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Ferroptosis is an iron-dependent regulated cell death characterized by lipid peroxidation

and iron overload, which is different from other types of programmed cell

death, including apoptosis, necroptosis, autophagy, and pyroptosis. Over the past

years, emerging studies have shown a close relation between ferroptosis and

various cardiovascular diseases such as atherosclerosis, acute myocardial infarction,

ischemia/reperfusion injury, cardiomyopathy, and heart failure. Herein, we will review the

contributions of ferroptosis to multiple cardiovascular diseases and the related targets.

Further, we discuss the potential ferroptosis-targeting strategies for treating different

cardiovascular diseases.

Keywords: ferroptosis, atherosclerosis, acute myocardial infarction, cardiomyopathy, heart failure

INTRODUCTION

Cardiovascular diseases include hypertension, atherosclerosis, acute myocardial infarction (AMI),
arrhythmia, cardiomyopathy, valvular heart diseases, congenital cardiovascular diseases and heart
failure (1), which are the leading causes of disability and death in the world (2). Cardiomyocyte
death is a basic pathological process in the progression of cardiovascular diseases. Understanding
the mechanism of cardiomyocyte death can provide support for protecting cardiac function.

Ferroptosis, which was proposed by Dixon et al. (3), is a non-apoptotic form of cell
death. Ferroptosis is characterized by lipid peroxidation and iron overload. Its morphological
features mainly involve mitochondrial changes encompassing mitochondria shrinkage, increased
mitochondria membrane density, crista destruction, and outer membrane rupture, but not nucleus
morphological changes. Ferroptosis is a new pattern of programmed cell death that differs from
several other forms of regulated cell death in various aspects, including morphology, biochemistry,
and immune status (Table 1).

Recently, several studies have found various significant factors of ferroptosis and
revealed a range of complex regulatory mechanisms in the progression of ferroptosis
involving iron metabolism, lipid metabolism, and amino acid metabolism (Figure 1).
In the iron metabolism pathways, transferrin receptor 1 (TfR1) transport extracellular
Fe3+ to the nucleus and convert it into Fe 2+, which is released from the nucleus
through divalent metal transporter 1 (DMT1), triggering the Fenton reaction, activating
lipoxygenases, and promoting the generation of lipid peroxides, resulting in ferroptosis
(4, 5). Amino acid metabolism involves vital regulatory factors, including system X−

C
(consisting of two subunits SLC3A2 and SLC7A11) (6, 7) and glutathione peroxidase 4
(GPX4). Inhibitors of system X−

C decrease the uptake of cystine and reduce cysteine and
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suppress glutathione (GSH) production, further inactivating
GPX4 (8) and reducing the conversion of GSH to glutathione
disulfide (GSSG) (9), which will result in lipid peroxidation
and ferroptosis in amino acid metabolism. By activating
acyl-CoA synthetase long-chain family member four (ACSL4)
and lysophosphatidylcholine acyltransferase three (LPCAT3),
polyunsaturated fatty acids (PuFAs) induce lipid peroxidation
and promote ferroptosis (10).

Over the years, researches on the link between ferroptosis
and clinical diseases have been gradually improved, with cancer
and neurodegenerative diseases being the focus (11–19). Recent
studies have demonstrated ferroptosis participates in the genesis
and development of cardiovascular diseases. We discuss the
roles and potential mechanisms of ferroptosis in cardiovascular
diseases in this article and hopefully provide an effective strategy
for the treatment of cardiovascular diseases.

FERROPTOSIS AND CARDIOVASCULAR
DISEASES

Ferroptosis and Cardiomyopathy
Cardiomyopathy is a group of myocardial diseases caused by
heterogeneous factors, leading to myocardial and/or cardiac
electrical dysfunction, with high mortality (20).

Doxorubicin (DOX), also known as adriamycin, is the second-
generation anthracycline chemotherapy drug, a commonly used
antitumor agent with fatal cardiotoxicity. Its most serious
side effect is cardiomyopathy, called doxorubicin-induced
cardiomyopathy (DIC) (21). Tadokoro et al. (22) found that
mitochondria-dependent ferroptosis plays an essential role
in DIC. DOX down-regulated GPX4 and caused excessive
lipid peroxides production in mitochondria through the
DOX-Fe2+ complex, resulting in mitochondria-dependent
ferroptosis. GPX4 overexpression in mitochondria or iron
chelates targeting Fe2+ can ameliorate doxorubicin-induced
ferroptosis. Furthermore, this study showed that apoptosis is also
a major form of doxorubicin-induced cardiomyocyte death. And
two death forms are independent of each other. The combination
of ferrostatin-1 (Fer-1) and zVAD-FMK to inhibit ferroptosis
and apoptosis could completely prevent doxorubicin-induced
cardiomyocyte death in rats. In addition, Fang et al. (23)
showed that DOX significantly up-regulated heme oxygenase-1
(Hmox1) through NF-E2-related factor 2 (NRF2), induced
local heme degradation, leading to the release of free iron,
and further inducing ferroptosis in mouse myocardial tissue.
Zinc protoporphyrin IX (ZnPP), a competitive inhibitor of
Hmox1, reduced DOX-induced ferroptosis. These results suggest
that Hmox1 plays an important role in doxorubicin-induced
ferroptosis and cardiomyopathy. This study also found that
ferroptosis inhibitor Fer-1 or dexrazoxane (DXZ) prevented lipid
peroxidation and DIC by maintaining mitochondrial function.
However, MitoTEMPO, a mitochondria-targeted antioxidant,
can alleviate DIC by specifically clearing lipid peroxidation
in mitochondria. These studies show that DOX-induced
cardiotoxicity is closed with mitochondrial iron overload and
subsequent ferroptosis. In 2021, He et al. (24) proved in vitro

and in vivo that ferroptosis, autophagy, and apoptosis are
related to DOX-induced cardiotoxicity. Epigallocatechin-3-
gallate(EGCG)is a polyphenol compound in green tea and is
also a natural antioxidant. EGCG up-regulated AMP-activated
protein kinaseα2 (AMPKα2), activated adaptive autophagy,
reduced iron deposition, inhibited reactive oxygen species (ROS)
overproduction and rectified abnormal lipid metabolism, thereby
reversing ferroptosis in DIC. Similarly, in a recent article, Sun
et al. (25) demonstrated potent antioxidant melatonin inhibited
mitochondrial lipid peroxidation and ameliorated doxorubicin-
induced cardiac ferroptosis. In summary, we know that many
forms of cell death are involved in DIC, among which ferroptosis
is a pivotal one. Thus, targeting ferroptosis might be an effective
treatment for DIC in cancer patients.

Diabetic cardiomyopathy (DCM) is defined as a disorder
of cardiac structure and function in patients with diabetes in
the absence of coronary artery disease, hypertension, valvular
heart diseases, and other conventional cardiovascular risk factors
(26). Excessive overproduction of ROS is regarded as an
essential mechanism for the occurrence and development of
diabetic cardiomyopathy (27), and the accumulation of lipid
ROS induced ferroptosis (28). Therefore, ferroptosis is more
likely to be involved in DCM. Some studies have supported
that administration of ferroptotic inhibitors coenzyme Q10 and
Vitamin E in diabetic animals might protect the myocardium by
suppressing oxidative stress (29, 30). GPX4 is one of the crucial
regulators of ferroptosis, and GPX4 deficiency induced lipid
peroxidation and resulted in myocardial metabolic disturbance
in high-fat, high-sucrose diet mice (31). Conversely, GPX4
overexpression could alleviate mitochondrial dysfunction and
protect the hearts from diabetic damage (32). A recent study
has identified that ferroptosis exerts a pivotal effect on the
pathogenesis of DCM. NRF2 agonist sulforaphane inhibited
lipid peroxidation via AMPK/NRF2 pathways, which suppressed
ferroptosis and prevented DCM (33). These findings suggest that
ferroptosis has a substantial impact on DCM.

Sepsis cardiomyopathy is a severe life-threatening
complication caused by sepsis (34). Li et al. (35) found ferroptosis
is involved in the progression of sepsis cardiomyopathy.
Their experiments showed that ferroptotic inhibitor Fer-1
or iron chelates DXZ mitigated lipopolysaccharide (LPS)-
induced ferroptotic cell death in sepsis cardiomyopathy model,
while ferroptosis inducers sorafenib and erastin exacerbated
LPS-induced myocardial injury.

In conclusion, ferroptosis plays a crucial role in the
pathogenesis of cardiomyopathy, and ferroptosis inhibitors are
expected to be a novel therapeutic strategy for cardiomyopathy.

Ferroptosis and Atherosclerosis
Atherosclerosis is a chronic inflammatory disease involving the
main and middle arteries (36). Martinet et al. (37) suggested that
intraplaque hemorrhage, iron deposition, and lipid peroxidation
are common pathological features of an advanced stage of
human atherosclerotic plaque. Guo et al. (38) have found
that overexpression of GPX4 inhibited lipid peroxidation
and delayed the pathological process of atherosclerosis in
ApoE−/−mouse. And lipid peroxidation accumulation is one of
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TABLE 1 | Comparison of different forms of programmed cell death.

Cell death Morphological features Biochemical changes Immune status

Ferroptosis Mitochondria shrinkage, increased

mitochondria membrane density, crista

destruction, and outer membrane rupture,

but not nucleus morphological changes

Lipid peroxidation and iron overload Pro-inflammatory

Apoptosis Cell shrinkage, chromatin condensation,

plasma membrane blebbing without

rupture, formation of apoptotic bodies,

cytoskeletal disintegration

DNA fragmentation Anti-inflammatory (mostly)

Necroptosis Cytoplasm and organelles swelling,

formation of necrosome, plasma

membrane rupture, and release of cell

contents

ROS production, random degradation of

DNA, damage-associated molecular

patterns (DAMPs) release, R1PK1, R1PK3

and MLKL phosphorylation

Anti-inflammatory

Autophagy Formation of double- membraned

autophagic vesicles, normal membrane

and nucleus

Increased lysosomal activity, LC3-I to LC3-II

conversion, P62 degradation

Anti-inflammatory (mostly)

Pyroptosis Cytoplasm swelling, formation of

pyroptotic bodies, plasma membrane

rupture, release of cell contents, and

unaffected mitochondrial integrity

Activation of caspase and GSDMD,

pro-inflammatory factors release

Pro-inflammatory (mostly)

FIGURE 1 | Regulatory mechanism of ferroptosis. TfR1, transferrin receptor 1; DMT1, divalent metal transporter 1; LOXs, lipoxygenases; POR, cytochrome P450

oxidoreductase; PUFAs, polyunsaturated fatty acids; AA, arachidonic acid; AdA, adrenal acid; CoA, coenzyme A; PE, phosphatidylethanolamine; ACSL4, acyl-CoA

synthetase long-chain family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3; SLC7A11, solute carrier family 7 member 11; SLC3A2, solute carrier

family 3 member 2; GSH, glutathione; GSSG, glutathione disulfide.

the characteristics of ferroptosis, so we speculate that ferroptosis
plays an essential role in the initiation and development of
atherosclerosis. CD98 heavy chain (CD98hc), also named solute

carrier family 3 member 2 (SLC3A2), is a component of
the antiporter system X−

C . Inhibitor of system X−

C triggered
endoplasmic reticulum stress and resulted in ferroptosis, while
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the expression of CD98hc in vascular smooth muscle cells
contributed to the stable formation of atherosclerotic plaque
(39, 40). There is direct evidence that ferroptosis occurs
in the development of atherosclerosis. Ferroptotic inhibitor
Fer-1 delayed the progression of atherosclerosis by reducing
endothelial dysfunction, lipid peroxidation and iron content
in mouse aortic endothelial cells (41). It is well known that
diabetes can be complicated with vascular diseases, which include
atherosclerosis. A study by Meng et al. (42) indicated that
ferroptosis is involved in the occurrence and development of
atherosclerosis in diabetes mellitus. In the cell models treated
with high glucose, and high lipids, Hmox1 deficiency reduced
iron overload, ROS production and lipid peroxidation to inhibit
ferroptosis in endothelial cells. Hmox1 may be a therapeutic
target for diabetic atherosclerosis. Based on those studies, we
know that ferroptosis has an essential effect on atherosclerosis.
Targeting ferroptosis may provide new ideas for the treatment
of atherosclerosis.

Ferroptosis and Acute Myocardial
Infarction
The clinical definition of AMI refers to myocardial injury
with abnormal cardiac biomarkers detected in the condition
of acute myocardial ischemia (43). Park et al. (44) found
that the down-regulation of GPX4 induced ferroptosis during
AMI, resulting in cardiomyocyte death and myocardial injury.
Baba et al. (45) showed that mechanistic target of rapamycin
(mTOR) suppressed cell death, ferroptosis and improved left
ventricular remodeling by reducing the production of ROS. MiR-
23a-3p is a kind of enriched miRNAs in exosomes derived
from mesenchymal stem cells (MSCs) (46). It was reported that
DMT1 is a miR-23a-3p target gene. Ferroptosis occurred in
the hypoxic cardiomyocytes and infarcted myocardium. MSCs
exosomes derived from human umbilical cord blood inhibited
ferroptosis via miR-23a-3p/DMT1 axis and mediated myocardial
repair in AMI mice (47). In the above studies, ferroptosis has
been implicated in the initiation and development of AMI.
Inhibition of ferroptosis has been provide novel tactics for the
precise treatment of myocardial infarction. Meanwhile, Through
machine learning, Huang et al. (48) filtered out ferroptosis-
related genes (FRGs) specifically expressed in the peripheral
blood of AMI patients. In this study, they also proposed a
diagnostic model composed of mitogen-activated protein kinase
3 (MAPK3), WD repeat domain phosphoinositide-interacting
protein 2 (WIPI2) and voltage-dependent anion channel three
(VDAC3) and provided a new direction for early diagnosis
of AMI.

Since diabetes mellitus significantly inhibits the establishment
of collateral circulation of ischemic myocardium, aggravating
myocardial injury, patients with diabetes comorbiditied with
AMI have higher incidence and mortality of coronary heart
disease (49). Diabetes increases ROS production in the infarcted
myocardium (50), and ROS are considered as essential signals
of ferroptosis (51). We hypothesize that ferroptosis might be
involved in the pathological process of diabetes comorbiditied
with AMI. However, it has not been reported explicitly whether

ferroptosis participates in diabetes comorbiditied with AMI, and
further studies are needed.

Ferroptosis and Myocardial
Ischemia/Reperfusion Injury
Myocardial ischemia/reperfusion injury (I/RI) refers to the
pathological process of aggravated myocardial damage caused
by reperfusion within a certain period of time after partial or
complete acute occlusion of coronary artery. Tang et al. (52)
proposed that up-regulation of ubiquitin-specific protease
7 (USP7) activated the protein 53 (p53)/TfR1 pathway
to promote ferroptosis in the I/RI rat model. Increased
oxidized phosphatidylcholines (OxPCs) caused mitochondrial
dysfunction and disrupted calcium transients and resulted in
extensive cardiomyocyte death via ferroptosis during myocardial
I/RI. Intervention to OxPCs could prevent ferroptosis in
I/RI patients (53). These findings supported that ferroptosis
might play a significant role in the pathogenesis of myocardial
I/RI. Pretreating mice with ferroptotic inhibitor Fer-1, DXZ
or liproxstatin-1 (Lip-1) could alleviate myocardial injury
after ischemia/reperfusion (23, 54). The latter was mainly
achieved by reducing mitochondrial ROS production, increasing
GPX4 level, and decreasing voltage-dependent anion channel
1 (VDAC1) level (54). Anthocyanins can be found in most
plants and cyanidin-3-glucoside (C3G) is a major type of
anthocyanins. Anthocyanins have strong antioxidant activity,
which can effectively scavenge free-radical and protect the
heart (55). C3G suppressed the promotion of ras synthetic
lethal 3 (RSL3) on ferroptosis. C3G reduced the Fe2+content,
down-regulated TfR1 and up-regulated ferritin heavy chain1
(FTH1), inhibited ferroptosis and alleviated myocarial injury
in I/RI models (56). Likewise, Xanthohumol (XN) isolated
from Humulus lupulus had also been shown to protect
ischemic/reperfusion myocardium from ferroptosis (57).
Besides, exosomal long noncoding RNA (lncRNA) MIR9-3
host gene (Mir9-3hg) derived from bone MSCs mitigated
ferroptosis in I/RI mice by regulating pumilio RNA binding
family member two (Pum2)/peroxiredoxin 6 (PRDX6) axis and
showed cardioprotective effects both in vitro and in vivo (58).
These exciting findings have further broadened therapeutic
approaches for ferroptosis in I/RI.

Recent studies have demonstrated the pathological process of
diabetic I/RI is relevant to ferroptosis.Wang et al. (59) discovered
that diabetes exacerbated I/RI via decreasing AMPK, inducing
oxidative stress associated with NADPH oxidase 2 (NOX2) and
programmed cell death including ferroptosis. Meanwhile, Li et al.
(60) found that restraining ferroptosis could reduce endoplasmic
reticulum stress and oxidative stress damage and delay the
progression of diabetic I/RI. Nevertheless, the role of ferroptosis
in diabetes I/RI needs to be better elucidated.

Ferroptosis also participates in I/RI related to heart
transplantation. Ferroptosis mediated I/RI after heart
transplantation by recruiting neutrophils to the transplanted
heart. Inhibition of ferroptosis before transplantation can
alleviate reperfusion injury, reduce left ventricular remodeling,
and improve the prognosis of heart transplant recipients (61).
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Ferroptosis and Heart Failure
Heart failure is a set of clinical syndromes in which cardiac
output is inadequate due to various structural and functional
abnormalities of the heart (62). The loss of cardiomyocytes plays
a crucial part in the development of heart failure. Programmed
cell death, such as autophagy and ferroptosis, occurs in the
heart failure stage. Knockdown of toll-like receptor 4 (TLR4) or
NADPH oxidase 4 (NOX4) restrained ferroptosis and autophagy,
which attenuated the loss of cardiomyocytes and delayed the
progression of heart failure (63). Moreover, ferroptosis has been
observed in heart failure resulted from pressure overload. The
model of heart failure was established by aortic coarctation
in this research. Antioxidant puerarin could inhibit ferroptosis
via increasing GPX4 and ferritin heavy chain 1 (FTH1), and
down-regulating expression of NOX4, which could improve cell
viability in rats, reduce death of H9C2 cardiomyocytes treated
with erastin or isoproterenol (ISO) and retard the development
of heart failure (64). Nitenberg et al. (65) demonstrated abnormal
myocardial iron probably exists in diabetic heart failure. Iron
chelator deferoxamine can improve coronary microcirculation
in patients with type two diabetes by suppressing the increase
of oxygen radicals, which may be a novel target for reversing
deterioration of cardiac function in patients with diabetic
heart failure. Nevertheless, the toxicity and short half-life of
deferoxamine affect its application in improving cardiac function

for clinical patients with diabetic heart failure. Thus, the role of
ferroptosis in heart failure remains to be further studied.

Ferroptosis and Other Cardiovascular
Diseases
Hypertension is a common cardiovascular disease. Currently,
there are few works on the relationship between hypertension
and ferroptosis. A research by Yang et al. (66) showed that
reductions of GPX4 and GSH in the brains of hypertensive
rats led to lipid peroxidation and iron overload, inducing
hypertensive brain injury. Elabela is an endogenous ligand for
apelin receptor, which is primarily expressed in the cardiac
microvascular endothelial cells (CMVECs). Zhang et al. (67)
studied the effect of elabela on hypertension. They found that
elabela inhibited cardiac oxidative stress, inflammation, fibrosis,
and ferroptosis in Angiotensin II (Ang-II) treated CMVECs
and hypertensive mice to suppress hypertensive ventricular
remodeling. Hence, we guess that ferroptosis might be involved
in hypertension and result in the damage to hypertensive
target organs.

Aortic dissection (AD), also known as aortic dissecting
aneurysm (ADA), is a type of cardiovascular diseases with high
mortality (68). Zou et al. (69) revealed that ferroptosis is an
important pathological mechanism of Stanford type A aortic
dissection (TAAD). Some ferroptosis-related genes mediated

TABLE 2 | The role of ferroptosis in various cardiovascular diseases.

Diseases Characteristics or changes Pathways or signals References

DIC Excess lipid peroxides production in mitochondria Down-regulation of GPX4 expression Tadokoro et al. (22)

DIC Up-regulation of Hmox1 expression NRF2/Hmox1 pathway Fang et al. (23)

DCM Lipid peroxidation Advanced Glycation end-products (AGEs) inhibited

SLC7A11 expression and ferritin, decreased GSH

expression and increased unstable iron levels.

Wang et al. (33)

Sepsis cardiomyopathy Iron overload and excessive ROS in mitochondria NCOA4 expression increased, interacted with

ferritin, activated SFXN1 expression, and

transferred Fe2+ to mitochondria

Li et al. (35)

Diabetic Atherosclerosis Iron overload, ROS increased, down-regulation of

GPX4 and SCL7A11, lipid peroxidation and

together resulted in ferroptosis in endothelial cells

Hmox1 increased Meng et al. (42)

AMI Accumulation of lipid peroxides Down-regulation of GPX4 Park et al. (44)

AMI GSH level decreased, iron deposition, Fe2+ level

increased, excessive lipid peroxides and ROS

DMT1 overexpression Song et al. (47)

I/RI Up-regulation of USP7, p53 and TfR1 USP7 / p53 / TfR1 pathway Tang et al. (52)

I/RI Mitochondrial dysfunction, calcium transients

blocked and contractile dysfunction

Loss of GPX4 activity Stamenkovic et al. (53)

Diabetic I/RI A increase in myocardial oxidative stress, apoptosis,

pyroptosis and ferroptosis

Nox2 activation mediated through AMPK

suppression

Wang et al. (59)

Diabetic I/RI The interaction between endoplasmic reticulum

stress and ROS caused cardiomyocytes injury

ATF4-CHOP pathway Li et al. (60)

I/RI related to heart

transplantation

Neutrophils recruitment to impaired myocardium TLR4/TRIF pathway Li et al. (61)

DIC, doxorubicin-induced cardiomyopathy; GPX4, glutathione peroxidase 4; Hmox1, heme oxygenase-1; NRF2, NF-E2-related factor 2; DCM, Diabetic cardiomyopathy; AGEs, advanced

glycation end-products; ROS, reactive oxygen species; NCOA4, nuclear receptor coactivator 4; SFXN1, siderofexin; SCL7A11, solute carrier family 7 member 11; AMI, acute myocardial

infarction; GSH, glutathione; DMT1, divalent metal transporter 1; I/RI, ischemia/reperfusion injury; USP7, ubiquitin-specific protease 7; p53, protein 53; TfR1, transferrin receptor 1; Nox2,

NADPH oxidase 2; AMPK, AMP-activated protein kinase; ATF4, Activating transcription factor 4;CHOP, C/EBP homologous protein; TLR4, toll-like receptor 4; TRIF, TIR domain-containing

adapter-inducing interferon-β.
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ferrptosis in cells and influenced the development of TAAD.
Smooth muscle cell (SMC) loss is an important mechanism
of aortic dissection. Ferroptosis participated in SMC loss and
AD progression. BRD4770 is a new ferroptosis inhibitor, which
suppressed inflammatory response, reduced lipid peroxidation
and inhibited ferroptosis in SMC of AD mice to prevent the
formation of aortic dissection (70, 71).

In addition, recent studies have indicated a possible link
between ferroptotic death and arrhythmia. Iron overload caused
the occurrence of arrhythmia via promoting mitochondrial
ROS generation and membrane potential depolarization, and
mitochondrial dysfunction is one of the main characteristics
of ferroptosis (72). Frequent alcohol consumption is known
to increase the risk of atrial fibrillation (73). Regular drinking
promoted ferroptosis via iron overload and increased the
incidence of atrial fibrillation. Ferroptosis inhibitor Fer-one,
reduced the susceptibility to atrial fibrillation induced by
frequent drinking in mice (74). Hence, we supposed that
ferroptotic cell death might be a latent target for arrhythmia
therapy in the future.

DISCUSSION

Ferroptosis is a novel regulated cell death, which has received
much attention in recent years.We discuss the roles of ferroptosis
in cardiomyopathy, atherosclerosis, acute myocardial infarction,
ischemia, and reperfusion injury, heart failure, hypertension,
arrhythmia and aortic dissection in this review (Table 2).
But the roles of ferroptosis in other cardiovascular diseases,
including valvular heart disease, have been rarely studied, which
require further researches. Besides, except for iron chelators
DXZ and deferiprone (DFP) authorized by FDA are used
in treating DIC and AMI (75, 76), a majority of researches
of ferroptosis in cardiovascular diseases have only been
confirmed in the cell and animal models, with relatively limited
clinical evidence. Thus, clinical investigations are essential
for the application of ferroptosis in cardiovascular diseases.
Furthermore, ferroptotic inhibitors are greatly limited in the
human body due to their toxicity, instability and short half-life.
And it is urgent to develop non-toxic and long-acting inhibitors
targeting ferroptosis.

A series of researches showed that ferroptosis and other types
of programmed cell death take part in cardiovascular diseases
together (22, 24, 59, 63). Whether there is a crosstalk between
ferroptosis and other cell death forms in various cardiovascular
diseases is unclear and needs further researches, which is crucial
for reducing cardiomyocyte death and broadening the treatment
models of cardiovascular diseases. Liu et al. (77) found that self-
assembly indocyanine green-Lecithin (ICG/LECI) can be used to
enhance magnetic resonance/ photoacoustic (MR/PA) imaging
and reduce iron toxicity, opening the way for personalized
diagnosis and treatment for iron overload patients. FRGs
specifically expressed in the peripheral blood of AMI patients also
provided a new direction for early diagnosis of AMI. However,
more attention needs to be paid to the development of testing
methods suitable for routine clinical diagnosis of ferroptosis,
and the introduction of biomarkers of ferroptosis characteristics
is expected to provide helps for the early identification and
diagnosis of cardiovascular disease.

In conclusion, ferroptosis plays a key role in the progression
of cardiovascular diseases, and the roles of ferroptosis in
cardiovascular diseases remain to be further studied. We can
anticipate that diagnostic tools and therapeutic drugs based on
ferroptosis will greatly help in the diagnosis and treatment of
cardiovascular diseases in the future.
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