the load among
UAVs. A diffusion strategy is designed to update FV, in which each UAV optimizes its
FV automatically through the local information (UEs’ data rate and UAV’s load) and the
load information of neighbor UAVs. Meanwhile, FU aims to achieve proportional fairness
for the UEs served by one UAV, which increases the lowest data rate in the network. The
optimal solution of FU is searched by the success convex optimization. The resultant force
of FV and FU results in load balancing among UAVs and fairness among UEs. Since FU
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only exists between the UE and its serving UAV, compared with FV, the range of FU is
very short. In this way, FV determines the large-scale movement of the UAVs and FU
determines the fine-tuning of the UAVs’ movement. Thus, FU is the main contributor to
the performance. The main contribution of this paper include:

1. A unified performance metric for joint UAVs’ load balancing and UEs’ data rate
fairness optimization.

2. Construction of the virtual forces by the unified performance metric, instead of the
simple location information of UEs and UAVs in [5].

3. A diffusion UAV-UAV virtual force update method and searching of the optimal
UAV-UE virtual force solution by successive convex optimization.

The rest of this paper is organized as follows. We give the system model in Section 2.
The proposed diffusion UAV deployment optimization algorithm is introduced in Section 3.
Simulation results are presented in Section 4. Finally, Section 5 concludes this research.

2. System Model
2.1. Network Model

We consider a multi-UAV downlink network consisting of N UEs and M UAVs,
which are denoted by {UE1, UE2, . . . , UEN} and {UAV1, UAV2, . . . , UAVM}, respectively,
as shown in Figure 1. The UAVs serve the ground UEs as BSs at a fixed altitude [10]. Each
UE is associated with the closest UAV. The UAVs can move to any position in the area of
interest. The position of UAVi at time n is denoted by {xi[n], yi[n], H}, where xi[n], yi[n]
are the x- and y-horizontal coordinates at time n and H is the fixed altitude. Since the UAVs
move much faster than UE, we assume that the positions of UEs are fixed in this scenario.
The position of UEj is denoted by

{
x̃j, ỹj

}
. The distance between UAVi and UEj at time n,

which is denoted by di,j[n], can be calculated by

di,j[n] =
√
(xi[n]− x̃j)

2 + (yi[n]− ỹj)
2 + H2 (1)

UAV Coverage 

area
UE

x

y

h

Figure 1. Multi-UAV communication network.

Assume that the maximum UAV speed is Vmax , for any UAVi, we have√
(xi[n]− xi[n− 1])2 + (yi[n]− yi[n− 1])2 ≤ Vmax
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The air-to-ground channel is modeled by jointly considering line-of-sight (LoS) and
non-line-of-sight(NLoS) transmission with their occurrence probability [5]. The probability
of having LoS transmission between UAVi and UEj at time n is given by [17]

pLoS
i,j [n] =

1
1 + a exp(−b( 180

π tan−1( H
ri,j [n]

− a))
(2)

where a and b are constant values that depend on the environment, (−b( 180
π tan−1( H

ri,j [n]
− a))

is in degrees, and

ri,j[n] =
√
(xi[n]− x̃j)

2 + (yi[n]− ỹj)
2 (3)

Thus, the NLoS probability is PNLoS
i,j [n] = 1− PLoS

i,j [n].
The average path loss of LoS and NLoS transmissions between UAVi and UEj at time

n are defined by [18,19]
gLoS

i,j [n] = ηLoS × ρ0 × d−2
i,j [n],

gNLoS
i,j [n] = ηNLoS × ρ0 × d−2

i,j [n]

where ηLoS and ηNLoS are average additional path loss factor for LoS and NLoS transmission,
respectively, fc is the carrier frequency. Therefore, the probabilistic mean path gain between
UAVi and UEj at time n is

gi,j[n] = gLoS
i,j [n]× PLoS

i,j [n] + gNLoS
i,j [n]× PNLoS

i,j [n] (4)

Assuming that the UAVs share the same frequency band, the UAVs interfere with
each other in downlink transmission. The signal to interference plus noise ratio (SINR) is
given by [19]

γi,j[n] =
pi[n]gi,j[n]

∑k 6=i pk[n]gk,j[n] + σ2 (5)

where pi[n] is the downlink transmit power of UAVi, pk[n]is the interference from other
UAVs, and σ2 is the power of the additive white Gaussian noise (AWGN) at the receiver.

We assume that each UAV equally allocates the frequency resource to its UEs [20]. Accord-
ingly, available bandwidth for UEj associated with UAVi is expressed as Bi,j[n] = B0/Ni[n],
where B0 is the available bandwidth and Ni is the number of UEs served by UAVi at time n.
Then, the data rate of UEj from UAVi is

Ti,j[n] = Bi,j[n]log2(1 + γi,j[n]) (6)

The number of UEs associated with UAVj determines the available bandwidth of
each UE.

2.2. Utility Formulation and Problem Defination

There are two sub-problems in this work, which are the UAVs’ load balancing and the
UEs’ data rate fairness. We formulate the UEs’ data rate fairness metric by the proportional
fairness as follows [21].

Ui(Ti[n]) = ∑UEj∈UAVi
log(Ti,j[n]) (7)

where UEj ∈ UAVi mean the UEj which is associated with UAVi, and T is the set of all
UE’s throughput. The logarithm function has the property of diminishing returns, which
makes the logarithm function naturally achieve fairness among UEs.
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Another goal of this paper is to balance the load among UAVs by distributed UAV
deployment optimization. Considering the data rate of UEs, the load of a UAV is deter-
mined by not only the number of UEs associated with this UAV but also the channel states
of the UEs [20]. The load balancing can be achieved by allocating more resources to the
UEs with a low rate [20,22]. In this work, we will manage the radio resource through
UAV deployment optimization. Other techniques, such as user association, UAV coverage
expansion or transmission power control, can also be used for load balancing optimization,
which are, however, beyond the scope of this paper.

From previous studies, the logarithm function with respect to UEs’ data rate can be
used to represent the load of a cell [20]. The load balancing utility of the whole multi-UAV
network can be defined as

U(Ti[n]) = ∑UEj
log(Tj[n]) j ∈ {1, 2, ..., N} (8)

The difference between (7) and (8) is that (7) only considers the UEs served by one
UAV and (8) considers all the UEs. Equation (8) can be further transformed as

U(Ti[n]) = ∑UAVi
Ui(Ti[n]) i ∈ {1, 2, ..., M} (9)

In this way, we find that UEs’ data rate fairness can be used to formulate the UAVs’
load balancing problem. To be more specific, UEs’ data rate fairness of one UAV can be
treated as the load of this UAV.

In our work, we do not use (8) or (9) as the UAVs’ load balancing metric due to its
complexity. Instead, we will use (7) as a factor to construct the UAV-UAV virtual force
for load balancing optimization. Thus, the UAVs’ load balancing problem and UEs’ data
rate fairness problem are unified by the same metric (7). So, these two problems can be
optimized at the same time.

We define the UAV deployment problem for joint UAVs’ load balancing and UEs’ data
rate fairness optimization as follows.

Problem 1: Given the number of UAVs and UEs, how should UAVs be deployed in a
distributed manner to obtain the best downlink load balancing utility among UAVs and
achieve data rate fairness among UEs?

We model problem 1 as a continous programming problem, since we care about the
continuous motion control of each UAV. The optimal goal of problem 1 is

Maximize U(Ti[n]) = ∑UAVi
Ui(Ti[n]) i ∈ {1, 2, ..., M}.

We will use the Jain’s fairness index and data rate CDF (Cumulative Distribution
Function) to indicate the effectiveness on UAVs’ load balancing and UEs’ data rate fairness,
respectively.

3. Proposed Diffusion UAV Deployment Algorithm for Fair Coverage

In this section, we will present the diffusion UAV deployment algorithm for fair
coverage optimization. The algorithm does not require the UEs’ locations in advance.
Instead, the UEs can be discovered by UAVs through target recognition sensors. The
locations of the UAVs are initialized in random places, i.e., the center of the area, which is
consistent with the UAV positioning philosophy in real systems. The UAVs’ motions are
controlled by a diffusion strategy in a distributed manner. This diffusion strategy requires
the information of neighbor UAVs. Meanwhile, aiming at fair UEs’ performance, the UAVs’
motions are also controlled by the UEs’ data rates.

3.1. Basic Idea of UAV Deployment Optimization for Load Balancing

The efficient way for load balancing optimization is to provide more radio resources
to low rate UEs. For example, Luan achieves load balancing in heterogeneous networks by
maximizing the worst user data rate [22].
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In our problem, the UAV deployment is a way of radio resource management for the
UAV-UE network. The UAV deployment manages the radio resources in three aspects,
which are:

(i) UE association. Each UE is always associated with the closest UAV.
(ii) The UE receiving power level and interference power level, which is determined by

the distance between UAVs and UEs.
(iii) Probability of LoS and NLoS transmissions, which are calculated by (2).

Generally, the low-load UAV load should provide its radio resource to UEs that are
associated with high-load neighbor UAV. By moving towards the neighbor UAV, the low-
load UAV can serve more UEs. In this way, the load can be transferred to low-load UAV,
which is shown in Figure 2.

Meanwhile, for a signal UAV and its UEs, UAV should move to the “center” of its
serving UEs to provide a fair coverage and higher data rate, which is shown in Figure 3.

 

Fv

xx

y y

h h

Load： Low High Medium

Figure 2. Motion of a UAV for load balancing.

Fu1

Fu2

Fu3
Fu4

Fu5

x

y

x

y

Communication linksChannel state
PoorGood

Figure 3. Motion of a UAV for fair coverage and higher data rate.

From above, we have the moving trends of UAVs for load balancing. Next, we will
propose the virtual force field for movement control.

3.2. Virtual Force Field

The virtual force field has been successfully used for UAV movement control in recent
research, which is a practical heuristic method due to its low complexity [5]. In our work,
we will design two virtual forces for UAV movement control, which are the UAV-UAV
force and UAV-UE force, respectively, as shown in Figures 2 and 3.
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3.2.1. UAV-UAV Force

For UAVi, we denote the force from UAVi to UAVk by
−−−−→
Fvi,j[n]. We model the UAV-

UAV force as follows,

−−−−→
Fvi,j[n] = Kv× (Ui(T[n])−Uk(T[n]))×

−→
Dv

i,k , (10)

where Kv is the UAV-UAV force factor,
−→
Dv

i,kis the normalized virtual force direction vector
from UAVi to UAVk, which can be calculated by

−→
Dv

i,k =
[(xk[n]− xi[n])], (yk[n]− yi[n])]√
(xk[n]− xi[n])

2 + (yk[n]− yi[n])
2

.

(11)

Equation (10) consists of two parts. The first part, Kv× (Ui(T[n])−Uk(T[n])), shows

the magnitude of
−−−−→
Fvi,k[n]. The second part,

−→
Dv

i,k, denotes the direction of
−−−−→
Fvi,k[n]. Moreover,

Equation (10) can be described by a vector graphical representation as follows:

−−−−→
Fvi,j[n] = (Kv× (Ui(T[n])−Uk(T[n]))) ·

180
π

tan−1(
yk[n]− yi[n])
xk[n]− xi[n]

),

where the direction is in degrees.

Through load metric (7),
−−−−→
Fvi,k[n] “drags” the low load UAV to the high load UAV and

“pushes” high load UAV away from low load UAV. In this way, more UEs are associated
with the low load UAV, which balances the load between two UAVs.

For any two UAVs in the network, we have the following property.

Property 1. For any UAVi and UAVk in the network,

−−−−→
Fvi,k[n] =

−−−−→
Fvk,i[n] (12)

Proof of Property 1.

Ui(T[n])−Uk(T[n]) = −(Uk(T[n])−Ui(T[n])),

−→
Dv

i,k =
−−−→
−Dv

i,k

Thus

−−−−→
Fvi,k[n] = Kv× (−(Uk(T[n])−Ui(T[n])))×

−−−→
−Dv

i,k

−−−−→
Fvi,k[n] = Kv× (Uk(T[n])−Ui(T[n]))×

−→
Dv

i,k

−−−−→
Fvi,k[n] =

−−−−→
Fvk,i[n].

This property implies that two UAVs will have the same moving direction when the
load is not balanced.

3.2.2. UAV-UE Force

The UAV-UE force
−−−→
FUi[n] controls UAV′i s motion for optimizing load balancing as

well as data rate fairness among serving UEs of UAVi. We define the force from UAVi to

UEj by
−−−→
FUi[n]. Assume that all users have the same communication priority, the force that
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controls UAV′i s motion is defined as the sum of UAV-UE forces from all its serving UEs,
which is

−−−→
FUi[n] = ∑UEj∈Si

−−−−→
Fui,j[n] (13)

where Si is the set of UEs served by UAVi.
Considering the fairness among UEs served by a same UAV, we define the UAV-UE

force according to (7) as follows.

−−−−→
Fui,j[n] = Ku× (argmax{xi [n],yi [n]}log(Ti,j[n])− {xi[n− 1], yi[n− 1]}) (14)

s.t. (1), (2), (3), (4), (5), (6)
In (14), Ku is the UAV-UE force factor. It has been proven in [18] that fairness can be

achieved by each UE individually optimizing his/her own logarithm of data rate.
−−−−→
Fvi,k[n] dominates the motion of UAV as well as the load balancing among UAVs,

and
−−−−→
Fui,j[n] aims to improve the local performance. Thus, Ku should be bigger than Kv

in general.

3.3. CTA Diffusion UAV-UAV Virtual Force Optimization

In this section, we will adopt the diffusion strategy as a decentralized tool to optimize
the UAV-UAV force.

Diffusion strategy is an effective tool to optimize the global utility in a locally dis-
tributed manner [13–15]. The diffusion strategy updates local parameters by not only the
local information but also neighbor nodes’ parameter variation trend. In this way, the
coupling between nodes in the optimization process is considered. A typical Combine-
then-Adapt (CTA) diffusion model consists of two steps: (1) neighbor nodes’ parameter
combination, (2) local parameter update. For more details about the CTA diffusion model,
please refer to [13].

In our UAV motion control problem, the CTA diffusion strategy, as shown in Figure 4,
is also a two-step optimization process. The UAVs’ motion is not directly controlled by the

UAV-UAV virtual force. Here we define a new parameter
−−−→
FVi[n] as the local virtual force

that controls UAVi’s motion, which is initialized as 0 when n = 1 and updated by (15) and
(16). Ni is the set of neighbor UAVs of UAVi.

In step 1, each UAV exchange
−−−−−−→
FVk[n− 1] with neighbor UAVs and combine

−−−−−−→
FVk[n− 1]

that received from neighbor UAVs. Since
−−−−−−→
FVi[n− 1] decides UAV’s motion, ψi[n− 1] can

be treated as sum of movement trends of all neighbor UAVs. Step 1 can be expressed as

ψi[n− 1] = ∑UAVk∈Ni

−−−−−−→
FVk[n− 1] (15)

In step 2,
−−−−→
Fvi,k[n] is the UAV-UAV force, which is defined as (7).

−−−→
FVi[n] is the sum of

two parts: the first part is the movement trends of all neighbor UAVs, says ψi[n− 1], and

the second part is the resultant force of
−−−−−−−→
Fvi,k[n− 1] from neighbor UAVs for load balancing.

Step 2 can be expressed as

−−−→
FVi[n] = ψi[n− 1] + ∑UAVk∈Ni

−−−−−−−→
Fvi,k[n− 1] (16)

To be more specific, the CAT diffusion strategy is shown in Algorithm 1.
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Algorithm 1 Pseudocode for the CTA diffusion strategy

1: For any UAVi, UAVk∈Ni,
−−−→
FVi[0] is initialized as 0.

2: at time n:
3: Each UAV calculates its load through (8).

4: UAVi calculates
−−−−−−−→
Fvi,j[n− 1] through (10).

5: UAVi broadcasts it
−−−−−−→
FVk[n− 1] to neighboring UAVs.

6: UAVi calculates the sum of
−−−−−−→
FVk[n− 1] (UAVk∈Ni) through (15).

7: UAVi calculates its UAV-UAV virtual force
−−−→
FVi[n] through (16)

1

1

1

2

Step 1:

Step 2:

x

y

Figure 4. CTA diffusion strategy for UAV motion control.

3.4. UAV-UE Virtual Force Calculation

Since the aim of
−−−−→
Fui,j[n] is to improve the local performance, we will treat each UAV

and its serving UEs as an individual system. Meanwhile, we assume that during UAV-UE
virtual force optimization, the UEs’ association does not change. Thus, Bi,j[n] in (6) is
constant for the UAV-UE virtual force.

According to (13) and (14), calculating
−−−→
FUi[n] is actually to find the optimal solution

for each
−−−−→
Fui,j[n] (UEj ∈ Si). Obviously, (12) is a non-convex problem for xi[n] and yi[n]. To

tackle the non-convexity, we will apply the successive convex optimization technique, such
that (12) is approximated to be more tractable at a given local point [19,23]. By defining{
•
xi[n],

•
yi[n]

}
as a given position of UAVi at time; meanwhile, introducing di,j[n] in (1) as

the variable, the problem can be approximated as
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−−−−→
Fui,j[n] = Ku ∗ (argmax(di,j [n])log(Ti,j[n]) ·

−→
Du

i,k) (17a)

s.t. Ti,j[n] = Bi,j[n]log(1 + γ i,j[n]) (17b)

γ i,j[n] =
pi[n]gi,j[n]

∑k 6=i pk[n]gk,j[n] + σ2 (17c)

gi,j[n] = ρ0d−2
i,j [n]Gi,j(

•
xi[n],

•
yi[n]) (17d)

Gi,j(
•
xi[n],

•
yi[n]) = (ηLoSPLoS

i,j [n] + ηNLoSPNLoS
i,j [n]) (17e)

pLoS
i,j [n] =

1
1 + a exp(−b( 180

π tan−1( H
ri,j [n]

− a))
(17f)

ri,j[n] =

√
(
•
xi[n]− x̃j)

2
+ (
•
yi[n]− ỹj)

2
(17g)

−→
Du

i,j =
[(x̃k[n]−

•
xi[n])], (ỹk[n]−

•
yi[n])]

2

√
(x̃k[n]−

•
xi[n])

2
+ (ỹk[n]−

•
yi[n])

2
(17h)

In (17d), gi,j[n] is a concave function with respect to di,j[n]. For (17a), the second
derivative of log(Ti,j[n]) with respect to di,j[n] is

d2(log(Ti,j[n]))

d(di,j[n])
2 = (−2

•
A
i,j
[n])Bi,j[n]

 2
•
Ai,j[n]d−6

i,j [n]

(1 +
•
Ai,j[n]d−2

i,j [n])
2 −

3d−3
i,j [n]

1 +
•
A i, j[n]d−2

i,j [n]

 (18)

where

•
Ai,j[n] =

pi[n]
(∑k 6=i pk[n]gk,j[n] + σ2 ρ0Gi,j(

•
xi[n],

•
yi[n]) (19)

Note that log(Ti,j[n]) is not concave with respect to di,j[n] ∈ (−∞,+∞). In our UAV
deployment problem, di,j[n] is limited by the location range of the UAVs and UEs. For any
given location range, i.e., a 2000 m × 2000 m area, it can be simply proved by simulations

that
d(log(Ti,j [n]))

d(di,j [n])
is positive and definite. Thus, in a real UAV deployment scenario, the ap-

proximated log(Ti,j[n]) by successive convex approximation is a concave function. So the vir-
tual force can be calculated by searching for the optimal solution of argmax(di,j [n])log(Ti,j[n])
with its gradient as follows

−−−−→
Fui,j[n] = Ku× (

d(log(Ti,j[n]))
d(di,j[n])

·
−→
Du

i,k) (20)

3.5. UAV Motion Control Algorithm

The resultant force of UAVi’s motion control can be calculated as

−−→
Fi[n] =

−−−→
FVi[n] +

−−−→
FUi[n] (21)

The motion of UAVi is controlled by the resultant force
−−→
Fi[n] iteratively. The maximum

speed of a UAV is given by Vmax. The speed of a UAV should be an increasing function

with respect to
−−→
Fi[n]. Meanwhile, the speed should be less sensitive to the increase in a

large
−−→
Fi[n] [5]. According to (14) in [5], we define the UAV moving velocity by

−−→
Vi[n] = arctan(

−−→
Fi[n])×

2
π
×Vmax (22)
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Therefore, the UAV motion control for load balancing is performed in three steps
as below.

(1) Initialization: each UAV creates its neighboring UAV set according to neighbor UAVs’
distance [5].

(2) UAV motion control: UAVs’ motion is controlled iteratively. In each iteration, a UAV
calculates FU by local load, neighbor UAVs’ load, and virtual force in a diffusion
manner according to (8), (13), and (14). Then a UAV calculates the UAV-UE virtual
force according to (11) and (18). Through (19), the resultant force is used for UAV
motion control through (20).

(3) Stop condition: in an ideal condition, the UAVs stop when the virtual forces become
zero. However, it will take too many steps to achieve perfect zero of the resultant
force [5]. Thus, we assume that the optimization stops when all UAVs’ velocities are
less than a threshold Vstop. To be more specific, the UAV motion control algorithm
for load balancing is given in Algorithm 2.

Through the above three steps, UEs’ data rate fairness unitily (7) and the UAVs’
load balancing unility (9) can both be maximized. The performance is evaluated in the
next section.

Algorithm 2 Pseudocode for our algorithm

1: For any UAVi, UAVk∈Ni

2: Initialize
−−−→
FVk[0] = 0 , initialize

−−−−→
Fvi,k[0] by (10)

3: for n > 0 do
UEs upload their data rate information to the serving UAV.

4: UAV-UAV virtual force
UAVi broadcast its location.
UAVi creates its neighboring UAV set according to the received location.

UAVk shares
−−−−−−→
FVk[n− 1] with its neighboring UAVs, (including UAVi).

UAVi calculates ψi[n− 1] by (15).

UAVi updates
−−−→
FVi[n] by (16).

5: UAV-UE virtual force
UAVi calculates

−−−−→
Fui,j[n] ,

−−−→
FUi[n] by (20), (13), respectively.

6: Resultant virtual force
UAVi calculate the resultant virtual force by (21).

7: Motion Control
8: Calculate the velocity

−−→
vi[n] by (22).

9: if all |
−−→
vi[n]| < Vstop, (i ∈ [1, M])

10: breake
11: else do
12: {[xi[n + 1], yi[n + 1]]} = {xi[n], yi[n]}+

−−→
vi[n]

13: end if

4. Performance Evaluation

In this section, we conduct the simulations to evaluate the performance of the proposed
UAV deployment algorithm. We will give the simulation results for UAVs’ load balancing
and UEs’ data rate fairness.

4.1. Simulation Setup

We use Matlab (R2020a) as a simulator to implement the proposed algorithm. We use
similar simulation settings as [5] did. As [5] did, we also take a set of bounded data to
justify the effectiveness of the proposed algorithm on the UAVs’ load balancing and UEs’
data rate fairness. This is because this setting is similar to the real scenario. Generally, the
area and number of UEs of disaster areas or hot spots are bounded.



Entropy 2021, 23, 1470 12 of 19

Considering a 2000 m × 2000 m area, the UEs are randomly distributed in this area.
UEs are not moving during the optimization. The number of UAVs and UEs are not fixed
since we will discuss various scenarios in the following. The UAV motion control algorithm
in [5] is the baseline for performance comparison.

We use the following metrics for performance evaluation.

(1) Number of UEs associated with each UAV. This is an intuitive performance that shows
the UAVs’ load for each UAV.

(2) Fairness index of UAVs’ load.
(3) The CDF (Cumulative Distribution Function) of all UEs’ data rates.

System parameters are given in Table 1 unless otherwise specified.

Table 1. System Parameters for Simulations.

Parameter Symbol Value

Height of UAVs H 100 m
Communication range of UAVs Rc 500 m

Tx power of UAV P 20 dBm
Neighboring UAV distance Threshold RN 250 m

Carrier frequency of transmission channel f 2 GHz
a 9.6
b 0.28

LoS additional pathloss ηLoS 1 dB
NLoS additional pathloss ηNLoS 20 dB
Maximum speed of UAV Vmax 10 m/s

UE-UAV force factor Ku 1
UAV-UAV force factor Kv 3

4.2. UAVs’ Locations and UEs’ Association

Assume that UEs are randomly distributed in the area. The number of UAVs is 20. All
UAVs’ locations are initialized to be in the center of the area. Sub figures (a) and (b) in both
Figures 5 and 6 give the UAVs’ locations as well as UEs’ association results after motion
optimization by the proposed algorithm and the baseline algorithm in [5], respectively. The
lines connecting UE and UAV represent that the UE is associated with the UAV. Figure 5
contains 200 UEs and Figure 6 contains 300 UEs.

In Figures 5a and 6a, the number of UEs associated with each UAV is similar. In
Figures 5b and 6b, some of the UAVs server too many UEs or only a few UEs. Under
various optimization metrics, the number of UEs served by a UAV is always an intuitive
load performance indicator. It can be derived that the proposed algorithm achieves a more
balanced load among all UAVs. The distance between UAVs is the main factor for motion
control in the base line algorithm. Through factor, UAVs have similar coverage on the
ground, which ignores that users may not be evenly distributed. The proposed algorithm
optimizes UAVs’ motion by considering the load as well as the UEs’ distribution. Thus, the
proposed algorithm outperforms the baseline algorithm.

Figures 7 and 8 are the bar graphs showing the number of UEs severed by UAVs,
which corresponds to Figures 5 and 6, respectively. The x-axis is the UAVs’ index and
the y-axis is the number of UEs. It can be seen that the UEs’ distribution of the proposed
algorithm is more even than the baseline algorithm.
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Figure 5. UAVs’ locations and UEs’ association (200 UEs). (a) proposed algorithm; (b) baseline
algorithm [5].
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Figure 6. UAVs’ locations and UEs’ association (300 UEs). (a) proposed algorithm; (b) baseline
algorithm [5].

By changing the UEs’ distribution, we found that the proposed algorithm achieves
load balancing regardless of the UEs’ distribution. In Figures 9–11 we assume that UEs are
distributed in a circular area with a radius of 800 m, in a 2000 m × 2000 m square area and
in two separate 800 m × 1600 m square areas, respectively. All UAVs are initialized at the
center of the whole area. By the proposed algorithm, the numbers of UEs served by every
UAV are very close, which means that the load balancing among the UAVs can be achieved
regardless of the scenarios and UEs’ distributions.
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Figure 7. Number of UEs served by UAVs (200 UEs).
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Figure 8. Number of UEs served by UAVs (300 UEs).
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(a) UEs’ Distribution and Associations (b) Number of UEs of each UAV

(a) (b)

Figure 9. Load performance when UEs are distributed in a circular area with a radius of 800 m.
(a) UEs’ Distribution and Associations. (b) Number of UEs of each UAV.

(a) UEs’ Distribution and Associations (b) Number of UEs of each UAV

(a) (b)

Figure 10. Load performance when UEs are distributed in a 2000 m × 2000 m square area. (a) UEs’
Distribution and Associations. (b) Number of UEs of each UAV.

(a) UEs’ Distribution and Associations (b) Number of UEs of each UAV

(a) (b)

Figure 11. Load performance when UEs are distributed in two separate 800 m × 1600 m square areas.
(a) UEs’ Distribution and Associations. (b) Number of UEs of each UAV.

4.3. Fairness Index of UAVs’ Load

This section gives the fairness index of UAVs’ load in 200 Monte-Carlo runs. The
fairness index is to check the load distribution among UAVs, which is defined by Jain’s
fairness index as

ψ =
(∑M

i=1 Ni[n])
2

∑M
i=1 (Ni[n])2

(23)
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where Ni[n] is number of UEs severed by UAVi. In each run, 200 UEs’ locations are
initialized randomly and 20 UAVs are initialized at the center of the area. Figure 12 shows
the simulation result of the fairness index, from which we can see that the proposed
algorithm the fairness index is stable and larger than that of the baseline algorithm. The
baseline algorithm achieves a large fairness index only when the UEs are evenly distributed
in the area.
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Figure 12. Jain’s fairness index of UAVs load.

4.4. UEs’ Data Rate

The UEs’ data rate depends on the downlink channel state from UAV to UEs. In
our problem, the location of the UAVs will decide the UEs’ data rate. To find out the
intuitive effect of the proposed virtual force, we first compare the UAV deployment result
by proposed virtual and baseline virtual force in [5] in a single UAV network, as shown
in Figure 13. Considering a 500 m× 500 m area with 50 UEs, the UAV is initialized at a
random location, which is shown as the circle in Figure 13. The UAV’s final positions after
optimization by the proposed virtual force and baseline virtual force in [5] are represented
by a triangle and a cross, respectively. The cross in Figure 13 is closer to the center of
the whole area since the virtual force in [5] is defined by a first-order linear function of
the distance between the UAV and UE. However, the data rate of a UE is a second-order
non-linear function of distance according to (1)–(6). Thus, the baseline method can only
achieve a near optimal for UEs’ data rate fairness. In our work, by constructing a new
UE-UAV force as (14) based on data range, we can achieve a better fair UEs’ data rate result,
which is shown in Figure 14.

Let us go back to the simulation setup in subsection A, the CDF of UEs’ data rate is
shown in Figure 14. The available bandwidth of each UAV is normalized as one. Through
200 Monte Carlo runs, it can be derived that the proposed algorithm improves the perfor-
mance of low data rate UE compared with the baseline algorithm, and the fairness among
UEs is improved.
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Figure 13. Single UAV deployment result comparison.
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Figure 14. CDF of UEs’ data rate in 200 Monte Carlo runs.

5. Discussions

In this paper, we show that the UAVs’ load balancing problem and the UEs’ data rate
fairness in multi-UAV networks can be jointly optimized by UAVs’ movement control.
Importantly, we find a unified performance metric for the above two problems. This
joint optimization problem has not been widely studied yet in multi-UAV communication
networks. We define two new virtual forces concerning the unified performance metric
to control the UAVs’ movement. By adopting the diffusion strategy, we find a way to
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optimize the UAVs’ movement iteratively in a distributed manner. The simulation results
confirm that:

(1) UAVs’ load balancing problem and the UEs’ data rate fairness can be optimized
simultaneously.

(2) After 200 Monte-Carlo simulations, the fairness index on UAVs’ load of the proposed
algorithm is always larger than 0.975. This performance of the baseline algorithm
varies from 0.79 to 0.96. Compared with the virtual force defined by the locations of
the UAVs and the UEs (baseline algorithm [5]), the virtual force defined by the utility
function performs better on UAVs’ load balancing.

(3) Figures 9 and 11 imply that the proposed algorithm achieves UAVs’ load balancing
regardless of the UEs’ distribution.

Although there are important discoveries revealed by our studies, there are also
limitations. In our scenario, the UEs are assumed to be static since the UAVs move
much faster than the UEs. However, this assumption does not hold in a real multi-UAV
communication network. We will study the dynamic scenario soon and we believe this is
one important future direction of this topic.

6. Conclusions

This paper studies the joint UAV’s load balancing and UE’s data rate fairness opti-
mization in multi-UAV communication networks. A unified utility is defined for the above
two problems. With this unified utility, we then construct two virtual forces to control
UAVs’ movement. Furthermore, we consider the CTA diffusion strategy and the successive
convex optimization techniques for searching the optimal virtual forces for UAVs’ load
balancing and UEs’ data rate fairness. Simulation results show that the proposed algorithm
can achieve a better load balancing performance compared with the baseline algorithm.
Through 200 Monte Carlo simulations and various UEs’ distribution settings, the load
balancing performance is stable, which means that the performance is independent of UEs’
distribution. Meanwhile, the fairness of UEs’ data rate is improved. Next, we consider
optimizing UAVs’ load balancing in dynamic UE scenarios and focus on UEs’ motion mode
prediction.
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The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
BS Base Station
UE User Equipment
LoS Line-of-Sight
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NLoS Non-Line-of-Sight
LMS Least Mean Square
SINR Signal to Interference Plus Noise Ratio
AWGN Additive White Gaussian Noise
CTA Combine-then-Adapt
CDF Cumulative Distribution Function
FV UAV-UAV virtual force
FU UAV-UE virtual force
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