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Understanding high pressure molecular hydrogen
with a hierarchical machine-learned potential
Hongxiang Zong 1,2✉, Heather Wiebe1 & Graeme J. Ackland 1✉

The hydrogen phase diagram has several unusual features which are well reproduced by

density functional calculations. Unfortunately, these calculations do not provide good physical

insights into why those features occur. Here, we present a fast interatomic potential, which

reproduces the molecular hydrogen phases: orientationally disordered Phase I; broken-

symmetry Phase II and reentrant melt curve. The H2 vibrational frequency drops at high

pressure because of increased coupling between neighbouring molecules, not bond weak-

ening. Liquid H2 is denser than coexisting close-packed solid at high pressure because the

favored molecular orientation switches from quadrupole-energy-minimizing to steric-

repulsion-minimizing. The latter allows molecules to get closer together, without the

atoms getting closer, but cannot be achieved within in a close-packed layer due to frustration.

A similar effect causes negative thermal expansion. At high pressure, rotation is hindered in

Phase I, such that it cannot be regarded as a molecular rotor phase.
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S ince the discovery of solid molecular hydrogen in 1899, the
nature of this phase has remained controversial1. It is now
believed that the solid “Phase I” comprises rotating

hydrogen molecules on a hexagonal close-packed lattice2. With
increasing pressure the rotation becomes hindered3 by inter-
molecular interactions, both steric and electrostatic, leading
ultimately to phase transformations to a low temperature Phase
II4, in which quadrupole–quadrupole interactions (EQQ) arrest
the rotation5, and a high-pressure Phase III6,7, in which steric
interactions dominate.

Experimental study of these phases has proved challenging. X-
ray study showed the hcp structure, but could not resolve
molecular orientation at low temperature8, and the first room
temperature only completed in 20199. Raman spectroscopy shows
peaks corresponding to quantum rotors at low pressure, which
gradually broaden and shift with pressure, and a distinctive sharp
phonon mode which rules out cubic close packing as a struc-
ture10–15. The melt line has a strongly positive Clapeyron slope at
low pressures, with a turnover around 100 GPa16–19. The negative
slope means that even though the solid is hexagonal “close-
packed”, the liquid must be even denser. The turnover also means
the liquid has higher compressibility, but how this comes about
remains unexplained. X-ray studies at low temperature traversing
Phase I–II–III do not show any convincing structural changes, in
part because it has proven impossible to get sufficient resolution
to determine the molecular orientation8,9.

Spectroscopy gives vibrational data, which are still insufficient
to determine the structures of phases II, III, and IV. There have
been many and varied attempts to identify the structures via
simulations20–30. However, a consensus has not yet been reached.
Based on fully ab initio calculations, including density functional
theory (DFT) or quantum Monte Carlo (QMC)31, a number of
candidate structures have been proposed for Phase II and III.
Besides differing molecular orientation, they are all similar,
consisting of primitive cells with lattice sites close to hcp22.
Among the structures, the P21/c-24, C2/c-24, and Pc-48 structures
provide low-energy candidate structures for phases II, III, and IV.

The modern theory of the structure of these phases is based
around electronic structure calculations. The early work involved
calculating the ground state, assuming classical nuclei, then adding
quantum-nuclear effects via the quasiharmonic approximation. This
methodology, whether based on DFT or QMC, predicts hcp-like
ground states for Phases I–III in agreement with X-ray data.
However the spectroscopic signature of the Phase II—the appear-
ance of many sharp, low-frequency, and peaks11,32—is not well
reproduced by the quasiharmonic calculations. As explained in the
previous paragraph, the likely cause is a failure of the harmonic
mode assumption for excited states, rather than the DFT itself.

To understand the high-temperature phases, one needs to
examine non-harmonic behaviour, including rotation, which
means going beyond a single unit cell, e.g. using molecular
dynamics. Molecular dynamics requires forces on each atom
based on the positions of all the atoms in the system, which
requires a force model which is fast enough to allow large
simulations. Here we use a machine-learning approach to derive
a transferable force model based on an interatomic potential.
There are several approaches to machine-learning interatomic
forces33–35, which balance speed, transferability and accuracy. We
adopt an approach focusing on transferability.

Any machine-learned potential should conserve energy, and
therefore be based on a Hamiltonian (the potential). Forces are
guaranteed to be conservative if they depend on translational and
rotational invariant quantities: the “fingerprint” of each atom. We
are interested in molecular phases here, so our potential specifies
which atoms are “bonded” and allows stretching but not breaking
of bonds.

In this paper we apply the machine-learning approach so create
an interatomic potential for molecular hydrogen. We show that the
potential describes the three molecular solid phases, with free-rotor
Phase I, and broken-symmetry Phase II and a high-pressure Phase
III. Furthermore, the melt line has a maximum, such that at
high pressure the liquid is denser than the hcp solid, a feature
we attribute to short-range directional order giving lower
quadrupole–quadrupole interaction in the solid. The potential is
trained on energies and classical Hellmann–Feynman forces
derived from standard DFT in the Born–Oppenheimer approx-
imation adopted by all standard DFT codes, so the interatomic
potential is the same for deuterium, hydrogen-deuteride (HD) and
hydrogen. The potential accounts for binding due to electronic
structure: contributions from quantum-nuclear effects can be
incorporated using lattice dynamics or path integral methods.

Results
Fitting forces and the phase diagram. A particular challenge for
hydrogen comes from the hierarchy of energies. The covalent
bond is much stronger than the van der Waals attraction between
molecules, which is turn is much stronger than the EQQ inter-
actions which determine molecular orientations. To address this
our potential combines a hierarchical fitting strategy alongside
machine-learning (HMLP) described below.

For transferability testing, we used the standard approach of
fitting to a subset of the data and testing against a different subset.
Furthermore, we used an iterative fitting process: a trial potential
was fitted, and applied in both Phase II annealing and melting
line MD simulations. If novel configurations were found, they
were used to generate more reference states for the DFT database,
and the fitting process was repeated. This iterative process ensures
that spurious structures are suppressed and the ground state
structure is the same as found in DFT. Technical details of the
forcefield parameterisation are given in the “Methods” section.

Phase diagram. Figure 1 shows the very good agreement
between the classical HMLP and the DFT phase diagrams. By
eliminating finite size effects, the HMLP can capture the full long-
range correlations, however, this does not appear to have a sig-
nificant effect on the phase boundaries.

In Phase I, the H2 molecules exhibit free rotation at pressures
below 40 GPa and temperatures below 900 K (orange hexagon
symbols); at higher pressures the rotation is inhibited but there is
no long-ranged orientational order. At low temperatures, Phase II
becomes stable (red triangles), and the stable temperature region
increases gradually with pressures. At high temperatures, the hcp
lattice collapses to a liquid state. The calculated melting curve has
a strong positive slope (dT/dP > 0) at low pressures, reaches a
maximum at around 900 K and 90 GPa, and then drops. The
HMLP predicted phase diagram agrees reasonably with experi-
mental observations, as well as DFT (Fig. 1).

The HMLP and DFT predictions are good for the melt curve,
but both overstabilise the broken-symmetry Phase II. This is due to
the lack of quantum-nuclear effects, notably the zero-point energy,
and can be addressed by including quantum-nuclear effects in the
simulation. The discrepancy in the Phase I–II line does not
indicate any inaccuracy of the HMLP itself. Our predicted melting
curve is consistent with experiments: the value for the melting
curve maximum is located between 80 and 100GPa and 900 K,
similar to the HMLP potential values. It also agrees with two-phase
ab initio simulations, which proposed a gradual softening of the
intermolecular repulsive interactions as its cause16. The close
agreement of the HMLP transition pressure with experimental
data enables us to accurately simulate behaviours of temperature-
or pressure-driven phase transition between Phase I and II. A
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“Phase III” is observed at higher pressures, corresponding to a
different symmetry-breaking. However, by design the present
HMLP model should start to fail to capture the properties of H2 at
still higher pressures, where molecule dissociation needs to be
considered.

Nature of Phase I. Phase I can be easily recognised in MD by
ordering of the molecular centres on the hcp lattice, and dis-
order of the orientations. Although frequently referred to as a
free-rotor phase, we find this to be true only at low pressures.
As pressure is increased the angular momentum auto-
correlation becomes shorter than a single rotation, and then
acquires a negative component, indicating that the molecule is
librating.

Another characteristic of Phase I is the molecular vibration
or “vibron”: in Raman scattering this corresponds to the in-
phase vibration of all molecules. The vibron frequency first
increases, then decreases with pressure. Two plausible reasons
are given for this reduction: either increased intermolecular
coupling or weakening of the covalent bond. In our model, the
covalent bond is always described by the same Morse
parameters, so changes in the vibron frequency can arise only
from resonant interactions between molecules, not weakening
of the bond. Thus reproducing the reentrant vibron behaviour
is a test of both the physical basis and the parameterisation of
the model.

Since the molecules are rotating in Phase I, lattice dynamics
cannot be used, so Raman phonon frequency is numerically
characterised by the in-phase mode-projected velocity auto-
correlation function (VAF)36. Trajectories and velocities were
produced from 150 K HMLP-MD simulations within the
micro-canonical ensemble (NVT) initiated in the P21/c-
24 structure. A very fine time step of 0.05 fs was used and
the trajectory and velocities were saved every ten time steps. By
calculating the bond stretching velocities and Fourier trans-
formation of the VAFs we calculate both the total vibron

density of states26,37 from

gtotðωÞ ¼
X
ik

Z
½r2ikðtÞ� exp iωt; ð1Þ

and the signal from the most strongly Raman-active mode,

gRamanðωÞ ¼
Z X

ik

r2ikðtÞ
" #

exp iωt; ð2Þ

where ik runs over all molecules (comprising atoms i and k). A
similar projection method is used for the E2g phonon38.

Figure 2 plots the calculated total vibron spectra of solid and
liquid hydrogen as a function of pressure from MD simulations.
Both show a signature of vibron turnover above a critical pressure
(about 54 GPa), consistent with the experimental observations11.
This proves that bond weakening is not required for the turnover,
since our potential has a fixed bond strength. Notably, the mean
bond length in Phase I decreases monotonically with pressure
(Fig. 2c), again at odds with ideas of bond weakening. What
appears to be happening is a competition between two effects: at
higher pressures the compression of the bond causes an increase
in the frequency due to anharmonicity in the potential, whereas
above 54 GPa the frequency is lowered due to coupling between
the molecules.

The hcp structure has a Raman-active mode (E2g symmetry)
corresponding to shearing motion of the basal plane. The
frequency of this mode is experimentally well-determined and
extremely pressure-dependent, from 36 cm−1 at zero pressure to
1100 cm−1 at 250 GPa39–42. Figure 2d shows a comparison of our
potential with experimental pressure dependencies ν(P) of the
E2g optical. The red symbols in are our HMLP-MD predictions,
consistent with the DFT data of this mode extracted from our
calculations. Comparing the calculations with experiment shows
that the HMLP predicted frequency curves agree better with
experiment than existing isotropic empirical potentials43,44 (olive
curve).

Denser than close-packed liquid. Figure 1 shows that the
potential correctly reproduces the turnover and negative Cla-
peyron slope. We investigated the possible explanation for this
denser than close-packed liquid. Figure 3a shows the equation of
state for both solid and liquid phases, with the crossover indi-
cating where the liquid is denser than the solid. The HMLP
predicts a negative thermal expansion, which is consistent with
DFT45. The normalised radial distribution function (Fig. 3b)
shows that the liquid structure is essentially unchanged with
pressure up to the pressures where bond breaking becomes a
factor. We therefore deduce that the denser liquid is not related to
the molecular–atomic transition.

Figure 4 compares the solid and liquid at the melting point.
They are remarkably similar: close to the phase boundary the
liquid shows five discernible neighbour peaks indicating short-
ranged structure to 10Å. The molecular bond length is longer in
the liquid than the solid (shown more clearly in Fig. 2), but the
separation between molecules is noticeably smaller in the liquid
as evidenced by the first peak in the molecule–molecule RDF.
This means that the molecules get closer together in the liquid,
despite being longer.

Intermolecular interactions are dominated by quadrupole–
quadrupole interactions and steric repulsion. Table 1 shows the
implied contribution from quadrupole–quadrupole interactions
calculated by electrostatics from HMLP simulations. Although
the ML potential has no explicit electrostatic terms, there is a
strong orientation correlation, which lowers the quadrupolar
energy, not only in Phase II, but also in Phase I and to a lesser
extent in the liquid.
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We hypothesised that molecules can get closer together if
their constituent atoms are further apart (i.e. in an “X”
shape viewed down the intermolecular vector). By contrast,
the solid has orientations which offer higher cohesive
energy.

Figure 5b investigates this further using DFT, showing that the
T configuration which optimises the quadrupole interaction
becomes unfavourable with respect to the X configuration at a
separation of 2.25Å. As we saw in Fig. 4, the nearest neighbours
are already this close by 20 GPa.
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To quantify this, we looked across the various fingerprints to see
which most strongly differentiate liquid from solid configurations
on the melt line. This turns out to be fp_EQQ, the fingerprint with
the same functional form as the quadrupole–quadrupole interac-
tion: the MLP has learned that this is important. Figure 5a shows
that the contribution from fp_EQQ becomes significantly higher in
the solid above 70 GPa. We note that fp_EQQ is dimensionless, and
its fitted contribution to the potential is different from the
estimated quadrupole–quadrupole energy compared in Table 1.

These findings explain why the liquid is denser than the solid.
At pressures above the melting point maximum, orientation-
dependent interactions are strong enough that rotation is
inhibited46–48. However, these low-energy arrangements are
typically associated with larger intermolecular distances (e.g. the

T configuration). By contrast, the liquid favours other arrange-
ments which allow the molecules to come closer.

The X configuration maximises the atom–atom distance for a
given intermolecular separation. This and similar arrangements
compensates for the smaller molecule–molecule distance in the
liquid to give the same peak position in the atom–atom RDF in
both liquid and solid.

Nature of Phase II. We performed extensive HMLP-MD simu-
lations around the Phase I–II boundary, with different starting
configurations, to determine candidate structures and phase sta-
bility of H2 Phase II. At 150 K and 20 GPa, the orientations of the
H2 molecular axes are almost randomly distributed along dif-
ferent directions, indicating Phase I with freely rotating mole-
cules. Upon compression to the high pressure of 80 GPa and
cooling to a low temperature of 50 K, the material transforms to
an orientationally ordered phase in which the molecular rotations
are restricted (Fig. 1). By carefully comparing it with candidate
structures proposed by ab initio calculations, we find that the
lattice and molecular ordering is close to P21/c-24, which has been
one of the most thoroughly studied and strongest candidate for
Phase II5,22,23,49.

The HMLP does not include quadrupole interactions explicitly
—it has “learnt” them. Table 1 shows what the quadrupole
interactions would be, using electrostatic calculation based on the
HMLP configurations. The large negative values indicate the
prevalence of quadrupole-type ordering: strongest in Phase II.
The differences, tens of meV, is of similar magnitude to the phase
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Table 1 EQQ for liquid and solid phases.

Pressure (GPa) <ELQQ > melt <ESQQ >melt <ESQQ > PhaseI <ESQQ > PhaseII

20 −5.5897 −6.2366 −15.5999 –
40 −7.3219 −7.7636 −25.4964 −43.4700
60 −8.9744 −9.8332 −35.9825 −52.9075
80 −10.9062 −13.6786 −44.4900 −65.9290
100 −11.7181 −15.9932 −53.0947 −76.0736
120 −11.8199 −17.7660 −59.5902 −91.3044
140 −11.8821 −18.5865 −65.5554 −103.4814

The EQQ for liquid and solid phases at the melt points, alongside values calculated for stable
Phase I (T= 150 K) and Phase II (T= 50 K) structures. All values are in units of meV/molecule.
For uncorrelated free rotors, <EQQ>= 0
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transformation temperature. The HMLP has learnt that Phase II
is stabilised by quadrupole interactions.

The corresponding RDF indicates that the centre of each
molecule remains close to the hcp lattice sites. Consequently, we
define an order parameter O relating the structures of Phase II in
our HMLP-MD simulations with the static-lattice DFT predic-
tions of P21/c-24. The average value hOi exhibits a sharp change
as the system transitions from the structured Phase II to the
rotationally symmetric Phase I with increasing temperature.
Transition temperatures were taken at discontinuous jumps in
hOi. This produces the phase diagram shown in Fig. 6b. Note that
the transition temperatures obtained from analysis of hOi agree
with those obtained from peaks in the heat capacity calculated as
∂H
∂T

� �
P from finite differences (see Supplementary Fig. 5). The

phase boundary agrees well with the experiment32, particularly
for the more classically behaved deuterium. Similarity to
experiments on deuterium rather than hydrogen is perhaps
unsurprising, since nuclear quantum effects such as zero-point
motion are significant at the low temperatures investigated here.

Transition to Phase III. Above 160 GPa we find a high-pressure
transformation to a broken-symmetry structure different from
Phase II dominated by efficient packing rather than EQQ, this is
at approximately the same pressure as Phase III.

Experimentally, Phase III is associated with a sharp drop in the
vibron frequency and the appearance of a strong IR signal. This
implies a non-centrosymmetric structure and a weakening of the
molecules. In studies of HD a process of bond dissociation and
recombination (“DISREC”, 2HD→H2+D2) has been observed50.
This bond breaking is seen in DFT to also occur in pure H2

26,30.
Our potential does not allow for bond breaking, so we have not
studied the dynamics of this “Phase III” in detail.

Discussion
In summary, we have introduced a heirarchical, iterative
machine-learning based interatomic potential for atomistic
simulations of H2 molecules, by directly learning from reference
ab initio molecular dynamics simulations. The resultant HMLP-
MD approach predicts angular energy dependence in the range of
tens of meV/atom and demonstrates good transferability to var-
ious structural environments. Several applications have been
presented for which our potential is particularly well suited. The
fast, transferrable potential is also suitable for a wide range of

further applications and extensions, including compounds, bond
breaking, and path integral calculations.

The simulations reproduce the equilibrium temperature–pres-
sure phase diagram for molecular phases (I, II, III, and melt, P <
160 GPa). The maximum in the melt curve in hydrogen is highly
counterintuitive—it requires that the liquid is denser than the
hexagonal close-packed solid. By detailed simulation we resolve
this by showing that certain molecular orientations (e.g. X) allow
the molecules to approach more closely, while others (e.g. T) have
lower quadrupole energy. By monitoring an order parameter
corresponding to the quadrupolar interactions find that, at high
pressures, Phase I develops intermolecular correlations which
lower the energy, while the liquid has correlation which lower the
volume.

The simulations of the Phase I–II boundary show a transition
from an ordered Phase II to a orientation-disordered Phase I. The
molecules in Phase I are not freely rotation, and we find that
rotation about the c-axis persists to higher-pressure/lower-tem-
perature than rotation out of plane.

Our HMLP potential also has shown the capability of pre-
dicting the pressure dependence of the Raman-active E2g mode,
consistent with experiment and previous DFT calculations. We
explain the maximum frequency of the vibron as due to com-
petition between molecular compression and stronger inter-
molecular coupling. Weakening of the covalent bond is not
required.

Methods
Machine-learned interatomic potential
Learning dataset. Structures for reference atomic environments and benchmarks
were accumulated from DFT-based ab initio MD runs. The DFT calculations were
performed using the CASTEP package51 within the Perdew–Burke–Ernzerhof
generalised gradient approximation (PBE)52 for the exchange–correlation function.
A cutoff energy of 1000 eV for the plane-wave basis set and a k-point mesh of 1 ×
1 × 1 were selected. To ensure the transferability of the potential to a wide variety of
atomistic situations, H2 in different geometric arrangements was considered,
including modest-sized bulk samples in Phase I, II, and liquid, composed of 144 H2

molecules. Moreover, unusual configurations found in HMLP-MD with pre-
liminary versions of the potential were added to the DFT training set to improve
performance and transferability. The final accumulated dataset includes up to
41,468 configurations, which are provided as a separated file in the Supplementary
Information.

The PBE functional was chosen because it has become the de facto standard in
studies of molecular systems, and high-pressure hydrogen. PBE has been criticised
for overstabilising the metallic phases: this is due to its behaviour at high electron
density gradients53, and not vdW corrections. In this work we only consider
molecular phases, so this is not a concern.
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unfavourable. Main figure: energy differences relative to T, Inset: total energy relative to free atoms.
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We emphasise that determining the suitable dataset is not straightforward.
Numerous iterations of the potential were required to obtain a good fit to the phase
diagram. A good fit to DFT energies of known phases is not evidence that other
phases are unstable: we test each iteration of the potential by running MD
simulations in NPT ensemble, cycling the pressure and temperature between the
regions expected for Phases I, II, and III to ensure that all phase transitions were
between the fitted phases. When a crystal structure different from the fitted one
was found, this new phase was calculated using DFT. If this showed that the ML
potential described the phase poorly, it was added to the training set and the
training redone. The success of such strategy is supported by an example shown in
Supplementary Note 2.

Covalent bond. The covalent bonding contribution to the force is approximated as
ðFμ12

1 � Fμ12
2 Þ=2; where Fμ12

1 is the component of atomic force projected down the
molecular axis. We examined various options for fitting the covalent bond: har-
monic, Lennard-Jones and Morse potentials. Although the Morse form provides
the best fit across our dataset using simple regression, we adopt the harmonic form
in our potential to prevent artificial bond-breaking events at high pressure (>120
GPa). Supplementary Table 1 shows the fitted parameters for the harmonic and
Morse form, respectively.

Non-bonded interactions. We describe the short-ranged Coulomb and van der
Waals potentials using pairwise functions to create the fingerprint. These are
built using Gaussians with a smooth cutoff in the form

Vk
i ¼

X
expð�jrij=ηkj2Þf cutðrijÞ; ð3Þ

combined with damped sinusoidal function form

Vk
i ¼

X
sinðkrijÞ expð�rij=ηkÞf cutðrijÞ; ð4Þ

where rij is the distance between atom i and j with ηk the range of the kth
fingerprint, and fcut(rij) is a damping function for atoms within the cutoff
distance.

These fingerprints are mapped onto the corresponding residual energies,
defined by the DFT energies less the contribution from the covalent bonding
contribution.

This mapping is achieved using the kernel ridge regression (KRR) method
which is capable of handling complex nonlinear relationships54. The details of
parameterisation and mapping algorithms are shown in Supplementary Note 3.

Orientation-dependent interactions. The orientation-dependent contribution is the
last considered. These are fitted to the residuals once covalent and pairwise
interactions are subtracted from the DFT energies. The corresponding fingerprints
for the orientation-dependent interactions are listed in Supplementary Note 3 and
Supplementary Table 2.

The fidelity of our HMLP is evaluated by the comparison of our ML prediction
and the DFT calculations in Supplementary Fig. 6. The mean absolute error is of
the order of the expected numerical and theoretical accuracy of the reference
quantum mechanics-based calculations, indicating good performance of the
present ML model.

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120 140 160

<
O

>

Temperature (K)

20 GPa
40 GPa
60 GPa
80 GPa

100 GPa
120 GPa
140 GPa
160 GPa

20

40

60

80

100

120

140

20 40 60 80 100 120 140

T
em

pe
ra

tu
re

 (
K

)

Pressure (GPa)

HMLP Phase I
HMLP Phase II

H2 experimental
D2 experimental

a

b

Fig. 6 Order parameter and phase boundary for the I–II transition. a Order parameter hOi as a function of temperature for the seven pressures
investigated in this work. In all cases there is a sharp decrease from an ordered system (hOi ¼ 1) to a disordered system (hOi ¼ 0). The system is
considered to be Phase I after hOi drops discontinuously below 0.1. b The resultant phase boundary for the I–II transition in the classical solid. The dashed
lines represent the experimental phase boundaries for hydrogen and deuterium, respectively32.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18788-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5014 | https://doi.org/10.1038/s41467-020-18788-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Machine-learned molecular dynamics. The simulations were performed using
periodic boundary conditions and a time step of 0.5 fs. The Nose–Hoover ther-
mostat and the Parrinello–Rahman barostat55 were used for controlling tempera-
ture and pressure, respectively. All simulations were carried out using the
LAMMPS package and the atomic configurations were visualised with the Ato-
mEye package. Typical models of the H2 system was created with P21/c-24 struc-
ture containing up to 72,576 molecules. To reproduce the entire
temperature–pressure phase diagram, the NPT simulations of 1152-atom supercells
of P21/c-24 structure were carried out at selected temperatures and pressures, from
which we can identify the corresponding stable phases and melting point via the Z-
method56. Furthermore, the phase-coexistence method57 with co-existing 27,648
molecules of H2 solid and liquid was adopted to determine the properties of solid
and liquid phases at the melting curve. To probe the Phase I–II boundary, 2304
atom supercells of the Phase II P21/c-24 structure were allowed to equilibrate for
250 ps at a series of pressures and temperatures.

Analysis of molecular dynamics. To distinguish between the broken-symmetry
structure of Phase II and the free rotors of Phase I we introduce the orientational
order parameter O.

O ¼
P

b

P
i≠jðr̂i;b � r̂j;bÞRij;bP
b

P
i≠j Rij;b

* +
: ð5Þ

Here the summation is over unit cells i, j, each containing a set of basis molecules b.
Unit vectors r̂i;b and r̂j;b are oriented along the the H–H bond of the bth molecule
in the ith and jth unit cell, respectively, and Rij,b is the distance between the centre
of mass of these two molecules. The angled brackets denote a time average. This
parameter probes the long-range order in the system relative to the chosen basis,
which in our case is the P21/c-24 unit cell23. A value of 1 means that the system has
the P21/c-24 structure, and a value of 0 suggests that the system is disordered. Note
that this order parameter only detects similarity to the given basis and thus a phase
change to a structure with a different unit cell will yield an erroneously low value.
The trajectories were therefore visually inspected in addition to the order para-
meter analysis. A 4 × 6 × 4 supercell of P21/c-24 (2304 atoms) was used for Phase II,
and the unit cells and basis for this system are illustrated in Supplementary Fig. 7.
MD trajectories were calculated for temperatures ranging from 30 to 150 K and
pressures from 20 to 160 GPa. After a 50 ps equilibration period, the order para-
meter O was averaged over the remaining 200 ps of the trajectory. The results are
shown in Fig. 6a.

The Raman-active phonons were extracted from the MD using the projection
method which automatically includes anharmonic effects36,38.

We tried numerous approaches to measure the orientation relationship between

adjacent molecules, i and j with interatomic vectors σ!i and σ!j separated by
^
R
!
.

For Table 1 we used the explicit equation for linear quadrupoles:

EQQ ¼ 3Q2

4πϵ0

X
i;j

Γðσ i!; σ j
!;

^
R
!Þ

j ^
R
!j5

; ð6Þ

where Q= 0.26 DÅ is the quadrupole moment of the H2 molecule and the

orientational factor Γðσ i!; σ j
!;

^
R
!Þ is defined as:

Γð σ!i; σ
!

j;
^
R
!Þ ¼ 35ð σ!i �

^
R
!Þ

2

ð σ!j �
^
R
!Þ

2

� 5ð σ!i �
^
R
!Þ

2

� 5ð σ!j �
^
R
!Þ

2

þ 2ð σ!i � σ!jÞ2 � 20ð σ!i �
^
R
!Þð σ!j �

^
R
!Þð σ!i � σ!jÞ þ 1:

ð7Þ

Data availability
Datasets used in generation of the H2 potential are available at the Edinburgh DataShare
https://doi.org/10.7488/ds/2874.

Code availability
Plugin code with which the interatomic potential can be implemented through LAMMPS
is available as supplementary online material in Supplementary Dataset 1.
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