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Abstract: The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic
network of proteins that modulate several biological processes such as development, cell growth,
metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several
pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant
glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate
every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration,
cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with
glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer.
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1. Introduction

The insulin/insulin-like growth factor (IGF) system is known to be highly implicated in the control
of glucose metabolism and glycaemia, also playing an important role in cell growth, cell differentiation
and metabolic pathways [1].

In tumour progression, several studies have demonstrated the impact of the insulin/IGF system
on cancer cell behaviour, particularly on the acquisition of the malignant phenotype by regulating
the epithelial-mesenchymal transition (EMT) program [2–5]. Moreover, the insulin/IGF system has
also been implicated in cancer metabolism, the acquisition of cancer drug resistance, as well as with
cancer stem cell (CSC) phenotypes [6,7], which altogether highlight the importance of this system in
the regulatory networks that occur during the processes of cancer development and progression.

Glycosylation is a frequent post-translational mechanism that is characterized by the addition
of glycan structures (carbohydrates/sugar chains) to proteins/lipids through the synchronized
action of different glycosyltransferases enzymes that act in a stepwise manner in the ER
(endoplasmic reticulum)/Golgi compartment of essentially all cells. Glycans have been described
as having a relevant impact on both homeostatic and pathological conditions such as cancer.
The repertoire of glycans structures expressed in cells change during the transition from normal
to malignant phenotypes as a response to genetic and/or environmental stimuli. The expression
of aberrant glycans structures in cancer cells has been shown to play an instrumental role in each
pathophysiological step of cancer development and progression [8]. This review describes how glycans
integrate with the insulin/IGF system that include the specific ligands, receptors and signaling
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pathways, addressing how this biological network affects and controls cell behaviour, drug resistance
and metabolism in cancer.

2. The Insulin/Insulin-Like Growth Factor (IGF) System

2.1. Ligands and Binding Proteins

The insulin/IGF system has several components, including ligands, binding proteins, receptors
and downstream proteins. Insulin is a key hormone produced by pancreatic β-cells that controls
glycaemia and glucose uptake in several tissues, acting also on lipid synthesis in the liver [1]. The IGFs
(IGF1 and IGF2) are peptides structurally similar to insulin, being produced in the liver and in tissues
where they act in both the autocrine and paracrine pathways. The IGFs are important mediators of
cell growth, differentiation and metabolism. In addition to IGF and insulin, which are responsible
for triggering the signaling cascade, there is also a family of six high-affinity IGF-binding proteins
(IGFBPs) that modulate the interaction between these ligands and their receptors. In biological fluids,
the IGFs are frequently associated with IGFBPs and are rarely found (<1%) in their free form [9,10].
The IGFBPs are found in both precursor and mature form and their molecular structure consists of
three domains (amino terminal, central, and carboxyl terminal). The central domain, also known
as the binding domain, usually undergoes post-translational modifications such as glycosylation or
phosphorylation [11]. IGFBPs play a key role in the availability of ligands through the regulation
of their half-life, blocking the interaction with the receptor or even favoring signaling activation
due to controlled release of the ligands [12,13]. Evidence has also suggested that IGFBPs may have
insulin/IGF-independent functions, including during tumour progression [14].

2.2. Receptors

The three main components of the insulin/IGF system are the IGF1 receptor (IGF1R), IGF2 receptor
(IGF2R), and insulin receptor (INSR). Splicing variants can also give rise to two additional isoforms of
INSR—the INSR-A (short isoform) and INSR-B (long isoform) [15]. The interaction of the isoforms with
the IGF1R can also generate the hybrid receptors A (HR-A) and B (HR-B). With the exception of IGF2R,
which has a monomeric structure, the other five receptors form a heterotetrameric structure composed
of two α and two β subunits. The α subunit is extracellular and responsible for ligand binding, whereas
the β subunit has a transmembrane and an intracellular segment where the tyrosine kinase domain
is located. The IGF1R autophosphorylation follows binding of the ligands and, for kinase activation,
the phosphorylation of three major tyrosine residues (Tyr1131, Tyr1135 and Tyr1136) are needed [16].

Phosphorylation in an equivalent tyrosine cluster (Tyr1146, Tyr1150, Tyr1151) is required for the full
activation of INSRs [17]. These receptors can be modulated by post-translational modifications in the
subunits, in which the α subunit may undergo N-glycosylation whereas the β subunit can be modified
by both N- and O-glycosylation, with the latter being described only in INSR [18–20].The INSR
ectodomain is highly glycosylated, containing in each monomer a total of 19 potential N-glycosylation
sites of which 14 were found to be occupied by glycan moieties [18]. In adipocytes, glucose deprivation
was described to lead to the expression of an aberrantly glycosylated form of the INSR, which
prevents oligomerization modulating the insulin-dependent tyrosine kinase activity [21]. Furthermore,
N-glycosylation of INSR at Asn397 or Asn418 was described as essential for its normal biosynthesis
and processing [22]. Concerning the IGFRs, the α-subunit region of IGF1R also contains 11 potential
N-glycosylation sites [23], while the extracellular domain of IGF2R exhibits 19 putative sites [24].
In addition, at least 6 mucin-type O-glycosylation sites were described in the INSR ectodomain [19].
These glycosylation modifications affect the receptor´s folding, activity and function and may vary
accordingly with physiopathological conditions. As an example, changes in the glycosylation of
placental INSR and IGF1R have been observed between the first and third trimesters of gestation in
pregnant healthy women, including the decrease of fucosylation and α2,6-sialylation of INSR and
IGF1R, and an increase of total fucosylation of IGF2R [25].
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2.3. Downstream Proteins

The activation of the insulin/IGF receptors triggers intracellular signaling through insulin receptor
substrate (IRS) proteins, a family of adaptor molecules consisting of four closely related members
(IRS1–IRS4) and two distant relatives (IRS5 and IRS6, also known as docking proteins (DOK4 and
DOK5 respectively)) [26], which connect receptors’ activation to downstream kinase cascades, such
as the RAS/MEK/ERK or PI3K/AKT1 pathways. IRS proteins have two ubiquitously expressed
forms in humans, IRS1 and IRS2, which are highly regulated by both phosphorylation (Tyr, Ser and
Thr) and ubiquitination [27,28]. The RAS/MEK/ERK and PI3K/AKT1 pathways, although they are
generally associated with proliferation and survival respectively, are also interconnected to modulate
several cellular mechanisms involved in tumour development and progression [29]. Although IRS1
and IRS2 structures are quite similar, the triggered signaling mechanisms differ from each other. Mice
lacking IRS1 show insulin resistance and growth retardation, but do not develop diabetes because
hyperinsulinemia possibly compensates for this resistance, whereas the disruption of IRS2 impairs
insulin secretion by the pancreatic β-cells, causing type 2 diabetes [30,31]. The IRS3 is a pseudogene
in humans [32] and IRS4 induces constitutive PI3K/AKT1 pathway hyperactivation in breast cancer
cells [26]. The key elements composing the insulin/IGF system, integrated with glycans alterations
and the cellular outcomes, are depicted in Figure 1.
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Figure 1. The insulin/insulin-like growth factor (IGF) system. The ligands (insulin, IGF1 and IGF2) 
bind to their specific receptors triggering downstream signaling pathways (RAS/MEK/ERK and 
PI3K/AKT1/mTORC1) through IRS proteins, with the exception of IGFR2 that does not transduce 
signaling. The IGFBPs negatively modulate both IGF1 and IGF2. The activation of RAS/MEK/ERK 
pathway has been shown to be involved in the upregulation of MGAT5 gene, increasing the levels of 
expression of β1,6-branched N-glycans. On the contrary, the activation of PI3K/AKT/mTOR signaling 
cascade was associated with the impairment of GnT-III-mediated bisecting GlcNAc N-glycans 
expression. These signaling pathways have an impact on cell growth, survival and invasion, which 
favors tumour development and progression. GnT-III: N-acetylglucosaminyltransferase III; GnT-V: N-
acetylglucosaminyltransferase V. GnT-III catalyzes the bisecting GlcNAc N-glycan structure and GnT-
V catalyzes the β1,6 GlcNAc branched N-glycans.  

Figure 1. The insulin/insulin-like growth factor (IGF) system. The ligands (insulin, IGF1 and IGF2)
bind to their specific receptors triggering downstream signaling pathways (RAS/MEK/ERK and
PI3K/AKT1/mTORC1) through IRS proteins, with the exception of IGFR2 that does not transduce
signaling. The IGFBPs negatively modulate both IGF1 and IGF2. The activation of RAS/MEK/ERK
pathway has been shown to be involved in the upregulation of MGAT5 gene, increasing the levels
of expression of β1,6-branched N-glycans. On the contrary, the activation of PI3K/AKT/mTOR
signaling cascade was associated with the impairment of GnT-III-mediated bisecting GlcNAc N-glycans
expression. These signaling pathways have an impact on cell growth, survival and invasion,
which favors tumour development and progression. GnT-III: N-acetylglucosaminyltransferase III;
GnT-V: N-acetylglucosaminyltransferase V. GnT-III catalyzes the bisecting GlcNAc N-glycan structure
and GnT-V catalyzes the β1,6 GlcNAc branched N-glycans.
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3. Impact of the Insulin/IGF System in Cancer Development and Progression

3.1. Cellular Behaviour

Several mechanisms can lead to an imbalance of the insulin/IGF signaling network in cancer,
including the increased bioavailability of the ligands, dysregulation of signaling proteins, and
overexpression of the receptors [33]. Recently, an increasingly number of studies have revealed
that insulin/IGF signaling is involved in the acquisition of the malignant phenotype by regulating
epithelial-mesenchymal transition (EMT) program, with results in a negative impact on proliferation,
invasion, migration, and apoptosis [2–5].

The EMT, involving the loss of cell-cell adhesion, mainly results in the acquisition of a migratory
and invasive phenotype of cancer cells that accompany tumour progression. During this biological
process the transcription factors ZEB1 and ZEB2 play a crucial role by binding to E-boxes of CDH1
(E-cadherin gene) [34]. In prostate cancer cells that have the epithelial phenotype, stimulation with
IGF1 upregulates ZEB1 expression in both mRNA and protein levels, leading to E-cadherin repression
and upregulation of Fibronectin and N-cadherin [35]. Increased levels of Snail, another transcription
factor that inhibits E-cadherin expression, was found to be induced by IGF1 in non-small cell lung
cancer (NSCLC) cells, promoting EMT [36].

Additionally, evidence has demonstrated that the EMT process gives rise to cells with
stemness features (the so-called cancer stem cells, CSC) which contribute to metastasis and drug
resistance [37–39]. In breast cancer cells, the inhibition of the PI3K/AKT1/mTORC1 pathway or
knockdown of IGF1R suppresses the EMT program, reducing stem cell niches [40]. Using thyrospheres
models, it was observed that the thyrospheres derived from thyroid cancer have a remarkable increase
of INSR-A and IGF2 when compared to normal thyrospheres. However, only IGF2 contributes to
the self-renewal process, whereas the increase in the degree of differentiation was associated with
the downregulation of the insulin and IGF receptors [41]. In breast cancer cells, a positive feedback
mechanism was demonstrated when IGF2 binds to IGF1 receptors, triggering PI3K/AKT1 signaling
and leading to the activation of DNA-binding protein inhibitor ID1, a transcriptional factor that acts
not only on the maintenance of stemness but also on the positive regulation of IGF2 [42]. Interesting
conclusions were also drawn in models of hepatocarcinoma in which the inhibition of Nanog-positive
cells, identified to be associated with CSC resulted in down-regulation of IGF1R, influencing the
self-renewal capacity of these cells. In addition, the overexpression of Nanog in Nanog-negative cells
increase the expression of IGF1R, and the specific inhibition of IGF1R signaling significantly inhibit
self-renewal and Nanog expression [43].

Changes in the insulin/IGF system can also be involved in the acquisition of the aggressive
cancer phenotype. In hepatocellular carcinoma (HCC), decreased expression of IGFBP1 is correlated
with microvascular invasion and metastasis [44]. In patients with gastric cancer, elevated IGF1R
levels were associated with lymph node metastasis [45]. Interestingly, in triple-negative breast cancer
cells it was also shown that overexpression of IGF1R induces migratory and invasive behaviours
in a mechanism mediated by the activation of the focal adhesion kinase (FAK) signaling cascade,
which can be suppressed using pharmacological inhibitors of FAKs [46].

The modulation of IGF1R signaling was further found to affect cell death programming through
interplay with transforming growth factor β receptor (TGFβR) signaling. Abrogation of TGFβ/Smad3
signaling leads to increased expression and phosphorylation levels of IRS1, resulting in decreased
apoptosis by increasing XIAP expression levels in FET human colon cancer cells [5]. Moreover,
in triple-negative breast cancer cells the IGF1 increases the cell growth and confers a protective
effect against staurosporine-induced programmed cell death [47]. Interestingly, the inhibition of
N-glycosylation using inhibitors of N-glycans biosynthesis resulted in a remarkable decrease of IGF1R
autophosphorylation together with its reduced expression at the cell surface, which was accompanied
by a substantial decrease in the survival of Ewing’s sarcoma cell lines [48].
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Recently, increasing amounts of evidence have shown that microRNA may regulate insulin/IGF
signaling. Increased miR-29a expression cooperates with insulin to promote the proliferation of breast
cancer cells by increasing ERK phosphorylation [49]. In addition, it has been demonstrated that
MicroRNA-30a, through a Src-dependent mechanism, was found to be involved in IGF1-Induced EMT
in nasopharyngeal carcinoma cells [50]. In gastric cancer cells it has been shown that IGF1 is able to
induce EMT through the up-regulation of ZEB2, in addition, AKT1/ERK inhibitors revert IGF1-induced
EMT through up-regulation of miR-200c, suggesting the involvement of an AKT1/ERK-miR-200c-ZEB2
axis in EMT induced by IGF1 stimulation [45].

Interestingly, the integrative microRNA-insulin/IGF regulatory network seems to represent an
attractive strategy for the molecular stratification of glioblastoma multiform tumours, since patients
who present concomitantly low IGF1 and high miR-181d levels have a significantly longer survival
rate than those with high-IGF1 and low-miR-181d [51].

3.2. Drug Resistance

Changes in the insulin/IGF system also contribute to the acquisition of resistance to chemo-,
radio- and target-therapy [6,7]. A study using chemoresistant colorectal cancer cells, obtained by
treatment selection with 5-fluorouracil or oxaliplatin, showed that these cells have a higher expression
of CSC markers concomitantly with increased expression and activation of IGF1R. Interestingly, these
cells were described to display approximately 5-fold increased responsiveness to treatment with IGF1R
inhibitory monoclonal antibody compared to parental cells [52].

In ovarian cancer, the upregulation of IGF1R was associated with the early acquisition of resistance
to cisplatin-paclitaxel treatment (single or in combination). In these cells, treatment with IGF1R
inhibitor (in combination with cisplatin, paclitaxel or both) was able to reverse the therapy resistance at
early stages [53]. Furthermore, it was also shown that the inhibition of IGF1R at early stages of therapy
resistance and AKT1 inhibition at late stages were able to abrogate the CSC phenotype. Together,
these data demonstrate that the IGF1R/AKT1 signaling pathway significantly impacts the acquisition
of chemoresistance in cancer cells.

Experiments carried out using NSCLC cells demonstrated that the induction of EMT leads to
resistance to tyrosine kinase inhibitors, however, the silencing of IGF1R (siRNA) in these cells restore
their sensitivity to gefitinib or erlotinib [36].

Importantly, clinical studies in gastric cancer patients human epidermal growth factor receptor
HER2+ but non-responders to HER2-targeted therapy (including lapatinib) [54], showed that IGF1R
and INSR contribute to the acquisition of the resistant phenotype by precluding the lapatinib-induced
suppression of cell motility and apoptosis by re-stimulating both AKT1 and/or ERK signaling but also
EMT-related signaling [55].

In cancer cells, the absence of IGF1R-linked glycans at Asn913 compromised its membranous
localization, being associated with insensitivity to figitumumab (a humanized anti-IGF1R antibody),
suggesting that changes in the pattern of the expression of N-glycans attached to the growth receptor
modulate the sensitivity to target therapy in cancer cells [56]. Although these results support the importance
of glycans interplaying with the insulin/IGF system in cancer, further studies are required on this topic.

In addition to the mechanisms related to chemoresistance, changes in the insulin/IGF system are
also involved in radioresistance. In lung cancer cells, radiation increases IGF1R expression thus triggering
a downstream mechanism that leads to repression of p53-induced apoptosis through enhancement of
phosphorylation of histone deacetylase-1 (HDAC1), which binds to the p53 promoter [57].

The analysis of glioma stem cells further demonstrated that fractionated radiation promotes both
an increase in IGF1 secretion and a gradual upregulation of the IGF1R, which confer radioprotective
effects on resistant cells. Interestingly, the treatment of tumours formed by this radioresistant glioma
stem cells with picropodophyllin (an IGF1R inhibitor) increased the radiosensitivity [58].

Interestingly, the increased activity of ST6GAL1 (ST6 β-galactoside α-2,6-sialyltransferase 1) that
results in increased α2,6 sialylation appears to be involved in the radiation-dependent cell migration
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of carcinoma cells [59]. Accordingly, we have reported that the inhibition of N-glycan biosynthesis was
associated with radiosensitization of undifferentiated human colorectal carcinoma HCT-116 cells [60].
However, although other evidence supports that the inhibition of N-glycan biosynthesis enhances
the effects of radiation in cancer cells [61], it remains unclear how changes in INSR/IGF1R-linked
N-glycans could interfere with radiosensitivity in cancer cells.

Taken together, and given the impact of the insulin/IGF pathway in cancer drugs resistance
mechanisms, the modulation of this pathway might be an attractive strategy to reverse cancer therapy
resistance in various types of cancer.

3.3. Cell Metabolism

The insulin/IGF system is closely related to cell metabolism. Tumour cells exhibit increased
glucose uptake and most of them convert glucose to lactate even in the presence of oxygen
(“aerobic glycolysis” or Warburg effect), which constitutes an advantage for growth being considered
a metabolic hallmark of cancer [62]. Some of these advantages include: (1) resistance to fluctuation in
oxygen tension; (2) production of lactic and bicarbonic acids that favor cell invasion suppressing the
immune response; (3) protection against reactive oxygen species through the generation of NADPH;
and, importantly; (4) the use of intermediates of the glycolytic pathway to fuel anabolic reactions,
such as hexosamine, glycogen, ribose 5-phosphate, triacylglyceride, phospholipid, alanine and malate
synthetic pathways [63]. In the case of hypoxic conditions, which is frequently found in solid tumours,
cancer cells develop an adaptive program by increasing hypoxia inducible factor 1α (HIF1A), leading
to increased expression of both glucose transporters (e.g., Glucose Transporter type 1, GLUT1) and key
glycolytic enzymes (e.g., hexokinase (HK) and lactate dehydrogenase (LDH)) [1,64]. Activation of the
PI3K/AKT1/mTORC1 signaling pathway under aerobic conditions also contributes to increased levels of
HIF1A, thus generating metabolic reprogramming [65]. Accordingly, IGF1 was described to be involved
in both the activation of HIF1A and in the expression of GLUT through PI3K/AKT1/mTOR signaling
pathway [66,67].

Interestingly, increased HIF1A level seems to be involved in the activation of EMT under hypoxia
conditions. In NSCLC cells, hypoxia-induced EMT is accompanied by an increase of IGF1, IGF1R,
and IGFBP3, whereas the treatment with AEW541 (IGF1R inhibitor) reverses hypoxia-induced EMT,
and the inhibition of HIF1A with YC-1 inhibitor abolishes the activation of IGF1R and reduces the
expression of IGF1 and IGFBP3 in hypoxic cells [68].

Epidemiological studies have shown that the risk of developing malignant neoplasm is higher in
obese or diabetic individuals, especially for those cancers whose cells exhibit aerobic glycolysis [69,70].
Consistently, a high glucose level itself induces EMT in A549 human lung carcinoma cells [71].
Hyperglycemic conditions also increase proliferation rate of several cancer cells, and this effect
may be amplified when in combination with high insulin or IGF1 levels [72–74]. Paradoxically,
mouse model studies have shown that genetic alterations leading to constitutive activation of the
PI3K/AKT1/mTORC1 signaling pathway may promote self-sufficiency in tumour growth [75].

The insulin/IGF network is also highly affected by post-translational modifications through
glycosylation. High uptake of glucose in tumour cells leads to increased levels of intracellular
fructose-6-phosphate, thus fueling (with ~2–5% of a cell’s glucose) the hexosamine biosynthetic
pathway (HBP) by generating substrates (i.e., UDP-GlcNAc, UDP-GalNAc, CMP-Neu5Ac) for
N-glycosylation, O-glycosylation, glycolipids, and O-GlcNAc (O-linked β-N-acetylglucosamine)
modification of cytosolic proteins [76].

Glycosylation is a major post-translational mechanism occurring in essentially all mammalian
cells. It is characterized by the enzymatic addition of carbohydrate structures (glycans) to secretory
and membrane-anchored proteins and lipids in a very well-orchestrated process [8]. Changes in
glycosylation are considered a hallmark of cancer, as cancer cells exhibit a completely different
repertoire of glycans structures compared with their normal counterparts [8,77]. Glycans have been
described to precisely regulate each pathophysiological step of cancer development and progression,
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from the very beginning of tumour cell dissociation and invasion [77–81], to tumour growth and
metastasis. Importantly, glycans was also shown to regulate the insulin/IGF signaling pathway in
a cancer context [82], which highlights its importance in the regulatory circuits that integrate metabolic
alterations, cancer drug resistance, and cancer cell behaviour.

4. Glycosylation as a Regulatory Mechanism of the Insulin/IGF System in Cancer

Changes in the glycosylation machinery occur during the transition from normal to malignant
phenotypes giving rise to an increased diversity of glycans structures that are abnormally expressed
on the cell surface that further contributes to tumour heterogeneity [8]. Several signaling pathways are
known to be dysregulated in a cancer context and some of them have been found to directly impact in
the activity of key glycosyltransferases. As example, RAS-RAF-MAPK signaling pathway is frequently
upregulated in cancer cells and is particularly involved in the increased expression of the MGAT5 gene
that encodes human N-acetylglucosaminyltransferase V (also known as GnT-V) [83]. The increased
activity of GnT-V results in the overexpression of β1,6 GlcNAc branching N-glycan structures that has
been widely associated with malignant and invasive phenotypes [79,84–86].

Interestingly, mice with mammary tumours induced by the polyomavirus middle T (PyMT)
oncogene (whose expression promotes increased PI3K/AKT1and RAS/MEK/ERK signaling) showed
a decrease in tumour growth in Mgat5−/− mice [87,88]. Consistently, in the early-stages of
these PyMT Mgat5−/− mammary tumours they also show lower levels of activation of the
PI3K/AKT1signaling [87], and the cell lines derived from the PyMT Mgat5−/− are less responsive to
insulin-like growth factor (IGF) [89].

The GnT-V-mediated branched N-glycans can be further extended giving rise to elongated
poly-N-acetyllactosamine structures that serve as ligands for galectins, a family of conserved
carbohydrate-binding proteins that form galectin-glycan structures on cell surfaces termed
“lattices” [90]. The expression of branched N-glycans on the extracellular domain of cell surface
receptors with a high number of N-glycosylation sites, such as on epidermal growth factor receptor
(EGFR), insulin-like growth factor receptor (IGFR), and fibroblast growth factor receptor (FGFR),
promote the binding to galectins forming the molecular lattice that precludes the endocytosis of
glycoprotein receptor, which consequently contributes to signaling activation and increased cell
proliferation, tumour growth and oncogenesis [89,91,92].

Another relevant mechanism linking glycans to cancer cell growth occurs during hypoxia.
In hypoxic conditions there is inhibition of phosphofructokinase 1 (PFK1, enzyme responsible for
the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate-, the first irreversible reaction
unique to the glycolytic pathway), which results in O-GlcNAcylation at Ser529 by OGT (O-linked
N-acetylglucosamine transferase), redirecting the flux of glucose from glycolysis through the PPP
and thereby conferring a proliferative advantage to cancer cells [93]. Furthermore, inhibition of
O-GlcNAcylation at Ser529 was found to reduce cancer cell proliferation in vitro and impaired tumour
formation in vivo [93].

As a consequence of the shift from oxidative phosphorylation to aerobic glycolysis in cancer cells,
the high rates of glucose uptake potentiates the hexosamine biosynthetic pathway (HBP), culminating
in the enhancement of metabolic pathways. As a response, the levels of O-GlcNAcylation in cancer
cells increase, which has a negative impact on cancer cell behaviour [94,95]. O-GlcNAc has been
described to modulate protein functions by regulating protein phosphorylation and thus affecting key
signaling pathways in cancer [96]. Interestingly, the insulin receptor substrate-1 (IRS1) was found to
be modified by O-GlcNAc, which modulated the effects elicited by insulin and IGF1 [97]. Moreover,
the downstream effector AKT1 was also found to be regulated by O-GlcNAcylation [98]. Recently,
it was demonstrated that high glucose concentration exacerbates colon cancer malignancy by increasing
HBP flow, culminating in aberrant glycosylation with increased O-GlcNAc levels as well as a tendency
to increase levels of branched N-glycans [73]. Despite this evidence, the impact of O-GlcNAc in the
modulation of the insulin/IGF system in cancer remains poorly understood.
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Interestingly, evidence points towards the existence of a regulatory circuit between glycosylation,
insulin/IGF system and cancer. The interplay between E-cadherin expression—a major tumour
suppressor protein in epithelial cancers—and INSR/IGF1R signaling was found to modulate the
expression of bisecting N-glycans (complex-type N-glycan containing bisecting β1,4-linked GlcNAc
residue attached to a β-mannose), catalyzed by N-acetylglucosaminyltransferase III (GnT-III), encoded
by the human MGAT3 gene [99]. The exogenous expression of E-cadherin in MDA-MB-435 epithelial
carcinoma cells (which endogenously lack E-cadherin expression both at mRNA and protein levels)
inhibits INSR and IGF1R phosphorylation. The stimulation of MDA-MB-435 + E-cad cells with
insulin or IGF1 decreased the bisecting N-glycans expression on E-cadherin which consequently
up-regulated mesenchymal markers with the enhancement of tumour cell invasion. These observations
provide important insights into the effects of insulin/IGF1 signaling in cancer progression through
glycosylation modifications [82,84].

Taken together, we might be in front of an integrated mechanism in cancer in which the
interaction between the insulin/IGF system and metabolic changes might culminate in alterations of
the glycosylation of cancer cells that, in turn, fine tune insulin/IGF signaling with major effects on
tumour cell development and progression, a biological network that is worth exploring (Figure 2).
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Figure 2. Glycans and insulin/IGF system in cancer: an integrated mechanism. In a normal
context, high levels of bisecting GlcNAc N-glycans catalyzed by GnT-III favor the establishment
of a stable phenotype through E-cadherin-mediated cell-cell adhesion, which in turn promotes MGAT3
expression establishing thereby a functional feedback loop. Both the stable adherens junctions and
IGFBP1 expression lead to the inhibition of IGF1R activity, which were associated with a decrease
of the AKT1/mTORC1/HIF1A/HK axis. In a cancer context, the high levels of β1,6-branched
N-glycans, catalyzed by GnT-V enzyme destabilizes E-cadherin-mediated cell-cell adhesion and favors
the activation of IGF1R-mediated signaling thus increasing the AKT1/mTORC1/HIF1A/HK axis.
Furthermore, as a consequence of the high HK activity, the hexosamine biosynthetic pathway (HBP)
flux become higher, increasing the GlcNAc biosynthesis and the branched N-glycosylation. In addition,
the translocation of cytoplasmic β-catenin to nucleus promotes inhibition of MGAT3 expression,
that concomitantly with the repression of IGFBP1results in a positive feedback mechanism on IGFR1
activity. OGT, O-linked N-acetylglucosamine transferase. GnT-III catalyzes the bisecting GlcNAc
N-glycan structure and GnT-V catalyzes the β1,6 GlcNAc branched N-glycans.
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Although the evidence presented herein strongly supports the existence of an integrated
mechanism between glycosylation modifications and insulin/IGF system in cancer cells, it is worth
mentioning that some controversial data exist due to the fact that the effects of N-glycans are
cell/tissue/organ-specific. As examples, in rat hepatomas the enhanced expression of MGAT3
(often associated with the suppression of metastasis) has been reported, and the progression of hepatic
neoplasms is retarded in mice lacking the bisecting GlcNAc N-glycans [100]. Moreover, in bladder
cancer the enhanced levels of MGAT5 (widely associated with malignant and metastatic phenotypes)
was associated with low malignant potential and good prognosis [101].

5. Conclusions and Future Directions

The insulin/IGF system exhibits a key role in the process of cancer development and progression.
Changes in glycans expression also play a fundamental role in the cancer process. We herein propose an
integrated mechanism in cancer by which glycans alterations regulate the intricated signaling pathways
mediated by the insulin/IGF system with impacts on cancer cell behaviour, cancer cell metabolism,
cancer drug resistance and cancer stemness. Targeting this regulatory network in cancer may constitute
an interesting approach for novel cancer therapies. The understanding of this network might contribute
to finding a way to contradict the biological feedback between glycans and insulin/IGF system,
and consequently to control tumour development and progression.
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