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ABSTRACT

Objective: Attention networks learn an intelligent weighted averaging mechanism over a series of entities, pro-

viding increases to both performance and interpretability. In this article, we propose a novel time-aware trans-

former-based network and compare it to another leading model with similar characteristics. We also decom-

pose model performance along several critical axes and examine which features contribute most to our

model’s performance.

Materials and methods: Using data sets representing patient records obtained between 2017 and 2019 by the

Kaiser Permanente Mid-Atlantic States medical system, we construct four attentional models with varying lev-

els of complexity on two targets (patient mortality and hospitalization). We examine how incorporating transfer

learning and demographic features contribute to model success. We also test the performance of a model pro-

posed in recent medical modeling literature. We compare these models with out-of-sample data using the area

under the receiver-operator characteristic (AUROC) curve and average precision as measures of performance.

We also analyze the attentional weights assigned by these models to patient diagnoses.

Results: We found that our model significantly outperformed the alternative on a mortality prediction task

(91.96% AUROC against 73.82% AUROC). Our model also outperformed on the hospitalization task, although

the models were significantly more competitive in that space (82.41% AUROC against 80.33% AUROC). Further-

more, we found that demographic features and transfer learning features which are frequently omitted from

new models proposed in the EMR modeling space contributed significantly to the success of our model.

Discussion: We proposed an original construction of deep learning electronic medical record models which

achieved very strong performance. We found that our unique model construction outperformed on several

tasks in comparison to a leading literature alternative, even when input data was held constant between them.

We obtained further improvements by incorporating several methods that are frequently overlooked in new

model proposals, suggesting that it will be useful to explore these options further in the future.
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BACKGROUND

Introduction
With recent advances in computational resources, deep learning has

become an increasingly popular methodology for producing models

of expected outcomes.1,2 In general, deep learning has been most

successful in domains where unstructured or semistructured data

have rendered more conventional models impractical.

One application which has benefited greatly from the advent of

deep learning has been the modeling of patient outcomes based on

their electronic medical records (EMRs).3–20 This domain has been

particularly ripe for exploration by deep learning models because

EMR data is typically sufficiently large to construct high-quality

deep learning models and sufficiently complex that prior methods

left some significant facets of the data underexploited.

Modeling modalities
The starting point for most patient modeling typically consists of the

patient’s record of diagnoses, pharmaceutical prescriptions, surgical

procedures, and lab tests (hereafter summarized as medical entities

or medical concepts). Some studies have also examined provider

notes and demonstrated significant utility from this data, although it

is often much less structured and may contain similar content to the

semistructured diagnostic information provided by medical enti-

ties.10 Beginning with techniques such as Med2Vec, it has become

standard for modelers to employ entity embedding methods to con-

struct dense representations of these entities. This practice allows

models to learn more efficiently by sharing information about simi-

lar diagnoses.21,22

Frequently, physician decisions can be traced to a relatively small

subset of a patient’s health record. To approximate this intelligent

filtering process, modelers can use a neural attention mechanism

which operates similarly.5–7,9,18,19 In such architectures, the model

is trained to assign a weight to each embedding. Then, entities with

nonzero weights are combined using a weighted averaging function

to construct a dense representation of the patient’s health state. This

process is interpretable, since the relative sizes of entity weights indi-

cate rough measures of the entities’ relative importance in the mod-

el’s decision. Furthermore, some attention mechanisms can be

constructed so as to sparsify the weighting function, resulting in a

smaller set of entities which could have contributed to the model’s

conclusion.23

The general construction of attention-based networks was most

simply implemented in the natural language processing literature by

Luong et al24 for the purpose of machine translation. This construc-

tion can be adapted in the medical domain by substituting the occur-

rence of words for the occurrence of medical codes, leading to a

simple and easily interpretable medical prediction.18 While there are

advantages to the simplicity of this model, there are also reasons to

suspect that it is inefficient. This model cannot make use of complex

relationships between diseases, observe the effects of disease pro-

gression over time, or adapt disease representation based on the con-

text within a patient’s medical record.

To capture the basic relationships between diseases, several mod-

els have incorporated hierarchical structures in which patient visits

are aggregated in an intermediary step between entity embedding

and patient summary.9,14,17,19 Such models benefit by encoding logi-

cally related information into a structural element of the model.

This can help to address questions related both to the relationships

between entities and the complexities of capturing time information

in the model. Visit-level vectors may be aggregated from individual

entities by incorporating within-visit attention, simple average, or

through more complex mechanisms.

In addition to aggregating visit data, several models have

employed more sophisticated self-attention architectures to allow

for complex relationships between entities.9,14,17,19 Typically, self-

attention mechanisms incorporate a pairwise matching approach,

whereby the model learns to assign weights to the relationships be-

tween entities and then re-embed entities to reflect those relation-

ships. Thus, models can learn the differences between, for example,

treated and untreated versions of the same disease. This technique

has proved extremely useful and interpretable in the natural lan-

guage processing literature; since its introduction there, it has

enjoyed great success in modeling patient data as well.9,13,14,19,25

In order to incorporate time as an element in patient modeling,

researchers have taken two divergent approaches. Traditionally,

models such as RETAIN have incorporated time using a recurrent

neural network (RNN).20 RNNs employ decay to steadily reduce

the impact of older data and allow the proximity of observations to

influence the strength of relationships between data. RNNs operate

explicitly over sequences and can therefore ignore the distance be-

tween visits unless this data is provided separately.

Several authors have also proposed purely attentional methods

to incorporate time information into models. Typically, these mod-

els have been inspired by the transformer model proposed by Vas-

wani et al25 for the task of machine translation. This methodology

adapts the Transformer’s architecture to encode time data into the

entity embedding structure and relies on the attentional structures to

interpret this data.9,19

In addition to patient diagnoses, several studies have demon-

strated that patient demographic features can be useful inputs.10–13

Unfortunately, many leading deep learning models such as RETAIN,

HiTANet, and ConCare have omitted these features as primary

inputs when proposing new models.9,19,20 Furthermore, several

studies have examined the impact of improving medical concept em-

bedding initialization by pretraining embeddings with an alternative

LAY SUMMARY

Recent advances in machine learning techniques have enabled researchers to build highly predictive and interpretable mod-

els of patient outcomes using only data from electronic medical records (EMRs). One type of model, called Attentional Neu-

ral Networks, has demonstrated great promise in both performance and interpretability. This technique has been widely

used in several fields, especially Natural Language Processing. Such models have also been successfully applied to patient

outcomes using EMR data. In this article, we propose a novel adaptation of attentional neural networks and compare it to a

leading literature alternative. Our results indicate that our model outperforms on several key metrics, and that the model

can be further improved by incorporating demographic features and by pretraining part of the model on an unsupervised

target.
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model.14–16 Recently, Rasmy et al demonstrated in Med-BERT that

such initialization can substantially improve even sophisticated

modern architectures.14

Objective
In this article, we propose an efficient new transformer-based archi-

tecture for predicting patient outcomes from EMR data. Our model

synthesizes improvements described by several authors and simpli-

fies the architecture. Critically, we then examine the impact of each

element of the model on overall performance and compare it against

a leading alternative. Our model differs from prior works in several

significant ways. We simplify the construction of the time-awareness

by incorporating a trigonometric decomposition. We also flatten the

hierarchical embedding structure used in previous works, relying in-

stead on the time encoding to capture the relevant information. This

adjustment is conceptually simple and easy to implement. We em-

ploy a sparsified global attention mechanism to maximize interpret-

ability and incorporate both demographic data and transfer learning

to optimize model performance.

METHODS

In this study, we propose a new adaptation of the Transformer

model. This model implements a Trigonometrically encoded Time-

aware Transformer Network (T3Net). To assess the efficacy of

T3Net in patient prediction, we compare it against a leading recent

alternative, HiTANet.9 We tested these models on two targets (mor-

tality and hospitalization) trained on EMR data from a large re-

gional medical group. Models were trained using medical records

from 2017 with targets in 2018 and validated using medical records

from 2018 with targets occurring in 2019. Models were evaluated

for their performance on average precision (AP) and area under the

receiver-operator characteristic (AUROC).

Model architecture
T3Net takes as its primary input a set of patient medical entities, in-

cluding diagnoses, procedures, lab tests, and pharmaceutical codes.

Each entity is converted to a numeric vector embedding. Code

embeddings are then decomposed using a trigonometric decomposi-

tion and submitted to a transformer-style self-attention encoder, as

Vaswani et al.25 The re-embedded codes are then concatenated with

their original embeddings and submitted to a traditional attention

layer, as Luong et al.24 This attention layer yields a single vector

which we consider to be a numeric summary of the patient’s known

health state. This patient vector is concatenated with a demographic

feature vector and submitted to a traditional feedforward neural

classifier. For a more complete discussion of T3Net’s architecture,

please refer to Supplementary Appendix A: Model Architecture.

Trigonometric time decomposition
Our model incorporates an original trigonometric time decomposi-

tion. Prior to self-attention re-embedding, each code is decomposed

into two elements by multiplying the code by sin2 t
2pP and by

cos2 t
2pP, where P indicates the desired period (in our case, 365 days)

and t indicates the time since code assignment. This decomposition

can also be applied multiple times with a variety of periods to con-

struct a more nuanced time encoding, although we do not incorpo-

rate multiple periods in this study. By decomposing codes in this

way, we allow the model to perfectly reconstruct the original em-

bedding while losslessly (with an appropriately selected period)

encoding time data. In principle, this compares favorably with addi-

tive methods, where it may not be possible for the model to perfectly

reconstruct either element from the available data.

Data
We employed data from patients in the Kaiser Permanente Mid-

Atlantic States (KPMAS) medical system. KPMAS is an integrated

medical system serving approximately 780 000 members in Mary-

land, Virginia, and the District of Columbia. We trained models on

EMR records for 294 698 patients with active coverage on January

1st, 2018; then, we validated models on a set of 311 156 patients

with active coverage on January 1st, 2019. Patients were included in

each year of data if they were age 45 or older by the model date. We

excluded younger patients from our sample based on preliminary

analysis of target prevalence, which showed that mortality and hos-

pitalization were both very rare among younger patients. In addi-

tion, patients without any recorded medical history (typically new

patients) were excluded.

Each patient record included both demographic and EMR data.

We modeled two targets for patient outcomes: 12-month mortality

and 6-month hospitalization. We chose to incorporate a 6-month

hospitalization target instead of 12 months because preliminary ex-

perimentation demonstrated that the hospitalization target became

less predictable after 6 months. For the hospitalization model, we in-

cluded all inpatient hospital admissions submitted as claims to the

health system. For the 1-year mortality target, we identified death

records based on operational records available in our EMR system.

Table 1 displays the rates of various demographic groups and

outcome measures across the two years studied. We observed no sig-

nificant departures between these two sets.

Our research was approved by the Kaiser Permanente Mid-

Atlantic State Institutional Review Board (IRB).

Comparison model
We compare our model to the state-of-the-art HiTANet model.9

This model incorporates similar architectural elements, particularly

an alternative version of time-aware self-attention and a secondary

attention model applied over code embeddings. In contrast, HiTA-

Net incorporates a hierarchical visit-based embedding structure

prior to applying self-attention. HiTANet also omits demographic

data and transfer learning to initiate code embeddings.

Table 1. Patient demographic summary

Demographic/outcome group 2018 frequency (%) 2019 frequency (%)

Male 45.7 45.6

Female 54.3 54.4

Asian/Pacific Islander 12.8 13.5

Black/African American 38.7 38.2

Hispanic/LatinX 10.2 10.4

White 31.7 31.2

Unknown/other 6.6 6.6

1-year mortality 0.9 0.9

6-month hospitalization 3.8 3.7

This table describes a patient demographic breakdown for our training and

validation data sets. Overall, demographic statistics were very similar across

the two data sets.
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Ablation studies
One of the primary drawbacks to employing HiTANet as a compari-

son is that T3Net incorporates certain elements not present in HiTA-

Net. In particular, HiTANet’s published implementation does not

offer a method for initializing embeddings through transfer learning

or inputting demographic data. For this reason, we also examine the

results of several ablation studies. In these studies, we omit either

transfer learning, demographic inputs, or both. Note that models

which did not incorporate transfer learning to initialize code embed-

dings were instantiated with random embeddings generated from an

independent (by vector and dimension) uniform distribution be-

tween �0.05 and 0.05.

Model training
For each version of T3Net, we employed a single attentional head

(both self-attention and simple attention, where applicable) to maxi-

mize interpretability. We examined results for 16-dimensional

embeddings. For the final classification task, we employed a deep

network with an initial layer size of 256 and 4 layers deep. Models

were trained with a dropout rate of 0.3 for layers in the primary

classification network and the simple attentional network. Each

layer in both networks was also regularized with a penalty of 0.001.

Entity embeddings were initialized using pretrained vectors

obtained from a Word2Vec model applied to the same training data;

however, entity embeddings were also allowed to co-train with the

model. Entities were deduplicated prior to submission to either the

embedding algorithm or to the core model. For models which incor-

porated time-sensitivity, we retained the most recent allocation of

any individual code as the canonical diagnosis time. This yielded a

final count of 8.3 million deduplicated diagnosis, procedure, phar-

maceutical, and lab test codes in our training set and 8.9 million

deduplicated codes in our validation set.

Models were implemented in Tensorflow version 2.3.0, primar-

ily using the Keras functional interface. They were optimized using

the Adam optimization algorithm for 20 epochs each. All models

were trained on a locally hosted IBM CloudPak4Data instance with

2 cores and 64 GB of RAM.

To train the HiTANet model, we used the code published with

the original article.9 Models were trained in PyTorch version 1.3.1.

Once again, we used a locally hosted IBM CloudPak4Data instance

with 2 cores and 64 GB of RAM to train models. To alter our data

set for use with HiTANet, we had to aggregate patient codes into

visit lists. For each patient, we combined all codes which occurred

on the same date and labeled those as a single visit.

Due to computational constraints, we were only able to train the

HiTANet model once for each target. To remain consistent with set-

tings for T3Net, we trained the model with an embedding dimen-

sionality of 16. We also employed a classification hidden layer size

of 256, which was the same as T3Net and which was also the default

suggested by the authors. We used default values for all other hyper-

parameters. We trained each HiTANet model for 20 epochs and

recorded performance at the end of each epoch.

Model comparison
For each model, we examined model performance using the

AUROC and the average precision (AP) when using the model to

predict our validation data. For each version of T3Net, we per-

formed model training 10 times independently and computed per-

formance on our evaluation metrics after each epoch. We then

examined the median performance of the given set of models over

all epochs and selected the epoch with the best median AP as our

representative for that class of models. We employed a median-

based strategy to minimize the impacts of individual runs of each

model, which could sometimes produce highly variant results due to

poor random starting conditions. Although we took the best epoch

of each model as our canonical result, results were robust to our se-

lection of epoch.

RESULTS

Here, we examine the performance of T3Net in comparison to

HiTANet on our mortality and hospitalization targets. In Supple-

mentary Appendix B: Attention Analysis, we analyze the interpret-

ability of T3Net by observing the network’s prediction and

attentional responses to a synthetic patient profile. In Supplemen-

tary Appendix C: Architectural Ablation Studies, we present a de-

tailed breakdown of results from ablating specific architectural

elements of T3Net.

Convergence and overfitting
We found that the models which excluded Word2Vec pretraining

tended to converge very quickly (optimal epochs were 2–3), but that

these models quickly began overfitting (Figures 1–4). This was a ten-

dency which was not evidenced by the full T3Net model or by the

model which ablated only demographics. These observations held

true for both the mortality target and the hospitalization target.

In both experiments, HiTANet’s optimal epoch was quite late19;

however, HiTANet demonstrated an asymptotic convergence and

was no longer improving significantly by the final stopping point.

On the mortality target, HiTANet did not appear to substantially

improve after the fourth epoch, although it continued improving un-

til about the 10th epoch on the hospitalization target.

One-year mortality prediction
T3Net significantly outperformed the HiTANet benchmark on the

1-year mortality target (Figures 1 and 2). In its optimal epoch, me-

dian performance from T3Net achieved an AUROC of 91.96% and

an AP of 20.35% with the full model. With the fully ablated model

(which included neither transfer learning nor demographic data),

T3Net achieved an AUROC of 90.17% and an AP of 19.81%. This

compares favorably with results achieved by HiTANet, which

achieved a maximum AUROC of 73.82% and an AP of 3.90%. As

demonstrated by Table 2, the median performance of each version

of T3Net outperformed HiTANet on both metrics. Interestingly, ab-

lating only demographic features severely limited model perfor-

mance and yielded the worst performance over all T3Net models

with an optimal median AUROC of 89.01% and AP of 15.89%.

Six-month hospitalization prediction
Median performance by the full T3Net model outperformed HiTA-

Net on both metrics using the hospitalization target, even after ab-

lating both demographics and transfer learning (Figures 3 and 4).

The full T3Net model achieved an AUROC of 82.41% and an AP of

23.80%, with the fully ablated model achieving an AUROC of

81.72% and an AP of 23.16%. HiTANet’s performance was much

closer to our own models’ on this target, achieving an optimal

AUROC of 80.16% and AP of 21.85%. HiTANet outperformed the

model which ablated only demographics data, which achieved an

optimal AUROC of 80.33% and AP of 20.80%.
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Runtime
As demonstrated by Table 2, T3Net achieved significantly shorter

runtimes than HiTANet in our experiments. On training tasks, the

full T3Net model averaged approximately 640 seconds per epoch,

compared to approximately 18 000 seconds per epoch for HiTANet.

Over the entire training cycle, we found that HiTANet took 55 633

s (15.45 h) on average to train, store model weights, predict the vali-

dation set, and perform other internal maintenance for each epoch

using a slightly altered version of the authors’ provided training

scripts. In comparison, we observed an average runtime of 13,101

seconds per complete run of T3Net (including 20 epochs of training,

forecasting at each epoch, and model saving).

Figure 1. Mortality AUROC by epoch. This figure demonstrates the minimum, median, and maximum area under the receiver-operator characteristic (AUROC)

performance of each model on the mortality target after each epoch. Model performance peaked early for most model categories; however, our model which

omitted Demographics took several more epochs to converge. Furthermore, the models without Word2Vec pretraining displayed a tendency to overfit after only

a few epochs.

Figure 2. Mortality AP by epoch. This figure demonstrates the minimum, median, and maximum average precision (AP) performance of each model on the mor-

tality target after each epoch. Model performance peaked early for most model categories; however, our model which omitted Demographics took several more

epochs to converge. Furthermore, the models without Word2Vec pretraining displayed a tendency to overfit after only a few epochs.

Figure 3. Hospitalization AUROC by epoch. This figure demonstrates the minimum, median, and maximum area under the receiver-operator characteristic

(AUROC) performance of each model on the hospitalization target after each epoch. Model performance peaked early for most model categories; however, the

HiTANet model took several epochs to converge. Furthermore, the models without Word2Vec pretraining displayed a tendency to overfit after only a few epochs.
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DISCUSSION

Contributions
In this study, we have proposed a novel implementation of the

Transformer architecture which incorporates Trigonometrically em-

bedded Time data, named T3Net. Our model incorporates several

innovations over current state-of-the-art patient EMR models, in-

cluding our unique implementation of time encoding. Furthermore,

our model incorporates transfer learning and demographic data;

while other studies have demonstrated the value of these features,

they have been underutilized in the deep learning EMR literature, es-

pecially in Transformer models. When applied to a real-world data

set, our model outperformed a leading alternative in the space.

In addition, we performed a comprehensive series of ablation

studies. Interestingly, we found that a self-attentional Transformer

model significantly underperformed (Supplementary Appendix C:

Architectural Ablation Studies) when time encoding was omitted,

lending considerable weight to the observations by Luo et al which

indicated that time data was critical to the performance of EMR

models.

In additional ablation studies, we found that including demo-

graphic features significantly improved model performance when

keeping all other features constant and that using transfer learning

to initialize medical entity embeddings had a significant impact on

the model’s ability to overfit. Models with pretrained embeddings

tended to both outperform and to be more robust to overfitting (Fig-

ures 1–4).

Comparison to HiTANet
We compared our model construction to the recently published al-

ternative HiTANet. HiTANet employs several important architec-

tural features similar toT3Net, including the use of time-aware self-

attention; however, there are important distinctions between these

models that led to substantial differences in performance. To ac-

count for these differences, we examined the performance of several

ablated versions of T3Net.

We found substantial differences in performance between the ab-

lated versions of T3Net and HiTANet. Our model significantly out-

performed HiTANet on the mortality target and marginally

outperformed HiTANet on the hospitalization target. By construc-

tion, these differences must be attributable to differences in the

mathematical construction of our network and HiTANet.

Model interpretation
We found that it was possible to construct a reliable total attention

weight which incorporates the impacts of both global attention and

self-attention (Supplementary Appendix B: Attention Analysis). Our

Figure 4. Hospitalization AP by epoch. This figure demonstrates the minimum, median, and maximum average precision (AP) performance of each model on the

hospitalization target after each epoch. Model performance peaked early for most model categories; however, the HiTANet model took several epochs to con-

verge. Furthermore, the models without Word2Vec pretraining displayed a tendency to overfit after only a few epochs.

Table 2. Results summary by model

Model name Epoch (M) AUROC (M) AP (M) Epoch (H) AUROC (H) AP (H)

T3Net (FULL

MODEL)

4 91.96% 20.35% 6 82.41% 23.80%

(91.61%, 92.26%) (16.15%, 21.50%) (82.24%, 82.74%) (22.31%, 24.46%)

T3Net (Ablate

demographics)

11 89.01% 15.89% 7 80.33% 20.80%

(87.67%, 89.26%) (11.38%, 16.64%) (77.47%, 81.00%) (15.81%, 22.71%)

T3Net (Ablate

Word2vEC)

2 91.59% 20.12% 2 82.09% 23.67%

(90.99%, 91.89%) (19.02%, 20.71%) (79.68%, 82.64%) (20.03%, 24.42%)

T3Net (Ablate

Word2vEC and

demographics)

2 90.17% 19.81% 2 81.72% 23.16%

(89.37%, 90.44%) (17.82%, 20.19%) (81.02%, 82.09%) (22.01%, 23.61%)

HiTANET 19 73.82% 3.90% 19 80.16% 21.85%

This table displays the value of the median score achieved by each model in its best-performing epoch by average precision (AP). The table also indicates perfor-

mance on the area under the receiver-operator characteristic curve (AUROC). Columns marked with an (M) display values for model performance on the mortal-

ity target; columns marked with an (H) display values for model performance on the hospitalization target. Each column also indicates the best and worst scores

for models on the given metric at the indicated epoch. Note that the best performance in both cases (as indicated by bold font) is achieved by the full T3Net model,

although the most appropriate comparison network is the fully ablated model.
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construction of total attention was strongly correlated with the ab-

solute difference in risk score obtained by adding or removing the

given diagnosis, demonstrating that this measure is a reliable tool

for interpreting T3Net’s decisions. Finally, we observed that T3Net’s

decisions reflected clinical intuition. For example, it learned that

time information was significantly more important when incorpo-

rating the effects of acute codes than when examining long-term

chronic diagnoses.

Limitations
In this article, we present the results from applying several complex

models to a single dataset. Further study will be necessary to verify

that our results are generalizable to alternative datasets. Unfortu-

nately, there is a notable lack of large, publicly available Electronic

Health Record data that focus on long-term, chronic conditions.

The most popular research dataset, MIMIC-III, focuses on critical

care patients; we do not believe that our methodology is well-

optimized for this type of application since it focuses on code occur-

rences over long periods of time (particularly chronic codes).26

The data set we have employed may not have been perfectly ac-

curate. In a health system as large as ours, it is inevitable that some

patients will not be assigned diagnoses correctly or that demo-

graphic data will be recorded incorrectly. Furthermore, our defini-

tion of mortality is based on an operational definition which our

health system uses in practice; however, it is possible that some mor-

tality events are not recorded through this operational system. Simi-

larly, it is possible that some patients were hospitalized without

submitting claims. In any of these cases, we note that these omis-

sions would be likely to degrade model performance.

To limit the scope of computational resources required, we have

employed only models of moderate size. Our experiments did not

explore the impacts of incorporating additional attentional heads or

compare our results with other modern architectures. We note, how-

ever, that these are practical concerns present in most healthcare

organizations that may seek to deploy patient outcome modeling.

Furthermore, HiTANet has compared well with other leading recent

alternatives.9 All models presented here were able to run on a virtual

machine with only 2 cores and 64 GB of RAM.

Our experimentation with HiTANet was limited by model train-

ing times. We found that HiTANet epochs took approximately 10�
longer to train than our own largest models, with similarly long

times required to produce validation predictions. We suspect that

this difference was due in large part to our computational infrastruc-

ture. HiTANet was implemented and optimized by the original

authors for use in a GPU-based environment. Unfortunately, we did

not have access to a robust GPU training environment and were

therefore unable to make use of these optimizations.

Future directions
This article has indicated several interesting new directions for the

future of patient modeling. Our work suggests that incorporating

demographic features and transfer learning into other model archi-

tectures could improve the performance of those models. Further re-

search will be required to determine how embedding strategy can

influence the performance of various modeling architectures, partic-

ularly when embedding weights are initialized by training on alter-

native data sets.14,27

We also proposed a new method to encode time data into mod-

els. Our results indicate that encoding based on a trigonometric de-

composition can drastically improve model performance, although

further investigation is required to more thoroughly determine the

relative efficiency of the various ways that this data can be encoded.

Finally, we found that incorporating advanced re-embedding

structures such as self-attention can complicate model interpreta-

tion. The influence of such structures will naturally vary by model

architecture; however, our results strongly indicate that it is useful

to confirm a researcher’s intuition and intentions by correlating at-

tention results with a perturbation study.

CONCLUSION

In this article, we have examined the effectiveness of several atten-

tional models on patient prediction tasks using real EMRs data. Our

results indicate that attentional networks can produce strong models

of patient outcomes with relatively small computational require-

ments. Furthermore, our unique adaptation of Vaswani et al’s

Transformer model (T3Net) proved to be superior to a leading liter-

ature alternative on the given tasks. Finally, our findings have indi-

cated several important considerations to be considered by future

models in the space, including the importance of pretraining medical

concept embeddings, demographic features, incorporating time data

into model architecture, and using the full contribution of a code to

the model (total weight) instead of its simple attention weight

(global weight) when interpreting a model with self-attentional ele-

ments.
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