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Abstract

Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and
selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to
control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model.
For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and
models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We
overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that
blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses
weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system
dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing
model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to
produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs
that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating
the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells.
In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when
compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation
of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the
single-model controllers. This study provides an experimentally-corroborated control methodology that utilizes the
knowledge encoded within multiple mathematical models of intracellular signaling to design control inputs that effectively
direct cell behavior in open-loop.
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Introduction

The ability to predictably manipulate intracellular signaling

pathways would provide an unprecedented level of control of

cellular processes and could potentially generate new approaches

for therapeutic design and research tools in medicine and systems

biology. Intracellular signaling networks are complex assemblies of

interconnected molecular components that relay information

and coordinate responses to environmental cues. For example, T

lymphocytes are critical regulators of the immune response against

the threats of invading pathogens and cancerous host cells. Their

response to external stimuli is coordinated through several

mediators including extracellular signal-regulated kinases (Erk),

which are particularly noteworthy as they have been implicated in

a number of autoimmune diseases and cancers [1–4]. Phenotypic

change due to extracellular perturbation is a robust property of

normal cell behavior and involves considerable feedback and

crosstalk and is highly nonlinear. To help resolve the uncertainty

and understand the complexity inherent within these signaling

pathways, many researchers have developed mathematical models

of signaling processes [5–10]. These models can be used to inform

control strategies that try to predictably manipulate the intracel-

lular signaling response, but also give rise to a new set of challenges

in systems biology and control engineering.

To date, the majority of model-based control of cellular

processes and systems has focused on biomass production in

bioreactors [11,12] or were largely theoretical. Within the past

decade, research has started to evaluate engineered control

strategies for single and multiple cell signaling processes within

experiments. Noble and Rundell [13] used closed-loop (i.e. in silico

feedback) control to direct HL60 cell differentiation through

periodic boluses of a differentiation-inducing agent determined by

nonlinear model predictive control (MPC). In 2012, they revised

the initial approach to improve the transient response of the

differentiating cells over 20 days by using a multi-scenario adaptive

model predictive control [14]. Uhlendorf et al. [15] applied open-

loop (i.e. non-feedback) and closed-loop control to provide long-

term regulation of gene expression on the single-cell and

population level by manipulating the osmotic stress on cells in a

microfluidic environment. The open-loop approach failed to
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regulate mean fluorescence to the desired set points in the

laboratory. On the other hand, attempts using measurement

feedback proved to be more successful at coping with modeling

inaccuracies and inherent intracellular fluctuations. Opto-genetics

and synthetic biology provide effective methods for control theory

to interface with cellular processes at the genetic and signal

transduction level. Milias-Argeitis et al. [16] attempted to control

the activation of a light-responsive Phy/PIF module that altered

the expression of a yellow florescent protein (YFP) activated

through the Gal1 promoter in Saccharomyces. As in [15], the closed-

loop approach proved more successful in driving YFP intensity to

the desired set points in the laboratory. Tettcher et al. [17,18] also

used light as the control input to modulate the localization of PIF-

tagged proteins to the cell membrane. This has the ability to alter

intracellular signaling through coordination of the localization.

Both of these studies achieve long-term regulation of cell activities

through transcriptional control. Another closed-loop control study

was proposed in Menolascina et al. [19] using pulse width

modulation to specify the duration of pulses of galactose

administered via microfluidics. Their experimental results confirm

the predictive capabilities of their model for the synthetic gene

network in S. Cerevisiae.

All of the aforementioned studies rely upon computer-based

feedback control: a computer in the loop uses system measure-

ments to inform control decisions. While closed-loop control is

widely understood to be more robust to disturbance and

uncertainty, in many cases the rapid dynamics, scale and

complexity of intracellular signaling events and absence of real-

time measurement assays prohibit its use. In these cases, any

control strategy must design the control inputs in advance without

measurements to inform future steps and rely solely upon prior

information gleaned from existing experimental data. However,

this may introduce unwanted degradation in control performance

due to discrepancies between the actual system and the prediction

model (i.e. plant-model mismatch). Methods to systematically and

optimally combine this prior information with the predictive

capacity of multiple mathematical models are needed.

Because mathematical models are abstractions of biological

reality, they may differ in dominant species, network structure,

parameter values, and functional representation. For most

signaling pathways, limited preexisting quantitative data and

qualitative observations are insufficient to discriminate unambig-

uously between the mathematical models. When applying control

theory techniques, the experimental perturbations (i.e. control

inputs) predicted to elicit a desired behavior from a system may be

different for each model. Selecting the ‘‘best’’ of these models is an

important challenge to control theorists for systems biology

applications [20]. Apgar et al. [21] applied control theory to

discriminate among mechanism-based chemical kinetic models of

epidermal growth factor receptor signaling. The method designs

dynamic stimuli to delineate the system’s response to subtle

differences in the network topology. The model associated with the

best controller is deemed the best representative of the original

system. However, in using this model alone, we would implicitly

assume that the model is also the most accurate in alternate

operating regions, which may or may not be the case. Without

performing the experiments there is no way to know a priori which

model is best; furthermore, the best model may change depending

upon the experiment planned. How to optimally combine

information from these network models to design control inputs

that, when applied to the cell, force the signaling dynamics along a

desired path is the subject of much debate.

Growing attention in systems biology has been given to control

methodologies considering multiple prediction models. Multiple

models, or scenarios, have been previously used to improve

robustness to parametric uncertainty in closed-loop model-based

control [14,22–25]. The approach proposed by Rao et al. [24]

computed control inputs by weighting multiple step-response

models using a Bayesian algorithm to control hemodynamic

variables in hypertensive subjects. These concepts were extended

for disturbance rejection in a van de Vusse reactor using Bayesian

methods to produce a weighted-average linear prediction model

[25]. The recursive weighting system was effective at eliminating

the ‘‘hard switch’’ between controllers. Noble et al. [14] employed

adaptive nonlinear MPC based on multiple data-consistent

parameter characterizations to manipulate cell differentiation

experimentally. Control inputs were chosen such that the average

tracking error and resource efficiency were optimized, which

resulted in superior controller performance over single-model

MPC. However, this approach assumes all parameter scenarios

are equally likely and does not consider that their accuracy in

predicting actual system dynamics often varies between distinct

regions of the state and control input spaces. Furthermore, the

aforementioned approaches consider essentially single model

structures with little to no variation in the mathematical equation

structures. While methods considering model uncertainty explicitly

are numerous, it is generally in the form of disturbances and

process noise with very little consideration given to qualitatively

distinct biological hypotheses. This is a critical flaw as these

hypotheses could translate into qualitatively distinct equation

structures and input/output and state/output relationships.

Finally, all of these approaches employ real-time feedback that is

not available for most intracellular signaling pathways because the

dynamics are often too rapid for standard measurement assays.

In this paper, we present a practical open-loop control

framework with a novel method for employing existing experi-

mental data to confidently combine multiple model predictions to

form effective control inputs. That is, an automated control input

selection process is developed for the open-loop case; this process is

advised by information regarding model accuracy in regions of the

input space where potential control inputs are likely to be present.

Author Summary

Most cell behavior arises as a response to external forces.
Signals from the extracellular environment are passed to
the cell’s nucleus through a complex network of interact-
ing proteins. Perturbing these pathways can change the
strength or outcome of the signals, which could be used to
treat or prevent a pathological response. While manipu-
lating these networks can be achieved using a variety of
methods, the ability to do so predictably over time would
provide an unprecedented level of control over cell
behavior and could lead to new therapeutic design and
research tools in medicine and systems biology. Hence, we
propose a practical computational framework to aid in the
design of experimental perturbations to force cell signal-
ing dynamics to follow a predefined response. Our
approach represents a novel merger of model-based
control and information theory to blend the predictions
from multiple mathematical models into a meaningful
compromise solution. We verify through simulation and
experimentation that this solution produces excellent
agreement between the cell readouts and several prede-
fined trajectories, even in the presence of significant
modeling uncertainty and without measurement feed-
back. By combining elements of information and control
theory, our approach will help advance the best practices
in model-based control applications for medicine.

Multiple-Model Control of Intracellular Signaling
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Akaike weights, based on an information-theoretic metric penal-

izing model complexity and lack-of-fitness used for model

discrimination [26,27], are employed for this purpose. In the

results, we successfully demonstrate the algorithm with several

simulated test cases and corroborate a subset of these with in vitro

experiments in Jurkat T lymphocytes. Conclusions and future

work are presented in the discussion and detailed and illustrated

descriptions of the algorithm and experimental protocols are

provided in the materials and methods.

Results

Controlled System: T Cell Activation
The signaling pathway considered herein is the T cell receptor

(TCR)-activated extracellular signal-regulated kinase (Erk, or

MAPK) pathway (generalized in Figure 1). Activated Erk is an

important condition in lymphocyte development and activation

processes because it is a highly conserved and ubiquitous

mechanism for transferring extracellular signals from membrane-

bound receptors to the nuclear domain for gene regulation. The

stimulation of TCRs by antigenic peptides (e.g. aCD3, shown in

green in Figure 1) initiates a number of molecular reactions

involved in signal transduction through Erk. During ligand

binding, the TCR recruits and is phosphorylated by the tyrosine

kinase Lck. A second tyrosine kinase, ZAP70, binds the tyrosine

phosphorylated TCR subunits and is phosphorylated and activat-

ed by Lck. The receptor-kinase complex recruits and phosphor-

ylates the adapter proteins LAT and Grb2 and phosphorylates and

activates PLCc leading to the formation of GTP-bound Ras.

Activated Ras initiates the canonical Raf/Mek/Erk signaling

cascade which results in T cells in the activation of the gene for

interleukin-2.

Prediction Model Bank
Three mathematical models of the TCR-mediated signaling

cascade are used for the basis of the prediction model bank [5–

7]. The model proposed by Zheng [5] (herein referred to as

Model Z) contains primarily first- and second-order mass

action kinetics with 24 ODEs and 53 reaction parameters. The

second model (herein referred to as Model L) is the

deterministic version of the model proposed by Lipniacki et al.

[6], which explicitly incorporates SHP-mediated negative

feedback and Erk-mediated positive feedback. Model L consists

of 32 reaction parameters and 37 ODEs derived from mass

action kinetics. The original version of the third model,

presented by Klamt et al. [7], uses Boolean logic to describe

the main steps involved in the activation of CD4+ helper T

cells. CellNetAnalyzer, a Matlab software package [7] for

structural and functional analysis of signaling networks, and

the Odefy toolbox [28] were used to convert the logical model to

a continuous homologue (herein referred to as Model K) with

40 states and 147 reaction parameters. Values for these

reaction parameters were taken from Table 1 in [29]. All

prediction models were modified to contain control inputs that

simulate the actions of sanguinarine and U0126. In addition,

model outputs (i.e. total concentration of phosphorylated Erk)

are normalized so that the peak uncontrolled response scaled to

unity in order to account for the differences in scale (see

Section 1 in Text S1 for further details). All programming and

simulation was performed in Matlab R2011b (7.13.0) and code

is available in Dataset S1.

Herein, the computational burden of repeatedly evaluating

large nonlinear ODE models is mitigated by using sparse grid

interpolation. Sparse grids have been used as computational cost-

cutting tools for control applications in systems biology [14,30] by

serving as surrogates for slow-evaluating models and objective

functions to allow rapid screening of the design space.

Open-Loop Multiple-Model Control with Adaptive Akaike
Weights

In traditional model predictive control (MPC), also referred to

as receding horizon control, the controller surveys the possible

trajectories stemming from the current state and selects the control

input sequence so that the predicted model outputs track the

desired trajectories over a finite prediction horizon. The first

control input of the selected sequence is used to update the

prediction model state and the procedure is repeated as the

prediction horizon slides along for the remaining time intervals.

When based on a single model, the controller is at risk of degraded

performance because of mismatch between the predicted and

actual system behaviors. The proposed control strategy, illustrated

in Figure 2, employs multiple prediction models to mitigate the

effects of model uncertainty.

In our approach, first, the model bank is populated with a set of

relevant models, each of which predicts the system response to

possible control inputs (in control theory terms this is referred to as

the plant response). During the initial stage, training data and the

corrected-Akaike Information Criterion (AICc) are used to

generate weight maps for the prediction models. These weight

maps give the relative probability that a given model is consistent

with training data at any given point in the feasible input space. In

essence, these maps inform the controller of the tendency for

models to differ in their ability to accurately reproduce the system

dynamics under different control inputs. We then use a model

predictive control framework in which the performance metrics for

the models are optimized simultaneously using a multiobjective

technique. Optimal control inputs are selected from the resulting

Figure 1. Generalized illustration of the TCR-mediated signal-
ing pathway through the Erk-MAPK cascade. Arrow- and
diamond-heads denote activation and inhibition of substrate mole-
cules, respectively. TCR stimulation is achieved through aCD3 (green)
binding. Subsequent Erk activation (black) controlled using small
molecule inhibitors sanguinarine (blue) and U0126 (red).
doi:10.1371/journal.pcbi.1003546.g001

Multiple-Model Control of Intracellular Signaling
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Figure 2. A framework for multiple-model open-loop control of uncertain intracellular signaling in the laboratory. First, the model
bank is populated with a set of relevant models that predict the system response to possible control inputs. During the initial stage, training data are
used to generate weights maps. These maps inform the controller of the tendency for models to differ in their ability to accurately reproduce the
system dynamics under different control inputs. During each time interval of the controller stage, the performance metrics for the models are
optimized simultaneously using a multiobjective technique within a MPC framework to generate a candidate solution set. The tasks involved in the
adaptive model weighting strategy are contained within the gray box: control inputs are selected from the solution set by prioritizing them according
to the weight maps, then model weights are automatically recalibrated using the portion of training data that most closely corresponds to the
proposed control input. Optimization and input selection cycles repeat for subsequent time intervals as the prediction horizon slides along until the
entire open-loop control sequence is specified and ready to be applied to the in vitro system.
doi:10.1371/journal.pcbi.1003546.g002
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Pareto solution set by prioritizing the solutions according to the

pre-computed weight maps. Model weights are automatically

recalibrated using the portion of training data that most closely

corresponds to the proposed control input. Optimization and

input selection cycles repeat for subsequent time intervals as the

prediction horizon slides along until the entire open-loop control

sequence is specified and ready to be applied (see Materials and

Methods for further details).

Description of In Silico and In Vitro Case Studies
As discussed previously, the purpose of this manuscript is to

present a computational strategy to aid in the design of

experimental input regimens to elicit predictable dynamical

behaviors from biological processes. Herein, we demonstrate our

approach using the well-known TCR signaling pathway both

through simulation and laboratory experiments. First, we explored

two in silico case studies, each considering a pair of control reagents

acting on different regions of the T cell signaling pathway, to

demonstrate the functionality of the proposed control strategy. In

both case studies, we performed a series of experiments in which

one model was selected from the aforementioned set of three

models to serve as the simulated system. This model was also used

to design the optimal control input regimen as a controller based

on this model would match the actual system exactly and represent

the best possible scenario. The remaining two models were then

used to form the basis of the control strategies we wished to

compare: single-model control (mismatched model), multiple-

model control with fixed equal weights, and our proposed

multiple-model control with adaptive Akaike weights. For the in

vitro case study, a subset of the control input regimens derived from

the simulated case studies were tested on populations of Jurkat T

cells for experimental corroboration.

In each of our case studies of the TCR signaling pathway, we

desired the system readout (i.e. total concentration of phosphor-

ylated Erk) to follow a series of predefined time course trajectories.

These target trajectories were characterized by the equation

si(t)~(1{e{t):((1{pss,i)(1zet{toff ,i ){1zpss,i), where t = 0 refers

to the time at which the initial stimulation dose of aCD3 is

administered. The term pss represents the desired steady-state

fraction of maximal activation that is to be achieved by the end of

the 30-minute experiment. The term toff represents the time in

minutes, following an initial interval of maximal activation, at

which the controller should begin driving the output to the desired

steady-state fraction. The ten parameter pairs chosen for this study

are (toff, pss) = {(8,0), (15,0), (22,0), (8,0.25), (15,0.25), (22,0.25),

(8,0.5), (15,0.5), (22,0.5), (30,1)}. The five possible input dosing

times began at 3 min post-aCD3-stimulation and were spaced

5 min apart to accommodate both the rapid dynamics of TCR

signaling and the limitations of experimental input dosing and

measurement rates.

The control inputs used to perturb the TCR signaling pathway

were chosen based on both the need to demonstrate the efficacy of

our methodology and for experimental corroboration. For our

simulated and experimental case studies, we chose two commer-

cially-available reagents known to control the dynamics of

phosphorylated Erk: sanguinarine and U0126. Sanguinarine

(Figure 1) is a small-molecule inhibitor of Erk dual-specificity

phosphatase-1 (MKP-1) and leads to elevated Erk phosphorylation

[31]. U0126 (Figure 1) on the other hand is a Mek inhibitor with

high selectivity, which effectively inhibits activation of Erk [32]. To

further evaluate controller performance using a variety of

objectives, our second simulated case study replaces these reagents

with two hypothetical reagents that modulate the function of

phosphorylated ZAP70. The two reagents, aZAP and iZAP

(Figure 1), act to promote and inhibit the function of pZAP70,

respectively. Sanguinarine and U0126 concentrations were

constrained to the intervals [0, 50] mM and [0, 10] mM,

respectively, the upper limits of which were estimated from

experimental results that indicate saturation effects at levels above

the specified concentrations (see Figure 8 in Materials and Methods).

aZAP and iZAP were normalized to the interval [0, 1] as they are

hypothetical. For details on our in silico implementation of all

control reagents, readers are referred to Section 1 in Text S1 and

to the Matlab code provided in Dataset S1.

In Silico Experiments
The control strategy was first tested by considering combina-

tions of two models at a time to control an unknown system, which

is simulated by the remaining third model. In the following

discussion, we will use S to denote single-model control with a

subscript to denote the model (Z, L, or K) and M to denote

multiple-model control with the subscript indicating either equal

weights (eq) or adaptive weights (aw). For illustrative purposes, the

case in which Model K was the simulated system and the target

profile corresponded to full termination at 22 min (i.e. (toff,

pss) = (22, 0)) is described and illustrated in detail (results for all

experiments are provided in Sections 3 and 4 in Text S1). Figure 3

shows the control input dosing regimens for (A) the matched

single-model controller SK, (B–C) the two mismatched single-

model controllers SZ and SL, (D–E) the multiple-model controller

with fixed equal weights (Meq) and with adaptive Akaike weights

(Maw), (F) the Akaike weights for Maw, (G) the simulated system

responses, and (H) the squared error values for all five control

strategies.

The ideal scenario was defined to be one in which the model

used to derive the control inputs is the same as the model used to

simulate the actual system response, although it is generally not

feasible in the laboratory and thus considered only for the purpose

of theoretical comparison. For this ideal scenario, the control input

regimen necessary to track the target profile included negligible

input quantities to maintain initial Erk activation, quickly followed

by a large bolus of U0126 at 23 min to promote Erk

dephosphorylation near the end of the experiment (Figure 3A).

As shown in Figure 3, the single-model controllers specified

qualitatively different control inputs profiles, each causing

qualitatively different simulated system responses. To achieve the

sustained pErk activation phase of the target profile, SZ required a

ramp-up in the sanguinarine doses (Figure 3B), which conse-

quently caused the simulated system to systematically overshoot

the target (Figure 3G, blue). On the other hand, SL predicted that

negligible quantities of either reagent are necessary (Figure 3C),

which caused the simulated system to track the target moderately

well, undershooting the target only slightly (Figure 3G, green). For

the rapid dephosphorylation phase, SZ specified a large dose of

U0126 at 23 min while SL specified relatively small doses over the

final two intervals. In contrast to the activation phase, the small

doses specified by SL were insufficient to track the desired rapid

transient behavior; the large dose specified by SZ produced

significantly better tracking. Considering the experiment as a

whole, however, neither controller adequately controlled the

simulated system over the entire time interval.

The multiple-model controller with equal weights (Meq) consid-

ered the predictions from both models equally in specifying the

control inputs (Figure 3D), but tracked only marginally better than

either of the mismatched controllers SZ or SL (Figure 3G, cyan).

On the other hand, the adaptive weighting strategy allowed the

multiple-model controller to inherit the best characteristics of both

single-model controllers (Figure 3E). According to Figure 3F, the

Multiple-Model Control of Intracellular Signaling
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weights tended toward Model L as it was the better representative

of the simulated system initially, then shifted toward Model Z as it

more accurately described the rapid dephosphorylation dynamics

possessed by the simulated system. As a result, Maw tracked the

target significantly better with at least a 74% reduction in the

squared error (see Figure 3H) than any of the mismatched single-

model and fixed equal weight controllers as indicated in dynamics

shown in Figure 3G.

Controller performances for the simulated case studies involving

the real commercially-available control reagents sanguinarine and

U0126 and the hypothetical control reagents aZAP and iZAP are

summarized in Figures 4A and 4B, respectively. Both plots show

the target tracking error between the predicted system dynamics

and the target trajectories for all target and system model

combinations. Matched single-model scenarios (Sm) are cases when

the model used to design the control inputs is identical to that

which is used to simulate the system response while the

mismatched single-model scenarios (Smis) use different models

in both roles, the latter case tending to be the better

representation of biological reality. As shown in both plots of

Figure 4, Smis had relatively large error values and tracked quite

poorly. Meq were able to partially mitigate these effects by

averaging out some of the inconsistencies, but still performed no

better than Smis. The proposed controller strategy (Maw)

performed significantly better than Smis and Meq by preferentially

selecting predictions from the models that were known to match

the desire behavior at any point in time. This effect was more

pronounced in scenarios where the dynamics differ among the

prediction models because the controller was better able to filter

out the inadequate models, thus improving tracking perfor-

mance relative to the other controllers. Notably, the only

scenarios not outperformed by Maw were those in which a

matched prediction model was used; however, these cases would

be unrealistic in practice.

Figure 3. Simulations indicate adaptive weighting strategy significantly improves overall target tracking performance. (A–E) Control
input dosing regimens for the matched (SK) and mismatched (SZ and SL) single-model controllers and the multiple-model controllers with fixed equal
weights (Meq) and with adaptive Akaike weights (Maw). (F) Akaike weights for Maw. (G) Target trajectory (solid black) and simulated system (Model K)
responses controlled by SK (dashed red), SZ (dotted blue), SL (dotted green), Meq (dashed cyan) and Maw (solid magenta). (H) The squared error values
for all five controllers.
doi:10.1371/journal.pcbi.1003546.g003

Multiple-Model Control of Intracellular Signaling
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In Vitro Experiments Using Jurkat T Lymphocytes
We conducted a set of experiments where control input

regimens were computed considering all three prediction models

and implemented in vitro in Jurkat T cells according to the

experimental protocol described in Materials and Methods. Since the

equal weighted multiple-model controller design did not improve

performance when compared with the single-model controllers for

the simulated experiments, we did not include those in the more

expensive in vitro study. The model weight maps were trained using

preexisting experimental data (see Figure 8 in Materials and

Methods). Figure 5 shows for a representative experiment (A–D)

the computed control input dosing regimens for SZ, SL, SK and

Maw, and (E) the Akaike weights for Maw and (F) quantitative

Western blot data. The specified target in the illustrated case

required that Erk undergo rapid and sustained phosphorylation for

22 min and then rapidly return to steady state at basal levels. The

quantitative Western blot data for this exemplar experiment are

shown in Figure 6C. Without any external manipulation, pErk

returned to its basal level slower and sooner than desired

(Figure 6C, cyan triangle). Of the three single-model controllers,

only SZ (Figure 5A) correctly predicted that an initial ramp-up in

sanguinarine was required to sustain pErk levels as desired. Based

on the a priori information contained in the model weight maps,

Maw was preferential towards the predictions made by Model Z

because it most accurately reflects the cell behavior (Figures 5D

and 5E). However, Model Z was unable to replicate the rapid

transient behavior of pErk in Jurkat cells in response to U0126 as

accurately as the other models. In this case, Maw deferred to the

predictions made by Model K. Because of this ability to adapt the

weights based on the current conditions, Maw was able to control

pErk much more tightly over the entire experiment than any of the

models considered in isolation (Figure 6C, magenta dot).

Overall controller performances, defined as the squared error

between the target output profiles and the corresponding observed

plant dynamics, for the aforementioned experiment as well as the

two other performed corroborating experiments are summarized

in Figure 6D (descriptions of all experiments are provided in

Figure 4. Summary of target tracking performances for the
simulated case studies. (A) Summary of experiments involving
realistic control reagents sanguinarine and U0126. (B) Summary of
experiments involving hypothetical reagents aZAP and iZAP. Target
tracking performance is measured by the squared error between target
profiles and controlled plants. Data shown are mean 6 standard error
between matched (Sm, n = 30) and mismatched (Smis, n = 60) single-
model controllers, Meq (n = 30) and Maw (n = 30). Group letters denote
statistically significant differences between groups (p,0.05) as calcu-
lated by one-way ANOVA with Tukey multiple comparisons test
(SigmaStat v3.5, Systat Software, Inc).
doi:10.1371/journal.pcbi.1003546.g004

Figure 5. In vitro experiments demonstrate superior target tracking performance by Maw; corroborates observed in silico trends. (A–
D) Control input dosing regimens for single-model controllers (SZ, SL and SK) and the multiple-model controller with adaptive Akaike weights (Maw).
(E) Akaike weights for Maw.
doi:10.1371/journal.pcbi.1003546.g005
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Section 5 of Text S1). Unsurprisingly, the largest deviations from

the target trajectory were the uncontrolled responses. The single-

model controllers improved tracking performance, but varied

quite widely due primarily to the degree of how accurately the

mathematical model predicted the signaling response (extent of

plant-model mismatch). On the other hand, the intracellular

signaling dynamics were much more tightly controlled by our

multiple-model controller with adaptive Akaike weights,

corroborating our in silico findings. The adaptive weighting

strategy reduced the squared error by at least 63% over the

best performing single-model controller. This indicates that

our proposed control strategy is able to successfully filter out

the prediction models in situations where they are known to be

inaccurate and include them otherwise.

Discussion

Recent studies have advanced and evaluated engineered control

strategies to direct cellular processes in a desired manner. A few

notable works that used feedback control approaches paired in

silico control with experimental corroboration include controlling

cell differentiation via nonlinear MPC [13,14] and long-term

feedback control of gene expression in yeast [15,16]. This study

augments this literature base by providing a novel and experi-

mentally-corroborated methodology to enable the successful

design and implementation of open-loop control strategies.

Feedback control has many advantages over open-loop control

since it uses measurements during the event to adjust the control

inputs based upon the system response. This closed-loop approach

helps to overcome inaccuracies of the supporting mathematical

model. However, feedback control is not always possible due to

experimental limitations. Open-loop control pre-specifies the

control inputs: like a recipe. The feasibility of our open-loop

control approach to overcome the inaccuracies of a single

mathematical model has been demonstrated by experimental

signal tracking by an intracellular signaling pathway.

While the concept of multiple-model-based control is not new, it

is employed nearly exclusively in the closed-loop framework [14,22–

25], where system data are collected to inform future controller

inputs. For the TCR-mediated Erk activation pathway and similar

systems, the biological reality and practical experimental constraints

necessitated the use of multiple mathematical models in an open-

loop framework to achieve sufficient control. Because of these

constraints, we formulated a new technique for control input

selection that did not require real-time feedback data. Our novel

technique uses what limited quantitative data are already available

to generate a series of weight maps that indicate the likelihood of

each model for any feasible control input scenario. When selecting

the appropriate control input, these maps serve as a sort of filter that

emphasizes data most relevant to the given scenario and excludes

data that would only confound the selection process. Thus our

Figure 6. Overall in vitro target tracking performances between
target profiles and measured Erk phosphorylation. Experiments
with target trajectories (solid black) defined by the (toff, pss) pairs of (A)
(8,0), (B) (15,0) and (C) (22,0). Data are measurements of plant dynamics
that were uncontrolled (UC, cyan triangle, n = 12) and controlled by SZ

(blue square, n = 9), SL (green x, n = 9), SK (red circle, n = 9) and Maw

(magenta dot, n = 9). Data shown are mean 6 standard error. (D)
Controller performances as measured by squared error between target
trajectories and controlled plant dynamics. Group letters denote
statistically significant differences between groups (p,0.05) as calcu-
lated by one-way ANOVA with Tukey multiple comparisons test
(SigmaStat v3.5, Systat Software, Inc).
doi:10.1371/journal.pcbi.1003546.g006
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approach effectively utilized multiple models with an adaptive

weighting scheme to plan the control inputs.

Selecting such control inputs from multiple models with

competing predictions generally does not have a unique solution

because the criterion by which a solution is chosen depends

entirely upon the decision maker. In this multiobjective optimi-

zation framework, each objective can be defined as controller

performance based on one model. Attempting to satisfy multiple

conflicting objectives will lead to a family of solutions (i.e. Pareto

solutions) for which any improvement in one objective comes at

the cost of at least one other objective. While the Pareto front

topography is method-independent, choosing a particular solution

along the front depends entirely upon the preferences of the

decision maker. Typically a scalarization technique is used to

compact the multidimensional problem into a single objective.

Zarei et al. formulated a fuzzy rule set comprised of linear

membership functions to aggregate the objectives based on the

authors’ preferences to control HIV dynamics in a CD4+ T cell

population [33]. Another group employed a trade-off method in

which the chosen Pareto point is closest in some sense to the

decision maker’s aspiration level, or desired value of each objective

[34]. A trade-off operator changes the aspiration level based on

which criterion the decision maker wants to improve if the

suggested point is not satisfactory. Promethee uses a pair-wise

outranking relation among all Pareto points so that a satisfactory

solution is identified as soon as the points are found [35]. The

relation is typically fixed once established and cannot update itself

automatically. Bemporad et al. proposed choosing control inputs

based on a time-varying, state-dependent decision criterion that is

informed by real-time observational feedback [36]. Unfortunately,

most available methods share a common challenge in that they are

not fully automated, require observational feedback or are

application-specific. Because our goal is to control uncertain

intracellular signaling dynamics, we define our preference between

objectives to be the relative likelihoods of the models as quantified

by the Akaike weights. This allows us to automatically determine

an optimal ‘‘blend’’ of the various models based on existing data

and predicted input conditions to maximize prediction confidence

while controlling for target tracking error.

Remarks on General Use and Limitations
We have presented a method that was shown to improve target-

tracking performance in a biochemical system with relatively high

modeling uncertainty and measurement noise. Naturally, we

employed our own knowledge of the system as well as that taken

from literature to ease the implementation of the control method

in the laboratory setting. Even so, the proposed framework is

general enough to be employed in a wide variety of engineering

applications. The method is suitable for any physical system with

possible dynamics that can be characterized by a set of

mathematical models. The models should include feasible control

inputs that are capable of manipulating the output dynamics and

can be structurally unique. Furthermore, the ensemble of models

should adequately recapitulate the relevant behaviors of the

system. The method does not require real-time observability in its

current open-loop configuration, although observations should not

be ignored when available. While we have tested and corroborated

the method only with nonlinear ODE models, we believe the

modeling format is an application-related issue and not restricted

by the method.

Although our proposed framework is widely applicable, its

efficacy for a given system depends on a variety of modeling and

experimental constraints (i.e. problem-specific information used to

inform the controller), and computational constraints (i.e. control

problem dimensionality).

From a modeling and experimental perspective, efficacy

depends on how well the system is characterized by the prediction

model bank, the accuracy of the model weight maps and the

availability of quantitative measurement tools or assays and

control reagents or actuators. First, the prediction model bank

should be formulated in such a manner that all desired system

behaviors are within the reachable dynamics of the ensemble of

models. Any characteristic behaviors or operating points not

included in the model bank would not be able to be recapitulated,

regardless of the adaptive model weighting scheme. However,

these behaviors or operating points may be captured by including

models with alternate parameter values or equation structures. In

the case studied in this manuscript, each model had a different

equation structure, but represented alternate plausible mecha-

nisms that are at least partially supported by data.

Second, the accuracy of the model weight maps depends on the

quantity and quality of preliminary data. Without any prior

information, the models are considered equally when selecting

control inputs. As experiments are performed, the gathered data

can be used to train the weight maps to the actual model-system

relationship. Models can then be selected according to its capacity

to accurately predict the effects of the inputs on the system. An

implicit assumption here is that if a model is good at predicting the

effect of some input at some time, it will be good at predicting the

effect of another input at another time. While this assumption may

not always be true, the known dynamics, developed and refined

based on considerable experimental work, provide extensive

constraints on what the possible unknown dynamics could be.

Finally, while our method does not require data in real time

because of the open-loop formulation, accurate quantitative assays

and specific control reagents are highly beneficial in the

development of accurate models and model weight maps help

decrease the effects of plant-model mismatch, a common failure

mode in open-loop control. Even so, with the proposed adaptive

weighting procedure, each model need only be partially data-

consistent. We were able to demonstrate control using quantitative

Western blots to measure Erk phosphorylation dynamics in T

cells, despite the fact that Western blots are notoriously difficult to

use and chemical reagents generally have some off-target effects.

Computational tractability is another important area to consider.

To get the most benefit from the adaptive model weighting strategy,

our control strategy involves a multiobjective optimization problem

(of dimension nM6ny) at every time interval. In practice, this is

equivalent to solving a series of single-objective optimization

problems (of dimension nu6Hu), the number of which depends on

the desired Pareto front resolution. In this manuscript, we greatly

reduce the complexity of our control problem by considering only

three models, a single controlled output, and two discretized control

inputs and a control horizon of one interval (at a time). However, it

would not be far-fetched to have a control problem with potentially

dozens of models, multiple inputs and outputs, and an extended

control horizon. In such a case, it would be critical to reduce the

control problem down to a computationally tractable size. This can

be achieved a number of ways. For instance, dimensions

corresponding to different model outputs can be scalarized using

weighted aggregation. Also, dimensions corresponding to models

that are redundant or dominated (i.e. low Akaike weights

throughout the input space) should be removed.

Uncertainty in the Model Weight Maps
As previously mentioned, the purpose of the weight map

strategy is to help estimate an optimal blend of the considered
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models to create the best possible compromise input solution given

modeling uncertainty. The accuracy of these maps depends

heavily on the quantity and quality of the preliminary data used to

train the maps. Without any prior information, there would be no

evidence supporting one model over another and the resulting

weight map topology would be flat. Inversely, if the system

dynamics are known with certainty, but requires more than one

model to recapitulate them all, then the resulting weight map

topology would appear digital. That is, only one model would

dominate in any given experimental scenario and the transition

between which model dominates would be immediate.

In our presented experimental study, we considered a case in

which a substantial amount of time-course data (432 individual

measurement points in total) was used to train the model weight

maps. Due to the relatively large number of data, the AICc tends

to show a strong sensitivity to any differences in model fitness

values, causing the weight map topography to appear somewhat

digital in nature (Figure 7A–C). However, let us consider a case in

which we have fewer data (144 individual measurement points in

total), or alternatively, more uncertainty in our models’ ability to

recapitulate the observed system behaviors. With fewer data, the

AICc tends to show a weaker sensitivity to differences in model

fitness values, causing the weight map topography to appear

smoother (Figure 7D–F). Although the weight maps for these two

scenarios are clearly different quantitatively, the order in which the

models are prioritized (i.e. model rankings) are essentially identical

(Figure 7G–L). To illustrate the effects of these characteristics, let

us consider one exemplar experiment (Figure 7M). When utilizing

the full dataset, the control strategy tends to heavily favor one

model over the others at any given time. However, when the

limited dataset is considered, the time course is covered by a non-

trivial (i.e. non-digital) combination of the models, each repre-

senting a portion of actual system behavior. Even so, the orders in

which the models are prioritized are very similar between the two

cases. This means that for any given region of the input space, the

choice of model providing the most reliable information is

somewhat robust to the amount or quality of the training data.

As a result, the predicted control regimens (Figure 7N) and their

corresponding target tracking performance values (Figure 7O) also

exhibit this same qualitative robustness.

Importance of Erk Signaling in T Lymphocytes
T lymphocytes are an integral part of the human body’s natural

defense against the threats of invading pathogens and cancerous

host cells. The function of these specialized immune cells largely

depends on their phenotypic response to external stimulating

signals. Propagating extracellular signals to their target substrates

takes the coordinated effort of very large networks of molecular

species with complex interactions ranging across vastly different

spatial domains and temporal scales. While there are numerous

mediators of signal transduction in lymphocytes, Erk is particularly

noteworthy as it is an evolutionarily-conserved and ubiquitous

group of signaling proteins critical to T cell development,

proliferation and differentiation. Studies have linked Erk-mediated

regulation to the differentiation of helper T cells into certain

subtypes, particularly Th1 and Th2, and to allergies, asthma and

serious immune disorders if improperly subtyped [1,2]. Further-

more, it has been recognized that controlling the Ras/Raf/Mek/

Erk pathway maybe beneficial towards advancing effective

therapies for leukemia [37]. Constitutive activation of the Erk

pathway is present in a high frequency (.50%) in patients

suffering from acute myeloid leukemia (AML) and is associated

with a marked reduction in survival duration [3,4]. Conversely,

blocking Erk activation has been shown to cause cell death in

leukemia cell lines [3]. Treatments based on methods that work to

balance these opposing forces to restore proper Erk-mediated

regulation in T cells would be highly beneficial to patients suffering

from such pathologies. Historically this has been the subject of

experimental research [38,39]. This study has confirmed that

when used in combination the existing mathematical models of the

Erk/MAPK pathway in T cells can support the engineering of

control inputs to manipulate the activation and deactivation time

course in a desired manner.

Conclusions
We have developed a practical framework for controlling

uncertain nonlinear systems using multiple models to generate

predictable open-loop dynamical responses. The embedded model

weight maps enable the controller to estimate the likelihood of

each model in any feasible control scenario based on prior training

data. The adaptive weighting strategy allows the controller to

purposefully select subsets of the training data so that control

decisions are made considering only the most relevant information

at each time interval. Our open-loop controller design pairs model

predictive control with an adaptive model weighting system based

in information theory to create a cohesive strategy for systemat-

ically utilizing the most relevant knowledge embedded within

limited training data in a computationally tractable manner. In

both simulated and laboratory experiments this multiple-model

control strategy and adaptive weighting scheme successfully

reduced the open-loop target tracking error by more than half

relative to multiple-model control with fixed weights (simulation

only) and single-model control.

Materials and Methods

Experimental Protocol
Erk phosphorylation (pErk) data were collected from Jurkat T

leukemia cell line (Jurkat clone E6.1; ATCC). Cells were grown in

RPMI 1640 (Sigma) supplemented with 7.5% heat-inactivated

fetal bovine serum (BioWest), 1 mM sodium pyruvate (Gibco),

12.5 mM HEPES pH 7.4 (Sigma), 12 mM sodium bicarbonate

(Sigma) 50 mM 2-Mercaptoethanol (Sigma), 50 mg/ml streptomy-

cin and 50 units/ml penicillin in an incubator at 37uC in

humidified air containing 5% carbon dioxide. Cells were

harvested in log-phase growth at a density of 26107 cells per

treatment. Cells were stimulated using anti-human CD3 (10 mg/

ml, clone: UCHT-1, eBioscience) as the stimulatory signal at 37uC
in a water bath. Cells were treated with the Mek1/2 inhibitor

U0126 (Calbiochem) or the MKP inhibitor sanguinarine (Sigma),

depending on the protocol, dissolved in DMSO at the indicated

time points with the indicated concentrations. Experimental

control samples were treated with the same amount of DMSO.

Samples of 26106 cells were taken at the indicated time points and

lysed in 1% NP40 lysis buffer (1% NP40, 25 mM Tris, pH 7.4,

150 mM NaCl, 5 mM EDTA, 1 mM NaV, 10 mM NaF, 10 mg/

ml each of aprotinin and leupeptin) for 15 min on ice. Lysates

were centrifuged for 5 min at 18000 g at 4uC. The supernatant

was added to the same volume of 2| protein solubilizing mixture

(PSM, 25% (w/v) sucrose, 2.5% (w/v) sodium dodecyl sulfate,

25 mM Tris, 2.5 mM EDTA, 0.05% bromophenol blue) and

boiled for five minutes. Proteins were separated via SDS-PAGE,

blotted for phospho-Erk1/2 (Cell Signaling), phospho-ZAP-70

(pY319, Cell Signaling) and GAPDH (Ambion). IRDye 800 and

680 secondary anti-mouse and anti-rabbit antibodies (Li-Cor) were

used for signal detection using an Odyssey infrared scanner.

Images of the blots were analyzed using ImageJ to produce

quantitative data for model comparison. Model predictions were
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Figure 7. Analysis of uncertainty in the model weight maps and resulting predicted control strategies and performance. Model
weights over the input space for (A–C) the original case study (full dataset) and (D–F) the case study with the limited dataset. Model rankings over
the input space for (G–I) the original case study (full dataset) and (J–L) the case study with the limited dataset. (M) Adaptive weights and (N)
corresponding control input regimen for the exemplar experiment characterized by the target trajectory defined by the pair (toff = 8, pss = 0). (O)
Controller performances as measured by squared error between target trajectories and plant dynamics controlled by single-model controllers that
are matched (Sm, n = 30) and mismatched (Smis, n = 60), and adaptively-weighted multiple-model controllers with the original ‘‘digital’’ weight maps
(Maw(o), n = 30) and smoother weight maps from the limited dataset (Maw(ld), n = 30). Data shown are mean 6 standard error. Group letters denote
statistically significant differences between groups (p,0.05) as calculated by one-way ANOVA with Tukey multiple comparisons test (SigmaStat v3.5,
Systat Software, Inc).
doi:10.1371/journal.pcbi.1003546.g007
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scaled to compensate for the fact that the data represent relative

quantities only rather than absolute concentrations.

Training Experiments
Training experiments were designed to rapidly screen the

responses of T cell populations to potential control reagent

combinations. Fourteen different experiments were conducted: an

experimental control (i.e. no control inputs), five individual doses

of sanguinarine (0.5, 2, 5, 20 and 50 mM) at the 15 minute mark,

five individual doses of U0126 (0.5, 1, 2, 5 and 10 mM) at the

6 minute mark, and three combined doses of 0.5 and 1, 50 and 1,

and 50 and 10 mM for sanguinarine and U0126, respectively, at

the 6 minute mark. These data were collected according to

Experimental Protocol. The addition of low doses of sanguinarine had

negligible effects on pErk concentrations. Only the moderate to

high doses tested caused elevated to sustained phosphorylation of

Erk (Figure 8A). On the other hand, U0126 produced an immediate

reduction in the Erk phosphorylation rate even at low doses

(Figure 8B) and tended to overpower the effects of sanguinarine

when added together (Figure 8C). The representation of the

controller input functions in the prediction models were modified to

exhibit these trends.

Due to the prevalence of observation noise, experimental data

ŷy(u,t) were smoothed using cubic smoothing splines to filter

spurious oscillations from the time courses while retaining primary

trends. This was performed in Matlab using the csaps function with

the smoothing parameter p set to 0.6. The smoothing splines were

sampled at 31 evenly spaced time points to increase the density of

the time course data.

Model Bank Representation
The proposed control strategy is based on a set of two or more

mathematical models, M~ M (1) M (2) ::: M (nM )
� �

, of a given

system with the general form:

M (i)~

_xx(i)~f (i)(x(i),u,h(i),t) , x(i)(t0)~x
(i)
0 ,

y(i)~g(i)(x(i)),

z(i)~h(i)(x(i)),

8><
>: ð1Þ

where the superscript i denotes the model number. The state

variables, control inputs, system parameters, measured outputs

and controlled outputs arex[<nx , u[<nu , h[<nh , y[<ny and

z[<nz , respectively, and f : <nx|<nu?<nx , g : <nx?<ny and

h : <nx?<nz are twice continuously differentiable functions for

the system dynamics, measured outputs and controlled outputs,

respectively. Note that y(i) and z(i) are functions of u, t and x
(i)
0 . For

our purposes we will use the notation y(i)(u,t) and z(i)(u,t).

Approximating Model Dynamics with Sparse Grids
Sparse grids were implemented using the Sparse Grid Interpo-

lation Toolbox for Matlab, version 5.1.1 [40], which is available at

http://www.ians.uni-stuttgart.de/spinterp/. Our approach for

approximating model dynamics using interval-based sparse grid

interpolation is similar to that of [14]. The control inputs are

assumed to lie within the bounded nu-dimensional space contain-

ing all feasible control input vectors, defined by

V:I16I26:::6Inu5<nu ; ð2Þ

where Ij~½uj,min,uj,max�,j~1,:::,nu and uj is the jth value of the

input vector. For each model, nz output variables are selectively

evaluated at points in the nu-dimensional input space and nt-

dimensional time domain to form a series of nz|nt grids of

dimension nu (see [14] for further details). On each grid, weighted

Lagrange basis functions are combined at the support nodes to

construct an input-domain interpolant with which the value of an

output at a single time point can be estimated for any point in the

input space. In this interval-based approach, interpolation

Figure 8. Training data used to generate the model weight
maps. Rows correspond to doses of sanguinarine only, U0126 only, and
combinations of the two reagents, respectively. Symbols and error bars
denote means 6 standard errors of the raw normalized data. Lines
represent smoothed data. Arrows denote the time at which the
reagents were administered.
doi:10.1371/journal.pcbi.1003546.g008
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between grids placed at various time points ensures a continuous

trajectory over the prediction horizon for any point in the input

space. To prevent excessive computational expense during grid

construction, limits on absolute and relative error tolerances and

allowable interpolation depth were specified (0.01, 1%, and 6,

respectively).

Model Weight Maps
For problem set-up, we estimate weight maps on V for the

prediction models using Akaike weights, which are based on the

Akaike Information Criterion (AIC). AIC provides a practical

measure of the tradeoff between model fitness and complexity by

estimating the theoretical Kullback-Leibler (KL) ‘‘distance’’, or

loss of information, between an approximating model and full

reality [26]. Assuming normally distributed errors with constant

variance and small sample sizes, the corrected-AIC (AICc) can be

estimated as:

AICc(i)(u)~nd ln
1

nd

Xny

j~1

Xnt,j

k~1
y

(i)
j (u,tk){ŷyj(u,tk)

� �2
� �

z2n
(i)
h z

2n
(i)
h (n

(i)
h z1)

nd{n
(i)
h {1

:

ð3Þ

where nd~
Pny

j~1 nt,j is the total number of experimental data and

nt,j is the number of sampled time points for the jth measured

output. The second term, where n
(i)
h denotes the number of

uncertain parameters for the ith model, is the bias-correction factor

for the AIC (the factor 2 was introduced for historical reasons) and

the third term is an additional correction factor for small sample

sizes. Note that the first term includes the squared residuals

between experimental data (ŷy(u,t)) and their ith model counterpart

(y(i)(u)). Under realistic conditions, ŷy(u,t) are sampled at discrete

input quantities and time points and the number of data can vary

between outputs. To generate a continuous approximation of

ŷy(u,t) over V, a piecewise linear interpolant is constructed using

the Matlab function griddatan. That is,

~̂yŷyy(u,t)~
ŷy(u,t) u[V̂V,t[T̂T

‘(ŷy(V̂V,T̂T)D(u,t)) otherwise,

(
ð4Þ

where V̂V and T̂T denote the discrete experimental input and

observation time spaces, respectively, and ‘ is an operator

denoting (nu+1)-dimensional linear interpolation between existing

points over V̂V and T̂T by means of Delaunay triangulation. In

regions not explicitly measured, interpolated data (~̂yŷyy(u,t)) are used

in place of ŷy(u,t) when computing AICc values.

It is important to note that only relative AICc values are

meaningful due to the metric being a relative rather than absolute

estimate of KL distance. It follows that the relative likelihoods of

the models are given by the Akaike weights,

v(i)(u)~
exp({D(i)(u)=2)PnM

j~1 exp({D(j)(u)=2)
; ð5Þ

where D(i)(u)~AICc(i)(u){min(½AICc(1)(u) ::: AICc(nM )(u)�).
The weight v(i)(u) is interpreted as the strength of evidence in

support, or relative probability, of the ith model being the KL best

model from the set of models given the supporting data [26]. The

weight maps for Model Z, Model L and Model K based on the data

described in Training Experiments are provided in Figure 3 in Text

S1.

Open-Loop Model Predictive Control with Multiple
Models

The multiple-model control strategy is built around the

conventional MPC framework to reduce the computational

complexity of the open-loop control problem. At each time

interval, the controller surveys the possible trajectories stemming

from the current state and selects the control input sequence over

the control horizon (Hu) so that the predicted outputs track the

desired trajectories over the finite prediction horizon (Hp). The first

control input of the selected sequence is used to update the states

of the prediction models and then stored as one entry in the final

control sequence U* so the procedure can repeat as the prediction

horizon slides along for the remaining time intervals.

The objective functions used to quantify controller performance

penalizes the error between the predicted outputs for the ith model

and the desired trajectories and a measure of the control effort

over the prediction horizon starting at time tk as given by

W(i)
k ~log(w(i)

k z1), where

w
(i)
k ~(Z

(i)
k {Sk)TQ(Z

(i)
k {Sk)zUT

k RUk: ð6Þ

The vectors Z
(i)
k ~½z(i)

1 (tkDu(t0,:::,tk)) ::: z(i)
nz

(tkzHp Du(t0,:::,tk))�T

and Sk~½s1(tk) ::: snz (tkzHp )�T are the predicted and target

outputs over Hp, respectively, Uk~½u1(tkDtk) ::: unu (tkzHu{1Dtk)�T
are the discrete controller inputs over Hu. The proposed formulation

assumes uj(tkzmDtk)~0, j = 1,…,nu, and m = Hu,…,Hp to reflect that

manipulated variables are often applied as boluses in the considered

biological context. The horizons Hu and Hp where each chosen to be

one to prevent controllers from being overly conservative. Q and R

are diagonal weighting matrices associated with the error and

control effort, respectively, which were each chosen to be identity.

Objective values are converted to log-space to compress the cost

surfaces to facilitate optimization.

Each objective W
(i)
k is approximated using sparse grid interpo-

lation (similar to section Approximating Model Dynamics with Sparse

Grids) to form an input-domain interpolant with which the value of

each objective can be estimated for any point in the input space. If

the approximations are sufficiently accurate, no further evalua-

tions of the objective function or underlying state space model are

required since the interpolants are generated prior to optimization

during each time interval.

Pareto Front Identification
We define the multiobjective optimization problem at the kth

time interval as follows (with the standard Pareto interpretation of

minimizers):

U
p
k ~arg min

Uk[V
W

(1)
k (Uk), W

(2)
k (Uk), :::, W

(nM )

k (Uk)
n o

ð7Þ

The W
(i)
k variable denotes the objective function for the ith model

defined by (6) and the design variable Uk is constrained to V
defining biologically relevant limits. Herein we employ the

normalized normal constraint method (NNC) for generating the

Pareto solutions U
p
k for its ability to generate a well-distributed set

of global Pareto points ([41], refer to the original manuscript for

further details).

Multiple-Model Control of Intracellular Signaling

PLOS Computational Biology | www.ploscompbiol.org 13 April 2014 | Volume 10 | Issue 4 | e1003546



NNC provides a geometrically intuitive approach to multi-

objective optimization that is illustrated in Figure 4 in Text S1. It

first builds a plane in the normalized objective space (called the

utopia hyperplane) through all individual (normalized) minima �WW(i)�,
and second, generates equally distributed points in this plane �WWup

by systematically varying weights for each objective. Then for each

point �WWup
j [�WWup, the corresponding solution �WWp

j on the Pareto front

�WWp is found by minimizing the single (normalized) objective �WW(nM )

with added constraints. In addition to the original constraints, the

feasible space is further restricted by adding nM 21 hyperplanes

through �WWup
j that are each normal to the nM 21 utopia plane

vectors. Successive optimization runs are performed for the

remaining points in �WWup. By translating the constraining normal

hyperplanes between runs, we can see that the corresponding

solution set along the leading edge of the objective space is

generated. Since some of these points may represent non-Pareto

optimal or dominated solutions, the NNC algorithm is coupled

with a Pareto filter to remove such points.

Input Selection and Model Weight Adaptation
The optimal control sequence for the kth time interval is selected

from the set of Pareto solutions U
p
k by ranking them using the

objective

U�k ~arg min
u[U

p
k

�WWT
k (u)W (u)�WWk(u); ð8Þ

where �WWk(u)~½�WW(1)
k (u) ::: �WW

(nM )

k (u)�T and W (u)~diag(½v(1)(u) :::

v(nM )(u)�T) are vectors of objective function values and Akaike

weights, respectively, corresponding to the control input vector

u[U
p
k .

The models weights are adapted to accommodate the most

relevant experimental data to ensure the best possible open-loop

performance (Figure 9). At the first time interval, u is undeter-

mined so the initial weights are computed considering the entire

training data set. After the Pareto points U
p
1 are specified by

solving (7), they are ranked using (8) with the initial weights

(Figure 9A) and the input vector corresponding to the best ranked

point is taken as a temporary solution u1 (Figure 9B). The weights

are then recalibrated at the value u1 (Figure 9C) and U
p
1

ranked again with the best ranked input vector taken as the new

temporary solution u2 and so on. Updates continue until the model

weights or control inputs no longer change above a prescribed

threshold or the maximum allowable updates is reached. If a limit

cycle is detected, (8) is recomputed by averaging the models

weights in the cycle as a tie-breaker. The final input sequence is

used to update the prediction models and appended to the

growing open-loop control sequence U* as the prediction horizon

slides along.

Statistical Analysis
All statistical analysis was performed using SigmaStat v3.5

(Systat Software, Inc). Time-course data are shown as mean 6

standard error at each time point. Statistical differences between

groups (p#0.05) are determined using one-way analysis of

variance (ANOVA) followed by the Tukey multiple comparisons

test. Target tracking performance values, as measured by squared

error between target profiles and controlled plants, were log-

transformed where appropriate to satisfy the normality and equal

variance conditions for the ANOVA and Tukey tests.

Supporting Information

Dataset S1 Matlab code for proposed control algorithm
and prediction models. Contains all Matlab code necessary to

implement the proposed adaptive weighted multiple-model

predictive control algorithm, as well as code for the prediction

models.

(ZIP)

Text S1 Additional methods and results. Contains details

on specific model modification and additional simulated and

experimental results.

(DOC)
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Figure 9. Illustration of control input selection with model
weight adaptation. For a given prediction time interval in the control
process, Pareto-optimal control inputs are computed by the multi-
model MPC strategy by solving (7), which then enter an iterative
process of control input selection and weight adaptation. (A) First,
Pareto points are ranked with an initial weight vector v0 and the
optimal point (example: black square) is selected using (8). (B) Next, the
input vector corresponding to the selected optimal point (u1, black
square) is identified. If the input vector continues to change above a
pre-defined threshold, the process continues to the next iteration. (C)
Given the current input vector (u1), a new weight vector (v(u1), black
square) is computed. The process continues and repeats (example:
black circle, then magenta star) until the aforementioned stopping
criterion is met. The final input vector (un, magenta star) is returned to
the main control loop as the best compromise control strategy and
used to update the prediction models in preparation for the next
prediction time interval.
doi:10.1371/journal.pcbi.1003546.g009
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