
Data and text mining

NCMine: Core-peripheral based functional

module detection using near-clique mining

Shu Tadaka1 and Kengo Kinoshita1,2,3,*

1Graduate School of Information Sciences, Tohoku University, Sendai, Japan, 2Institute of Development, Aging and

Cancer, Tohoku University, Sendai, Japan and 3Tohoku Medical Megabank Organization, Sendai, Japan

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on March 16, 2016; revised on June 28, 2016; accepted on July 19, 2016

Abstract

Motivation: The identification of functional modules from protein–protein interaction (PPI) net-

works is an important step toward understanding the biological features of PPI networks. The de-

tection of functional modules in PPI networks is often performed by identifying internally densely

connected subnetworks, and often produces modules with “core” and “peripheral” proteins. The

core proteins are the ones having dense connections to each other in a module. The difference be-

tween core and peripheral proteins is important to understand the functional roles of proteins in

modules, but there are few methods to explicitly elucidate the internal structure of functional mod-

ules at gene level.

Results: We propose NCMine, which is a novel network clustering method and visualization tool

for the core-peripheral structure of functional modules. It extracts near-complete subgraphs from

networks based on a node-weighting scheme using degree centrality, and reports subgroups as

functional modules. We implemented this method as a plugin of Cytoscape, which is widely used

to visualize and analyze biological networks. The plugin allows users to extract functional modules

from PPI networks and interactively filter modules of interest. We applied the method to human PPI

networks, and found several examples with the core-peripheral structure of modules that may be

related to cancer development.

Availability and Implementation: The Cytoscape plugin and tutorial are available at Cytoscape

AppStore. (http://apps.cytoscape.org/apps/ncmine).

Contact: kengo@ecei.tohoku.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological relationships among genes or proteins, such as gene coex-

pression and protein–protein interactions (PPI), are modeled as

interaction networks or graphs, where a node corresponds to a gene

or a protein and an edge represents an interaction between the con-

nected node pair. Interaction networks sometimes contain several

densely connected subnetworks, which are recognized as functional

modules (Gao et al., 2009; Hartwell et al., 1999; Spirin and Mirny,

2003). Especially, Hartwell et al. emphasized the importance of

understanding of interactions between modules when phenomeno-

logical analysis is performed. Proteins in the same subnetwork are

considered to perform a specific biological task and tend to have

related functions. Therefore, the detection of functional modules

within a large interaction network is one of the fundamental steps to

understand the biological functions of genes and proteins.

The task to find functional modules in interaction networks is

called the network clustering problem and many algorithms have

been proposed for this purpose. For example, Newman (2006) pro-

posed a measure of modularity called ‘Q’ to quantify how well a net-

work is divided into a number of subnetworks globally, and

suggested a method to map the network clustering problem to the

problem of maximizing Q. They tried to identify community
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structures from various social and biological networks. In the biolo-

gical fields, Bader and Hogue (2003) developed the MCODE

method to find protein complexes in PPI networks. The method first

defines a score for each node, which reflects the connectivity of the

node, and searches for groups of nodes with higher scores. With a

different approach, Adamcsek et al. (2006) developed CFinder,

which uses the clique-percolation method (CPM) (Rivera et al.,

2010). This method searches for k-cliques (complete graphs with k

nodes) and then combines the k-cliques. It can detect more dense

subnetworks compared with other methods, like MCODE. Rivera

et al. (2010) proposed NeMo, which employs a hierarchy-based

clustering strategy and uses a log odds score reflecting the degree of

sharing neighboring nodes. Yanjun et al. (Qi et al., 2008) and Lei

et al. (Shi et al., 2011) used machine learning techniques to detect

protein complexes or functional modules by a combination of topo-

logical of networks given as input data and features of known pro-

tein complexes. Graph clustering problem is one of the most hot

topics in the field of computer science, and several algorithms are

being developed recently (Andersen et al., 2016; Seok-Joo et al.,

2016; Uno et al., 2015; Zhang and Zou, 2015). All of these methods

have distinct characteristics and could produce interesting biological

modules, but they are unable to handle an important feature of bio-

logical networks, that is, overlap among modules. Careful investiga-

tions of biological networks have suggested that some functional

modules in an interaction network share the same nodes (Palla

et al., 2005; Rives and Galitski, 2003). In other words, some func-

tional modules have overlapping regions. In the field of graph the-

ory, this problem is called the ‘soft-clustering’ problem.

The importance of the soft clustering problem in biological net-

works may be rephrased as the ‘core-peripheral structure’ of func-

tional modules (Gavin et al., 2006; Kuhner et al., 2009). When two

tightly related protein groups share many proteins, which is typical

in a signal network cascade, the two groups will be identified as a

single functional module using the current hard clustering methods.

From the viewpoint of a biological network, the core proteins play

an important role in the module and peripheral proteins (with fewer

edges) interact with a subset of core proteins and may be involved in

a specific function, such as the regulation of the network. Previously

proposed methods cannot effectively elucidate the relationships be-

tween clusters that share proteins and produce many independent

clusters when overlaps are permitted. There exists few graph cluster-

ing methods that also enables visualization of relationships between

clusters.

To overcome these limitations of previous methods, we de-

veloped a method called NCMine, which focuses on the identifica-

tion of modules in biological networks and the extraction of

biologically meaningful clusters. NCMine detects functional mod-

ules from biological interaction networks by constructing ‘local

near-cliques’ using a node-weighting scheme based on degree cen-

trality, and by iteratively merging local near-cliques according to

cluster overlap. The combination of the local-cluster construction

phase and the merge phase enables the detection of overlapping pro-

teins between modules and reveals relationships among modules at

the same time. The ‘near-clique’ is a graph structure lacking a few

edges compared with the complete graph. Clique or complete graphs

are mathematically well studied and easy to enumerate, but near-

clique searches are quite difficult to implement. Several previous

studies have used clique detection algorithms to find functional

modules (Li et al., 2005; Liu et al., 2009), but the clique is a strin-

gent requirement for biological phenomena because some elements

of functional modules may interact with only the part of the module

(i.e. a subset of its members) and because experimental nose will

hide some existing edges in the modules. Wu et al. first tried to find

core-peripheral structure for biological networks (Wu et al., 2009).

Wu et al. first searched for clusters and extended them to find per-

ipheral nodes, while our methods first searched for clusters, merged

the found clusters and identified core part of the overlapping clusters

as described later.

2 Methods

2.1 NCMine algorithm
The proposed method has two phases. In the first phase, several

‘local’ near-clique clusters are constructed according to connectivity

between nodes. In the second phase, the local clusters are iteratively

merged based on the degree of overlap of the clusters.

2.1.1 Phase 1: local cluster construction

We first assigned weights to each node based on the connectivity of

each node. In this clustering method, node degree centrality was

used to assign node weight. Then, we selected the node with the

highest node weight value, which we called the seed node, and con-

sidered it a local cluster with a single node. Next, we added nodes

adjacent to the initial cluster to the local cluster. All adjacent nodes

were examined for addition according to weight order, and nodes

were added if the cliqueness of the new cluster exceeded a pre-

defined threshold and if the cliqueness-change between the new and

old cluster was lower than a threshold, where cliqueness was a

measure of the similarity between a graph and the complete graph

with the same number of nodes, defined as follows:

cliqueness ¼

ð# of existing edges in the graphÞ =

ð1
2

NðN � 1ÞÞ ðN ¼ # of nodes in the graphÞ

1:0 ðif N � 1Þ

:

8>>><
>>>:

Cliqueness is an important factor to evaluate the goodness of a

cluster, but heavy reliance on cliqueness may be inadequate in biolo-

gical networks. Accordingly, we also introduced cliqueness-change

as another indicator of local cluster expansion. Cliqueness-change

avoids the inclusion of a ‘tail’ node, which is a node that has only a

few edges with other nodes in a cluster. In our expansion algorithm,

some tail nodes were included when clusters became large, unless

cliqueness-change was introduced.

Local clusters were constructed from every node in the network

in decreasing order of node weight, and they were merged in the se-

cond phase as described in the next section. The cost of calculation

for the first phase of the NCMine algorithm is approximately

Oðn2Þ, where n represents the number of nodes in a graph.

2.1.2 Phase 2: merge of local clusters

The local clusters constructed in the previous phase were iteratively

merged according to the overlap of clusters. The degree of overlap

was measured by the Jaccard coefficient when a cluster and a node

were considered a set and an element. If the overlap between two

clusters was greater than a pre-defined overlap threshold and the

cliqueness of the merged cluster was greater than a pre-defined

threshold, the two clusters were merged. However, if the overlap

between a pair of clusters exceeded the pre-defined threshold and if

the cliqueness of the merged cluster did not satisfy the threshold,

they were not merged and treated as a cluster hierarchy in the final

sets of clusters, where the overlapping region of the two clusters was

considered a parent cluster and each element cluster was depicted as

a child clusters The local clusters were merged according to the
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overlapping region of two clusters, and the method could assign a

node to multiple clusters; thus, it was a type of soft-clustering

method. It should be noted that the merging of clusters was per-

formed according to the order of cluster generation because it was

expected that nodes in a near-clique cluster tend to have similar

node degrees and similar node degree centrality, and similar clusters

tend to be close in the order of cluster construction. Based on the na-

ture of node degree centrality, we could reduce the number of com-

parisons necessary to check cluster overlap.

After the merge phase, we obtained the final set of clusters. The

calculation cost for the second phase is approximately Oðn2Þ, where

n represents the number of nodes in a graph, because the maximum

number of clusters generated in the first phase is n. Therefore, the

overall cost is also O n2
� �

. We implemented our algorithm as a

Cytoscape (Smoot et al., 2011) plugin, as described later. In this im-

plementation, the default threshold values for cliqueness-change,

overlap and cliqueness are set to 0.2, 0.6 and 0.6, respectively, ac-

cording to the results of our experiments described in the next sec-

tion. In addition, pseudo code and flowchart of the NCMine

algorithm are available in supplementary material (Supplementary

Fig. S1).

It is noteworthy that the final solution returned by our method is

not necessarily a globally optimal solution. There are two types of

clustering methods with respect to clustering results: methods that

return globally optimal solutions and those that generate local opti-

mum solutions. The global optimum algorithms, like Newman’s Q

described in the previous section, use a measure that indicates how

isolated one cluster is from other clusters, and the clustering is per-

formed by the optimization of the measure. The clustering results

contain clusters that are well isolated; therefore, the method is a glo-

bal optimum method. In contrast, our method only considers limited

parts of the whole network when constructing each local cluster and

thus it should be referred to as a locally optimal method.

2.2 Evaluation of clustering methods by artificially

generated networks
To evaluate our algorithm, we generated artificial networks in two

steps. First, we generated a number of near-cliques with random

cliqueness values ranging from 0.6 to 1.0; second, we established

edges between randomly chosen pairs of nodes among all near-

clique clusters generated in the first step.

We applied our method and previously proposed methods

[MCODE (Bader and Hogue, 2003), CFinder (Adamcsek et al.,

2006) and NeMo (Rivera et al., 2010)] for a comparative analysis.

We compared extracted clusters with embedded clusters and then

calculated precision and recall. A cluster identified by a method was

judged to be included in one of the embedded clusters if the pair of

two clusters was the best pair in a bidirectional manner. The similar-

ity of clusters was calculated by the Jaccard coefficient, and if the

similarity for a pair of two clusters was higher than 0.6, the clusters

were considered the same cluster.

The recall and precision were calculated by the following

formulae:

• Precision¼True_Positive/(True_PositiveþFalse_Positive)
• Recall¼True_Positive/(True_PositiveþFalse_Negative),

where True_Positive represents clusters that are included in the set

of extracted clusters and embedded clusters, False_Positive repre-

sents clusters that are included in extracted clusters, but not in

embedded clusters and False_Negative represents clusters that are

included in embedded clusters, but not in extracted clusters.

We compared our method with three established methods,

MCODE (Bader and Hogue, 2003), CFinder (Adamcsek et al.,

2006) and NeMo (Rivera et al., 2010). The details of the methods

are described in the original articles, but for convenience, we briefly

describe some features of the algorithms.

The MCODE algorithm contains three phases: (1) vertex weight-

ing, (2) cluster construction based on vertex weights and (3) post-

processing. In the first phase, the weight of each node is calculated,

where vertex weight is defined as node-density * degree. In the se-

cond phase, a cluster is constructed from the node with the highest

weight by adding neighboring nodes with higher weights. In the

MCODE algorithm, one protein may be assigned to multiple clus-

ters; however, the relationship among clusters that share some num-

ber of proteins cannot be determined. The local cluster construction

phase of NCMine employs a similar strategy to that of MCODE;

however, evaluation functions that are used to construct local clus-

ters are different, and MCODE tends to include hub proteins in a

cluster and makes relatively larger clusters, as shown in subsequent

sections.

CFinder employs the CPM (Reid et al., 2012) to detect func-

tional modules. The basis for the CPM algorithm is the detection of

maximal cliques from networks, which are combined according to

their overlap; it detects k-cliques that share k � 1 nodes. When we

apply this method to biological interaction networks, the clique is a

hard requirement because some members of functional modules

may interact with only a subset of module members. Another prob-

lem is that nodes that do not participate any k-clique cannot be con-

tained within any clusters, and a k-clique community cannot be

constructed depending on nodes and edges in a graph.

In the NeMo algorithm, a log odds score called rab is used to ob-

serve an edge between two nodes, i.e. node a and node b. The rab

scores are assumed to follow a Poisson distribution, and rab approxi-

mately equals the log odds ratio between the probability of rab under

the alternative hypotheses and null hypotheses (Rivera et al., 2010).

In the NeMo clustering process, log odds scores for all node pairs in a

network are calculated, followed by hierarchical agglomerative clus-

tering using the scores. Several previous studies (Palla et al., 2005;

Rives and Galitski, 2003) have shown that the form or composition

of a protein complex may differ depending on conditions; however,

NeMo cannot assign a protein to multiple clusters and accordingly

cannot account for this observed property of biological networks.

2.3 Evaluation of clustering methods by human

protein–protein interaction networks
We also evaluated our method using a real biological network. We

used human PPI data obtained from the Human Protein Reference

database (HPRD, Release 9) (Keshava Prasad et al., 2009). The data

obtained from HPRD contained (i) binary PPI data and (ii) protein

complex data. We applied clustering methods to binary PPI data

and evaluated the results by comparisons with the protein complex

data. In addition, we checked the biological relevance of the ex-

tracted clusters using Gene Ontology (GO) enrichment tests. GO an-

notations were obtained from the Gene Ontology Consortium

(http://www.geneontology.org) in September 2012. Enrichment was

evaluated using Fisher’s exact test and a P-value of 0.05 was used as

the threshold for significance. To correct for multiple comparisons,

the Bonferroni correction method was used. We considered a cluster

‘biologically meaningful’ if one or more GO terms were shared

among more than 60% of cluster members. These evaluations were

also performed using MCODE (Bader and Hogue, 2003), CFinder

(Adamcsek et al., 2006) and NeMo (Rivera et al., 2010).
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2.4 Materials
The Kyoto Encyclopedia and Genes and Genomes (KEGG)

(Kanehisa et al., 2014) pathway annotation information for genes or

proteins was retrieved from the KEGG pathway website (http://

www.genome.jp/kegg/pathway.html).

The following clustering methods were used: MCODE

1.4.0.beta2 (released December 2012) implemented in Cytoscape

(Smoot et al., 2011) 3.0.0, CFinder 2.0.5 (released April 2011) and

NeMo 1.4 (released February 2010) implemented in Cytoscape 2.7.

All experiments related to the cluster extraction process were per-

formed using the same desktop computer (Apple iMac, 3.4-GHz

Intel Core i7 CPU, 32-GB RAM).

3 Results

3.1 Evaluation of clustering methods by artificially

generated networks
We generated artificial networks with 10 000 nodes and with 500

near-cliques embedded, where the 500 near-cliques in each network

had a size of 7.2 6 2.83 and a cliqueness of 0.80 6 0.11. Table 1

shows the comparative performance results. All methods ran in a

comparable period of time (�10 s), except NeMo, possibly owing to

implementation problems. Based on the algorithms, large differences

were not expected.

CFinder extracted the most clusters among the methods, and

MCODE identified the fewest clusters. Since CFinder invoked the

CPM algorithm with various ‘k-core’ size parameters and returns all

clusters, CFinder was expected to produce the highest number of

clusters. In the artificial network, this was true, but as shown in

Table 1, the actual number of clusters depended on network struc-

ture. MCODE identified the fewest clusters. MCODE finds clusters

based on local node-density (node-degree * core-density), and the

evaluation function tended to combine multiple blocks into a single

cluster. The evaluation function of MCODE also tended to produce

clusters with radically connected nodes, and thus MCODE pro-

duced relatively bigger clusters and a smaller number of clusters.

This tendency was consistent using the human PPI network

(Table 3).

Regarding the size of clusters, MCODE produced clusters of

various sizes ranging from 3 to 53 (average 6 SD¼7.72 6 5.85),

while NCMine, CFinder and NeMo extracted similarly sized clus-

ters. The higher variance observed using MCODE reflects the evalu-

ation function described above. MCODE produced clusters with a

wide range of cliqueness (0.09–1.0) compared with NCMine and

CFinder. We could not explain the observation, but NeMo also pro-

duced clusters with a wide range of cliqueness (0.0–1.00). It should

be noted that the SD of cliqueness for clusters extracted by NCMine

was extremely low because NCMine specialized in grabbing near-

cliques in networks, and attempted to find the most ‘loose’ local

clusters that satisfied a pre-defined cliqueness threshold. As a result,

we can expect that the average cluster size for NCMine will be

much smaller than those of the other methods.

We also compared extracted clusters and 500 embedded near-

clique clusters by changing the clustering parameters for each

method and calculating the recall and precision for each set of par-

ameters (Fig. 1). A dot in Figure 1 corresponds to a pair of recall

and precision values calculated for a set of parameters. MCODE

and NCMine had 4 and 3 parameters, respectively. To calculate the

recall and precision values, we fixed one parameter and changed the

other parameters in the ranges and widths shown in Table 2. In this

evaluation, we generated 1000 artificial networks and calculated the

recall and precision values for all networks. We found that the preci-

sion and recall curves were very similar for all cases, and thus one

typical example is shown in Figure 1. NeMo and CFinder have no

adjustable parameters, and they were executed only once with the

pre-defined configuration.

As shown in Figure 1, NCMine achieved a strong tradeoff be-

tween recall and precision with respect to near-clique extraction

when we selected appropriate parameters. We obtained the highest

precision using the following settings: cliqueness threshold¼0.6,

merge threshold¼0.6 and cliqueness change¼0.6. MCODE

achieved high precision, but its recall values were low. MCODE

tended to extract larger clusters, and thus the high precision indi-

cated that almost all embedded clusters were included in the

Table 1. Summary of extracted clusters from an artificially gener-

ated network

Running

time

# of found

clusters

Cluster size

(avg, SD)

Cluster cliqueness

(avg, SD)

NCMine 10 s 706 4–14 (6.77, 1.95) 0.60–0.97(0.67, 0.06)

MCODE 8 s 370 3–53 (7.72, 5.84) 0.09–1.00(0.77, 0.24)

CFinder 10 s 1340 3–13 (8.41, 2.52) 0.57–1.00(0.87, 0.10)

NeMo 1 m 30 s 953 4–13 (6.54, 2.31) 0.00–1.00(0.57, 0.37)

Fig. 1. Recall and precision calculated from cluster extraction results by com-

paring extracted clusters and actual embedded clusters in artificial networks.

Higher recall and precision indicate better performance

Table 2. Parameter settings for MCODE and NCMine used for per-

formance tests with artificially generated networks

Default

value

Range of value

used in tests (step)

MCODE

Degree cutoff 2 2 – 10 (2)

Node score cutoff 0.2 0.0–1.0 (0.2)

K-core cutoff 2 2–10 (2)

Degree cutoff 2 2–10 (2)

NCMine

Cliqueness threshold 0.6 0.0–1.0 (0.2)

Merge threshold 0.6 0.0–1.0 (0.2)

Cliqueness-change threshold 0.2 0.0–1.0 (0.2)
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extracted clusters, and the low recall implied that only parts of

embedded clusters were found by MCODE. In contrast, NeMo and

CFinder had high recall values and low precision values, indicating

that too many false positive clusters were generated using these

methods, consistent with the large number of extracted clusters

shown in Table 1.

3.2 Application to the human protein–protein

interaction network
We applied our method to the human PPI network, and evaluated

the results by calculating the proportion of clusters that were ‘bio-

logically meaningful’, i.e. those that had one or more significantly

enriched GO terms. The PPI network used in this study were taken

from HPRD release 9, where 9670 proteins (nodes) and 3922 inter-

actions (edges) were available. The results are summarized in

Table 3. All methods, except NeMo, were completed in comparative

lengths of time. This observation was consistent with the results ob-

tained for the artificial network. Time complexity of the core clus-

tering parts of MCMine, CFinder and NeMo are O(n2), and that of

MCODE is O(nmh3). Therefore, the difference of running time of

each method would be due to the pre- and post-process of clustering

or the difference of implementations. MCODE extracted the fewest

clusters, consistent with the artificially generated networks, but

NCMine extracted far more clusters that the other methods using

the PPI network. NCMine tended to extract near-cliques that satisfy

given thresholds as much as possible, indicating that the real PPI net-

work contained a high number of clique-like sub-graphs and that it

is important to detect clique-like sub-graphs. The importance of

clique-like sub-graphs was also confirmed by the higher percentage

of biologically meaningful clusters, as described by the ‘Ratio’ esti-

mate in Table 3 for our method. NCMine detected a much larger

number of clique-like clusters and more than half (54%) of the clus-

ters were biologically meaningful. Note that CFinder extracted clus-

ters with higher cliqueness values (0.900, on average) than those of

NCMine (0.764, on average), but the proportion of clusters that

were biologically meaningful for CFinder was relatively low, which

may indicate that near cliques with modest cliqueness were more im-

portant than those with higher cliqueness. MCODE extracted the

smallest number of biologically meaningful clusters and the ratio of

meaningful clusters to the total number of extracted clusters was

relatively low. This might be explained by the MCODE evaluation

function, which tended to allow multiple clusters to be combined

into a single large cluster; clusters with no functional relationships

might be merged in PPI networks.

We also checked the concordance of extracted clusters with

known protein complexes. For this purpose, the distributions of

cluster sizes and the cliqueness of known protein complexes and ex-

tracted clusters were compared (Fig. 2A andB) using protein com-

plexes obtained from the ‘protein complex dataset’ in HPRD. We

observed that the sizes of known protein complexes were widely dis-

tributed, and the distribution of clusters extracted by NCMine had

two peaks. When we neglected the second peak, the distribution ob-

tained using NCMine was similar to that of known complexes

(Fig. 2A). With respect to cliqueness, we observed extensive differ-

ences in the distribution between the clustering methods and known

complexes (Fig. 2B), where the cliqueness of a known protein com-

plex was calculated using binary PPI data in HPRD. Experimental

methods to detect interactions between proteins and methods to

identify protein complex members are typically different.

One important feature of NCMine is soft clustering.

Accordingly, we observed the number of cluster groups associated

with proteins and its relationship to the number of interactions

(Fig. 2C). On average, using the NCMine clustering algorithm, the

number of proteins belonging to clusters of nodes tended to increase

as node interactions increased, but there were some exceptional

cases, as shown in Figure 2C. Interestingly, most of the exceptional

cases were related to cancer development (these points were above

the regression line in Fig. 2C). Proteins below the regression line,

such as ATXN1 and UBQLN4, had relatively few cluster member-

ships and little relationship with cancer development. This observa-

tion suggests that a higher degree of cluster membership is a good

indicator of the importance of proteins involved in cancer.

3.3 Examples of clusters detected by NCMine from the

human PPI network
To illustrate the biological meaning of the clusters obtained by

NCMine, we selected two examples.

Example A is summarized in Figure 3A. The cluster was ex-

tracted by NCMine from the HRPD PPI network, which revealed re-

lationships between two clusters related to cancer development.

The nodes shown in green in Figure 3A represent the proteins in a

parent cluster (i.e. a core cluster) and red nodes were in child clusters

(i.e. peripheral clusters). A visual representation of the cluster hier-

archy is shown on the upper right-hand portion of the figure. Based

on the KEGG pathway database (Kanehisa et al., 2014), proteins

shown with blue, light blue, and red dots had functions in the Wnt

signaling pathway, pancreatic cancer, and the hepatitis B pathway,

respectively. The Wnt signaling pathway is related to embryonic de-

velopment and cancer development, and is considered a key path-

way in the development of various cancer types (Nusse and Nusse,

2005). The pancreatic cancer and hepatitis B pathways are specific.

The relationships among these core proteins and peripheral proteins

Table 3. Summary of extracted clusters from the HPRD human protein–protein interaction (PPI) network using each method

Running

time

# of extracted

clusters (A)

Cluster size

(avg, SD)

Cluster cliqueness

(avg, SD)

# of biologically

meaningful clusters (B)

Ratio (B/A)

NCMine 15 s 2309 (102*) 3–21 0.600–1.000 1259 0.54

(4.880, 2.887) (0.764,0.162)

MCODE 7 s 250 2–160 0.016–1.000 93 0.45

(9.359,19.945) (0.654, 0.337)

CFinder 28 s (10 s**) 764 3–1010 0.017–1.000 315 0.41

(7.055,38.954) (0.900,0.164)

NeMo 180 s 1510 4–68 0.000–1.000 784 0.52

(8.940, 7.456) (0.128, 0.244)

*The number in the parenthesis is the number of clusters that are involved in core-peripheral structures.

**The number in the parenthesis is calculation time with approx. option¼ 0.1 s.
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can be clearly seen in the cluster relationships shown in Figure 3A,

as indicated by the limited distribution of blue dots, indicating the

Wnt signaling pathway, in the core cluster (genes in green boxes).

Example B is summarized in Figure 3B, which shows another ex-

ample of extracted clusters. The set of blue-colored proteins and

green-colored proteins in Figure 3B represent one of the clusters

found by NCMine, and the set of green-colored proteins along with

red-colored proteins is another single cluster. The set of green-

colored proteins were the intersection of two clusters and NCMine

automatically detected these three clusters and their relationship, as

shown in the hierarchy of clusters at the upper right of Figure 3B.

Again, by inspecting the KEGG (Kanehisa et al., 2014) pathway

database, we found that all proteins in Figure 3B were related to the

pancreatic cancer pathway (hsa05212); however, GO terms associ-

ated with the ‘enzyme linked receptor protein signaling pathway’

(GO:0007167) and ‘negative regulation of transcription’

(GO:0017148) were differently distributed and only found in the

peripheral clusters, as indicated by blue and red dots. This indicated

that proteins in the green box may play a central role in pancreatic

cancer development and participated in other pathways along with

the peripheral proteins shown in blue boxes and red boxes.

3.4 Implementation and availability
Cyotoscape (http://cytoscape.org/) is an open source platform for

analysis and visualization of networks. Cytoscape core provides

basic functions for handling network (interaction) data, for ex-

ample, parsing and loading network files, layout nodes in networks,

querying networks, and so on. Cytoscape also provides several APIs

(Application Programming Interface) to manipulate network data

loaded into Cytoscape core, which can be used to extend the

Cytoscape functions.

Using the APIs, we implemented our network analysis method

and original network visualization. NCMine Cytoscape plugin is

Fig. 2. (A) Comparison of cliqueness of clusters extracted by each method. (B) Comparison of the sizes of extracted clusters and known protein complexes (C)

Relationship between node degree and cluster membership calculated from the NCMine cluster extraction results. Genes included in the plot are listed in

Supplementary Table S1(A) and (B)

Fig. 3. (A) Two sets of peripheral proteins (blue and red) with the same core proteins (green) are shown. In this example, most of the proteins were related to can-

cer development. However, the proteins that participate in blue peripherals and red peripherals had different functions. Genes in the clusters: AKT1: v-akt murine

thymoma viral oncogene homolog 1; AR: Androgen receptor; BRCA1: Breast cancer 1, early onset; CREBBP: CREB-binding protein; CTNNB1: Catenin (cadherin-

associated protein), beta 1, 88 kDa; EP300: E1A-binding protein p300; ESR1: Estrogen receptor 1; JUN: Jun proto-oncogene; RB1: Retinoblastoma 1; RELA: v-rel

avian reticuloendotheliosis viral oncogene homolog A; SMAD1: SMAD family member 1; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3;

SMAD4: SMAD family member 4; SP1: Sp1 transcription factor; STAT3: Signal transducer and activator of transcription 3 (acute-phase response factor); TP53:

Tumor protein p53; UBE2I: Ubiquitin-conjugating enzyme E2I (B) Most of the core-proteins (green) were involved in the Wnt signaling pathway, which is related

to cancer, generally; however, peripheral-proteins involved specific cancer development pathways. Genes in the clusters: AKT1: v-akt murine thymoma viral

oncogene homolog 1; AR: Androgen receptor; BRCA1: Breast cancer 1, early onset; CREBBP: CREB-binding protein; CTNNB1: Catenin (cadherin-associated pro-

tein), beta 1, 88 kDa; EP300: E1A-binding protein p300; ESR1: Estrogen receptor 1; JUN: Jun proto-oncogene; MAPK1: Mitogen-activated protein kinase 1; RB1:

Retinoblastoma 1; SMAD1: SMAD family member 1; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SMAD4: SMAD family member 4;

SMAD9: SMAD family member 9; SP1: Sp1 transcription factor; STAT3: Signal transducer and activator of transcription 3 (acute-phase response factor); TGFBR1:

Transforming growth factor, beta receptor 1; TP53: Tumor protein p53; UBE2I: Ubiquitin-conjugating enzyme E2I
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built on top of Cytoscape core and exposed APIs. NCMine plugin

interacts with Cytoscape core and obtain network data, and then it

carries out NCMine algorithm and returns cluster extraction result

to Cytoscape core for visualization. The NCMine plugin was imple-

mented in Java, and the plugin is distributed through Cytoscape App

Store (http://apps.cytoscape.org/), which is an official repository of

Cytoscape plugins (apps). Plugins in the repository can be installed

via Cytoscape’s AppManager.

Figure 4 shows a basic workflow with NCMine. The NCMine

plugin can detect near-clique clusters from input data, and can be

used to visualize their hieratical relationships. Quick tutorial of the

plugin is also available from Cytoscape App Store page.

4 Conclusion

We developed a new method, NCMine, to identify and visualize

functional modules with consideration of the core-peripheral struc-

ture of modules. The core idea of the NCMine algorithm is (i) the

extraction of complete subgraph-like structures from networks

based on a node-weighting scheme and (ii) merging local clusters

based on module overlap. In a comparative analysis with other

methods, NCMine achieved better performance. We also showed a

good example of hierarchical structures in functional modules by an

analysis of a human PPI network. However, based on the compara-

tive analysis, each method had unique characteristics, and it might

suggest that it is important to select a clustering method suitable for

the purpose.
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