molecules m\py

Review

Sensory Lexicons and Formation Pathways of
Off-Aromas in Dairy Ingredients: A Review

Xueqian Su 10, Monica Tortorice 2, Samuel Ryo 2 Xiang Li 3 Kim Waterman 1, Andrea Hagen 1
and Yun Yin 1:*

1 Department of Food Science and Technology, Virginia Polytechnic Institute and State University,

1230 Washington Street SW, Blacksburg, VA 24061, USA; xueqians@vt.edu (X.S.); kwater@vt.edu (K.W.);
andreah2@vt.edu (A.H.)
2 Abbott Laboratories, 3300 Stelzer Rd, Columbus, OH 43219, USA; monica.tortorice@abbott.com (M.T.);
samuelryo@gmail.com (S.R.)
Abbott Nutritional Research and Development Center, 20 Biopolis Way, Singapore 138668, Singapore;
xiang.li@abbott.com
*  Correspondence: yunyin2@vt.edu; Tel.: +1-540-231-2029

Academic Editor: Ryszard Amarowicz ﬁr;)edcgt?sr
Received: 27 November 2019; Accepted: 23 January 2020; Published: 28 January 2020

Abstract: Consumers are becoming increasingly aware of the health benefits of dairy ingredients.
However, products fortified with dairy proteins are experiencing considerable aroma challenges.
Practices to improve the flavor quality of dairy proteins require a comprehensive understanding of the
nature and origins of off-aroma. Unfortunately, existing information from the literature is fragmentary.
This review presents sensory lexicons and chemical structures of off-aromas from major dairy
ingredients, and it explores their possible precursors and formation mechanisms. It was found that
similar chemical structures often contributed to similar off-aroma descriptors. Lipid degradation and
Maillard reaction are two primary pathways that commonly cause aroma dissatisfaction. Traditional
and novel flavor chemistry tools are usually adopted for off-aroma measurements in dairy ingredients.
Strategies for improving aroma quality in dairy derived products include carefully selecting starting
materials for formulations, and actively monitoring and optimizing processing and storage conditions.
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1. Introduction

Flavor is one of the most important characteristics that directly determines the acceptance of
foods. As the first sensory impression, a good flavor profile is critically important when consumers
are first exposed to a product. The ultimate goal of any food development is to achieve a desirable
flavor quality that consumers will enjoy. A good flavor profile is generally defined by an immediate
sensation of an identifiable aroma, a rapid development of a balanced flavor, compatible mouthfeel
and texture, and most importantly, minimal off-flavor presence [1].

Essentially, food flavor defects include taints and off-flavors. Taints are usually considered to be
unpleasant odors and flavors imparted to food through external sources, such as the environment,
packaging aids, and air. Off-flavors refer to undesirable odors and flavors imparted to food through
internal deterioration. Examples include oxidation and microbial deterioration caused by improper
handling and storage [2]. This review will primarily focus on the off-flavors that arise through the
presence of aroma substances, that is, the off-aromas. Off-aromas usually occur when the concentration
of a volatile compound in the food matrix is so high that it exceeds the general tolerance of human
subjects. This off-note concentration at which consumers begin to reject the product is called the
rejection threshold. Generally speaking, the rejection threshold more sensitively reflects the consumers’
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preference towards one product when compared to the detection threshold and the recognition
threshold [3,4]. Off-aromas create severe issues and affect food product quality along the supply chain.
Off-aroma presence has also been reported to be the most common reason for consumer rejection of
products, and it accounts for the largest percentage of complaints in the food industry [5]. In order to
avoid financial loss to manufacturers and improve consumer confidence in brand images, minimizing
unpleasant flavor experiences in food products becomes a primary mission in the modern food industry.

Many ingredients fall into the dairy category, including both dried and fluid dairy proteins.
Whey and milk proteins, caseins, and serum proteins are well-known dried dairy ingredients. Fluid
ingredients, such as whole milk, low-fat milk, and non-fat milk, are also included in the dairy category [6].
Although there has been increasing consumer interest in plant-based proteins due partially to changing
consumer behavior and concerns about health and animal welfare, the dairy protein industry is still
growing and generating great economic value [7,8]. According to the Global Dairy Protein Market
2019 Industry Research Report, the global dairy protein market was worth $15.04 billion in 2017 and is
estimated to be valued at $19.88 billion by 2023. This represents a 5.8% increase in the annual compound
growth rate. The dairy protein market can be segmented into various sectors based on ingredients and
applications, and the food and beverage branch is constantly expanding and innovating [9]. Also, dairy
ingredients are being utilized to develop a large portion of high-protein drinks. While the nutritional
value is highly appreciated, products fortified with dairy proteins face significant challenges in flavor
satisfaction. In fact, the addition of protein to a food product may impart undesirable off-aromas or
change its original aroma profile due to interaction, binding or the release of volatiles [10]. Flavoring
high-protein foods has been particularly challenging to food industry because of the various aroma
origins, from both raw materials and from processing and storage. Aroma imbalance and fading are
commonly observed issues.

Taking proactive approaches throughout the product development stage will encourage off-aroma
prevention. Senior flavor scientists have advised food manufacturers to partner with flavor suppliers to
develop solutions early in the process. More importantly, off-aroma knowledge should be disseminated
to a wider group of audiences, including ingredient suppliers, product developers, processing
engineers, sensory scientists, marketing professionals, and consumers, in order to overcome the
aroma dissatisfaction associated with dairy ingredients. Sensory lexicons play an important role in
knowledge dissemination among diverse audiences. Building bridges between off-aroma lexicons,
chemical natures, and formation mechanisms will not only assist effective communication between
different parties but will also aid the targeted resolution of aroma imperfection and improve the sensory
quality for final products. Furthermore, understanding the precursors and formation mechanisms will
provide opportunities for accurately locating off-aroma occurrence throughout the supply chain and
enable immediate problem-solving actions. Several review articles provide insightful discussion on
aroma and sensory challenges in dairy-related products [1,6,11,12]. However, to our best knowledge,
a comprehensive picture of chemistry and sensory descriptors for off-aroma compounds is not yet
available. This review will fill in the abovementioned knowledge gap.

2. Investigating Off-Aroma Sensory Descriptions and Their Chemical Natures in Dairy Proteins

The primary quest in flavor research is to characterize chemical compounds that provide specific
sensory attributes to the aroma of foods [10]. Relating the chemical and sensory responses of off-aroma
in foods is one of our major focuses. Sensory perception is heavily influenced by cultural and
emotional experiences. The actual sensation process is largely determined by the physicochemical
nature of volatile compounds responsible for off-notes, their concentration in food matrices, and the
sensitivity of human subjects [13]. Besides traditional sensory panels, off-note lexicons can also be
generated from an olfactometer equipped to a gas chromatograph (GCO). The odors of effluent volatile
compounds from the separation column are detected and evaluated by the human nose, thereby
establishing an association between the lexicons and the chemical structures [14,15]. The positive
identification of the chemical structures of unknown volatiles occurs by matching the mass spectrum,
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odor attributes, and retention indices against authentic aroma standards. GCO has been used as an
effective tool for unveiling the chemical structures and odors of off-note volatile compounds in dairy
ingredients. For example, “cheesy”, “potato”, “
off-aroma descriptors by use of an olfactometer. By comparing these odor attributes and mass spectrum
with aroma standards, these descriptors were respectively confirmed to be butanoic acid, methional,
2-acetyl-1-pyrroline, and dimethyl trisulfide [16].

The chemical natures and sensory lexicons of selected off-note volatile compounds are listed
in Table 1. They are either preexisting in raw ingredients or formed during product manufacturing

v

or storage. Some lexicons, like “rancid”, “green”, “garlic”, and “vinegar”, are commonly found in

popcorn”, and “cabbage” were perceived as major

many dairy ingredients. This is not surprising since the compositional profiles of dairy ingredients
are relatively similar to their constituent components of protein, fat, and lactose. The odor attributes
of some compounds are described using similar lexicons, especially those that belong to the same
homologous series. For example, the odor attributes of (E,E)-2,4-decadienal and (E,E)-2,4-nonadienal
were both recorded as “frying oil”, and the acids generally exhibit a “sweaty” and “rancid” note
(Figure 1). It might be helpful for sensory scientists and product developers to keep in mind
that structurally similar compounds are likely to exhibit similar or identical sensory characteristics.
However, exceptions do occur: Hexanal (C6) and octanal (C8) display distinctly different odor qualities
because their excitation mechanisms on olfactory receptors are different [17,18]. Special attention
should be paid to sulfur-containing volatile compounds having “cabbage” and/or “sulfurous” odors,
as they can be significant off-aroma contributors at extremely low odor thresholds. It is also worth
mentioning that the discussion of off-note compounds should be based on the particular food matrix
or ingredient because a compound considered as an off-aroma in one food might have a desirable
note in another [19]. “Popcorn” and “cereal” odors owing to the presence of heterocyclic volatiles,
including 2-acetyl-1-pyrroline, are considered to be off-aromas or foreign smells in dairy ingredients,
because product developers generally prefer starting materials with a “plain” or “clean” flavor profile.
However, 2-acetyl-1-pyrroline is a characteristic compound found in aromatic rice, bakery goods, and
seafood. Although the complex chemistry makes off-note solutions in dairy ingredients a challenging
task, demonstration of the association between lexicons and chemical structures will enhance our
understanding of the nature of off-aromas and assist problem-solving strategies.

Table 1. Sensory lexicons and chemical natures of selected off-aroma compounds in major
dairy ingredients.

Major Off-Aroma

Ingredients Lexi Chemical Compounds References
exicons

Cheesy/Rancid Butanoic acid [16]
Popcorn 2-Acetyl-1-pyrroline [16]
Maple/Spicy Sotolon [16]
Cucumber (E,Z)-2,6-Nonadienal [16]
Cucumber/Old books (E)-2-Nonenal [16]

Whey protein Cabbage Dimethyl trisulfide [16,20]
concentrate and isolate Garlic Dimethyl trisulfide [21]
Vinegar Acetic acid [20]
Mushroom 1-Octen-3-one [21]
Fatty/Smoky 2-Methoxy phenol [21]
Fatty Decanal [21]
Fatty/Stale Decanoic acid [21]
Cilantro/Waxy y-Nonalactone [21]
Whey Protein Sulfur Dimethy.l sulfide [22]
Hydrolysates Potato Meth'lonal [22]
Burnt/Smoky Guaiacol [22]
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Ingredients

Major Off-Aroma

Chemical Compounds

References

Lexicons
Vinegar-like Acetic acid [23]
Grassy Heptanal [23]
Sweet whey powder Cooked potato 2,5-Dimethylpyrazine [23]
Fried 2-Propionyl-1-pyrroline [23]
Green Hexanal [24]
Popcorn 2-Acetyl-1-pyrroline [24]
Liquid cheddar whey Potato Methional [24]
Frying oil (E,E)-2,4-Decadienal [24]
Frying oil (E,E)-2,4-Nonadienal [24]
Green/Earthy Hexanal [21]
Potato Methional [21]
Mushroom 1-Octen-3-one [21]
Serum protein Fatty/Smoky 2-Methoxy phenol [21]
concentrate Cucumbers (E)-2-Nonenal [21]
Fatty Decanal [21]
Fatty/Stale Decanoic acid [21]
Cilantro/Waxy y-Nonalactone [21]
Potato Methional [25]
. . Popcorn 2-Acetyl-1-pyrroline [25]
Milk protein concentrate Carpet/Clay Benzothiazole [25]
Vinegar-like Acetic acid [25]
Burning plastic 2-Methyl-1-propanol [25]
Popcorn 2-Acetyl-1-pyrroline [25]
Milk protein isolate Cabbage/Garlic Dimethyl trisulfide [25]
Carpet/Clay Benzothiazole [25]
Garbage Propanoic acid [25]
Burnt sugar Furaneol [26]
Rancid Butanoic acid [26]
Nonfat dry milk Grape o-Aminoacetophenone [26]
Metallic (E)-4,5-Epoxy-(E)-2-decenal [26]
Sweaty Pentanoic acid [26]
Cheesy/Rancid Butanoic acid [27]
Popcorn 2-Acetyl-1-pyrroline [27]
Maple/Spicy Sotolon [27]
Mushroom 1-Octen-3-one [27]
Whole milk powder Potato Methional [27]
Sweaty Hexanoic acid [27]
Sweaty Octanoic acid [27]
Grape o-Aminoacetophenone [27]
Fecal/Mothball 3-Methyl indole [27]
Cooked/Malty 3-Methylbutanal [28]
Barny/Brothy Furfural [28]
Cooked 2-Heptanone [28]
. Earthy/Fatt Heptanal [28]
UHT milk CookeZ/N ut}tly Benzaﬁdehyde [28]
Garlic/Cabbage Dimethyl trisulfide [28]
Earthy/Barny p-Cresol [28]
Grass Octanal [28,29]
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Figure 1. Chemical structures of off-aroma compounds grouped by sensory lexicons.
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3. Understanding the Mechanisms Involved in Primary Formation Pathways of Off-Aromas in
Dairy Proteins

The off-aromas in dairy products primarily originate from the degradation of major milk
constituents, including lipids, protein, carbohydrates, minerals, and vitamins. Elucidating the
formation mechanisms of aroma defects from such a complex matrix involving many interactions is
challenging. Milk, the starting material for almost all dairy ingredients, has a composition of 87%
water, 5% lactose, 4% fat, 3% protein, and 1% ash. Many flavor researchers agree that the primary
sources of off-aroma formation in dairy products are from lipid and protein degradation [11,25,27,30].

3.1. Lipid Degradation

Lipid degradation in dairy products is a major cause of deterioration not only due to its undesirable
implications for human health but also because it causes decreased overall quality and consumer
acceptance [31]. Lipids, present in trace amounts in dairy ingredients, can become significant precursors
for off-aromas. The degree of lipid degradation is influenced by water activity, temperature, oxygen,
and light [32]. The formation of off-aromas from lipids usually occurs through two routes: Autoxidation
and lipolysis [31,33,34]. The formation mechanisms, precursors, and odor thresholds of selected volatile
compounds generated from lipid degradation (autoxidation and lipolysis) are compiled in Table 2.

3.1.1. Flavor Significance and Formation Mechanisms of Autoxidation

Autoxidation is the oxidation of unsaturated lipids. Its reaction with molecular O, results in
the formation of hydroperoxides, which then break down to off-aroma compounds [35]. The widely
accepted pathway consists of three stages: Initiation, propagation, and termination [36]. Initiation
occurs in the presence of initiators, such as heat, light, and metal. The unsaturated lipid molecules lose
a hydrogen atom and produce a carbon-centered alkyl radical. The alkyl radical reacts rapidly with
oxygen to form the peroxy radical, which then attacks a new lipid molecule to form hydroperoxide
and propagates the chain reaction [37]. This self-propagating and self-accelerating process is repeated
until no hydrogen source is available or the chain is interrupted. Hydroperoxides are produced
as the primary oxidation products during propagation, and they are odorless and very unstable.
The decomposition of hydroperoxides is believed to involve homolytic cleavage between oxygen and
oxygen bonds. The resultant alkoxy radical undergoes [3-scission on the carbon—carbon bond and forms
oxo-compounds and alkyl radical. After the electron rearrangement, a wide range of secondary lipid
oxidation products, including aldehydes, ketones, acids, alcohols, and furans, are produced [36,38]
(Table 2). Many of these products have been reported as contributing to off-aromas in dairy products
due to their low odor detection thresholds.
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Aldehydes are the most significant breakdown volatiles from alkoxy radicals. In general, their odor
thresholds are relatively low (Table 2), making them potent compounds to the overall aroma profile.
Often described as “green”, “metallic”, and “fatty”, they are responsible for the undesirable flavors in
lipid-containing foods, including dairy products. The final structures of lipid-derived aldehydes depend
on the fatty acid precursors, the formed hydroperoxide, and the stability of decomposition products [37].
Multiple generation pathways could be involved in the formation of a particular aldehyde. For instance,
the autoxidation of linoleic acid generates 9- and 13-hydroperoxides. Cleavage of 13-hydroperoxide will
lead to hexanal, and the breakdown of 9-hydroperoxide will lead to 2,4-decadienal [24,39]. However, the
subsequent retro-aldol reaction of 2,4-decadienal will also produce hexanal [37]. Alcohols are formed
via cleavage of lipid hydroperoxides during autoxidation of fatty acids [37,38,40]. Although aliphatic
alcohols usually have a negligible influence on the overall off-aromas, alcohols like 1-octen-3-ol and
1-penten-3-ol were reported to be important off-aromas in dairy products [25,41]. One of the ketones
that contributes significantly to off-aromas in whey and milk proteins is 1-octen-3-one [20,27], which
has a “mushroom” note. Aliphatic ketones are generally formed by lipid autoxidation [37]. However,
the formation mechanism for some ketones, like (Z)-1,5-octadien-3-one and (E,E)-3,5-octadien-2-one,
are seldom reported [42]. Furans are well-known autoxidation products from linoleic acid [13,37].
Obviously, linoleic acid is an important precursor for off-note generation (Table 2). A similar perspective
was reported by Jeleri (2006) [13] and Kochhar (1996) [43]. Due to the large abundance in foods and high
susceptibility to oxidation, linoleic acid and its glycerides are among the most important precursors for
aldehyde compounds.

3.1.2. Flavor Impact and Formation Mechanisms of Lipolysis

Lipolysis is the hydrolysis of triglycerides, the major lipid component of milk, and it is catalyzed
by lipases [33]. The lipases that cause problems in milk and dairy products are from two main types:
Lipoprotein lipase, which naturally occurs in raw milk, and bacterial lipases produced predominantly
by psychrotrophic bacteria due to contamination. Milk lipase can be inactivated by pasteurization,
but bacterial lipases are heat stable, meaning they can survive through processing and cause lipolysis
during storage [34]. The hydrolysis of lipids in milk produces free fatty acids, partial glycerides, and
possibly glycerol. The free fatty acids cause both undesirable and desirable properties: Short-chain
fatty acids, such as butanoic acid and hexanoic acid, are responsible for the off-aromas known as
“vinegar”, “cheesy”, “sweaty”, and “soapy” in dairy products [44]. However, in the manufacture
of Parmesan and Romano cheese, lipases are used to produce fatty acids that contribute to the
characteristic piquant flavor [34]. Besides short-chain fatty acids, methyl ketones are an important
volatile group derived from lipolysis [33,34,45]. Their generation pathway involves fatty acid oxidation
to -ketoacids, followed by decarboxylation to corresponding methyl ketones with one carbon atom
less [11,46] (Figure 2). Similar to free fatty acids, methyl ketones contribute to the characteristic aroma
of blue-veined cheese [47]. However, they can have a negative influence on the flavor profile of milk
products, especially Ultra-high temperature milk [48]. Both methyl ketones and acid groups have
a wide range of odor detection thresholds, from ppm to ppt levels. Therefore, the contribution of
the two groups to dairy aroma profiles, to a great extent, depends on the attributes of an individual
compound. For example, 2-heptanone, with an odor threshold of 1.3 ppb in air, is an important aroma
to the “cooked” note in UHT milk. Acetic acid, with a “vinegar-like” odor property, was found to be a
significant off-aroma in whey protein concentrates and isolates [20]. Compounds, such as 2-pentanone
and 2-decanone, are not likely to be significant contributors to off-aromas because of their relatively
high detection thresholds.
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Table 2. Odor thresholds and formation mechanisms of off-aroma compounds derived from lipid

autoxidation and lipolysis.

Cé‘:::;;‘l Volatile Compounds Odor Thresholds Precursors Formation Mechanisms
Aldehydes Heptanal 250 ppt in air [49] Oleic acid [50] Autoxidation [50]
Nonanal 4.5 ppt in air [49] Oleic acid [50] Autoxidation [37,50]
Octanal 7.8 ppt in air [49] Oleic acid [50] Autoxidation [37,50]
Pentanal 39 ppt in air [51] Linoleic acid [38] Autoxidation [38]
Hexanal 30 ppt in air [52] Linoleic acid [38,50] Autoxidation [38,50]
(E,E)-2,4-Decadienal 0.04-0.16 ppt in air [53] Linoleic acid [38] Autoxidation [38]
(E,Z)-2 A-Decadienal 0.04-0.16 ppt in air [53] Linoleic acid [38] Autoxidation [38]
(E,Z)-2,6-Nonadienal 3.8 ppb in oil [54,55] Linolenic acid [42] Autoxidation [42]
Propanal 690 ppt in air [49] Linolenic acid [11] Autoxidation [37,38]
(E)-2-Hexenal 480 ppt in air [49] Linolenic acid [38] Autoxidation [38]
Benzaldehyde 350-3500 ppb in water [42] 2,4-Decadienal [13] Autoxidation [13]
(Z)-4-Heptenal 0.2 ppb in water [56] (E,Z)-2,6-Nonadienal [57] Retro-aldol condensation [57]
Alcohols Heptanol 3 ppb in water [58] Oleic acid [38] Autoxidation [38]
Hexanol 2.5 ppm in water [42] Linoleic acid [59] Autoxidation [59]
Pentanol 4 ppm [42] Linoleic acid [38] Autoxidation [38]
1-Penten-3-ol 4.3 ppb in air [49] Linolenic acid [60] Autoxidation [60]
1-Octen-3-o0l 48 ppt in air [49] Linoleic acid [38] Autoxidation [38]
Ketones 1-Octen-3-one 0.03-1.12 ppt in air [54] LinOIeiC:;?[(;g]lin01enic Autoxidation [61]
1-Penten-3-one 1.3 ppb in water [62] Linolenic acid [60] Autoxidation [60]
(Z)-1,5-Octadien-3-one 0.003-0.006 ppt in air [54] Linolenic acid [42] NA
(E,E)-3,5-Octadien-2-one <17 ppb [63] NA NA
Methyl ketones 2-Heptanone 1.3 ppb in air [49] Triglycerides [11] Lipolysis [11,46]
2-Pentanone 70 ppm in water [58] Triglycerides [11] Lipolysis [11,46]
2-Hexanone 76 ppb in air [64] Triglycerides [11] Lipolysis [11,46]
2-Octanone 50 ppb in water [42] Triglycerides [11] Lipolysis [11,46]
2-Decanone 0.16-5.5 ppm [65] Triglycerides [11] Lipolysis [11,46]
2-Nonanone 1.7 ppb in air [49] Triglycerides [11] Lipolysis [11]
Acids Butanoic acid 240 ppb in water [58] Triglycerides [11] Lipolysis [61]
Acetic acid 60 ppt in air [66] Triglycerides [11] Lipolysis [11,46]
Hexanoic acid 3 ppm in water [67] Triglycerides [23,68] Lipolysis [23,68]
3-Methylbutanoic acid 1.5 ppt in air [66] Triglycerides [23,68] Lipolysis [23,68]
Furans 2-Pentylfuran 270 ppt in air [49] Linoleic acid [37] Autoxidation [37]

2-Ethyl furan

2-27 ppm [65]

2,4-Decadienal [13]

Autoxidation [13]

NA: Not available.

Octanoicacid

A

y

Oxidation

B-ketoacids

A

y

Decarboxylation

2-Heptanone

OH

o}

Figure 2. The formation of heptanone through the lipolysis pathway as an example of methyl ketone

formation from 3-oxidation and decarboxylation of fatty acids.
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3.2. Maillard Reaction

Maillard reaction is a vitally important class of chemical deterioration in dairy products.
Nonenzymatic browning generally occurs during heat processing, such as pasteurization, and storage
at moderate to high temperatures. The reaction requires a carbonyl group from a reducing sugar
and an amino group from a protein, peptide, or amino acid. Specifically, it involves the formation
of unstable glycosylamine from the condensation of carbonyl and amino groups, and the Amadori
compound is formed from the rearrangement of glycosylamine. The Amadori compound then
undergoes various reaction pathways, including fissions, dehydration, and condensation, before
generating desirable and undesirable flavors [10,69,70]. Lactose is usually the primary reducing
sugar in dairy ingredients involved in Maillard reaction [44]. Milk proteins and lactose subjected
to Maillard browning generate a wide variety of odorants, namely Strecker aldehydes, sulfur- and
nitrogen-containing compounds, maltol, and diacetyl [28,71]. Off-aromas generated from Maillard
reaction in dairy products are shown in Table 3. Amino acids and sugars are the exclusive precursors
for almost all the undesirable flavors. Amino acids, especially sulfur-containing cysteine and
methionine, are primary precursors of compounds responsible for “garlic”, “cabbage”, “potato”,
and “popcorn” notes. Sulfur-containing off-aromas are frequently studied due to their extremely low
odor thresholds and sensory importance. Methional, methanethiol, and dimethyl sulfide are formed
from Maillard reaction by Strecker degradation [72] from methionine. Methanethiol is then oxidized
to dimethyl disulfide and dimethyl trisulfide progressively [23]. Interestingly, the odor thresholds
of dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide decrease dramatically as oxidation
progresses, suggesting that the off-aroma profile might change greatly during storage. As a result,
the oxygen content in the environment might affect the sensory attributes of dairy products significantly,
by impacting the oxidation rate of Maillard reaction compounds. Some aldehydes, like 3-methylbutanal,
2-methylbutanal, 2-methylpropanal, and phenylacetaldehyde, are Strecker degradation products of
leucine, isoleucine, valine, and phenylalanine, respectively [73,74]. Besides, many heterocyclic
compounds, such as 2-acetyl-1-pyrroline, 2-acetyl-2-thiazoline, and 2-propionyl-1-pyrroline, have low
odor detection thresholds and are considered to be potent volatile compounds.

Various parameters, including pH, time, temperature, and water activity, are known to influence
the overall outcome of Maillard reaction: In general, alkaline conditions, intermediate water activity
(0.5-0.8), elevated temperature, and prolonged time increase the rate of Maillard reaction [75].
The nature of the reactants also has a direct influence on the rate of Maillard browning. For instance,
lysine and glycine allow for a higher degree of reaction compared to cysteine [75]. It is important
to keep in mind that Maillard reaction is not only the cause of off-aromas but is also a rich source
of desirable flavors [69]. In conclusion, depending on the sensory expectation of a particular food
system, Maillard browning could be tailored to either promote or inhibit reactions in order to achieve a
particular sensory goal for products.

Table 3. Off-aromas generated from the Maillard reaction pathway in dairy ingredients.

. Odor Off-Aroma
Dairy Products Off-Aromas Attributes Odor Threshold Precursors References
Dimethyl trisulfide Garlic 0.01 ppb in water [76] Methionine [72]
2-Acetyl-1-pyrroline Popcorn 0.1 ppb in water [42] Proline [77]
Liquid whey Methional Potato 0.1-0.2 ppt in air [78] Methionine [23] [24]
5 s . 0.0005-0.001 ppt Peptides or free amino
2-Methoxy-3-isopropylpyrazine Earthy in air [79] acids [80]
Sotolon Spice 0.015 ppt in air [66] Glutamic acid and
. . pyruvate [81]
Milk protein Sulfur-containing
concentrate Benzothiazole Carpet 80 ppb in water [42] precursors [26]
and isolate 2-Aminoacetophenone Tortilla 0.2 ppb in water [82] Tryptophan [82]
3-Methylbutanal Malty 3-6 ppt in air [79] Leucine [73]

2-Methylbutanal Cocao 1 ppb in water [83] Isoleucine [84]
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Table 3. Cont.
. Odor Off-Aroma
Dairy Products Off-Aromas Attributes Odor Threshold Precursors References
Nonfat dry 2-Acetyl-2-thiazoline Popcorn OO}E;?rO[Z;)]p pt Cysteine or cystine [77] [26]
milk 2-Acetylthiazole Popcorn 10 ppb in water [85] Cysteine [84]
Diacetyl Buttery 5 ppt in air [49] Glucose and proline [86]
Wh e Dimethyl disulfide Garlic 0.16 ppb in water [87] Methionine [72]
€y pl;o im 2-Methyl-3-furanthiol Vitamins 0.0025 ppt in air [56] Multiple origins [88] [21]
concentrate 2-Acetylpyridine Popcorn 19 ppb in water [89] Cysteine [84]
Phenylacetaldehyde Floral 0.6-1.2 ppt in air [78] Phenylalanine [74]
. . 200-9000 ppb Peptides or free amino
2,6-Dimethylpyrazine Cooked meat in water [90] acids [80]
2,5-Dimethylpyrazine Cooked potato O 8-1.8 ppm PephdesAor free amino
in water [90] acids [80]
Sweet whey 6-22 ppm Peptides or free amino [23]
powder 2-Ethylpyrazine Roasted nuts in watgrp[%] P acids [80] i
. . 2.5-35 ppm Peptides or free amino
2,3-Dimethylpyrazine Nutty in water [90] acids [80]
2-Propionyl-1-pyrroline Fried 0.02 ppt in air [77] Proline [77]
Dimethyl sulfide Sulfur 1.0 ppb in water [85] Methionine [72]
. . 0.06-1.2 ppt -
Whey protein Dimethyl trisulfide Cabbage in air [75] Methionine [72] -
hydrolysates 3-Methylbutanal Malty 3-6 ppt in air [79] Leucine [73]
2-Methylbutanal Malty/Chocolate 1 ppb in water [83] Isoleucine [73]
Methional Potato 0.1-0.2 ppt in air [78] Methionine [74]
Hydrogen sulfide Rotten eggs 10 ppb in water [85] ~ Thiamine or cysteine [48]
. Methanethiol Rotten cabbage 0.2 ppb in water [92] Methionine [74] )
48,91
UHT milk 2-Methylpropanal Pungent 1 ppm in water [93] Valine [73] [48,91]
2-Furaldehyde Woody 3 ppm in water [62] Sugar [94,95]

4. Analytical Methods for Measuring Off-Aromas

4.1. General Methods

The detectable odor thresholds for off-note volatile compounds are usually at parts-per-million
(ppm), parts-per-billion (ppb), or even parts-per-trillion (ppt) levels. Therefore, identification and
determination of off-aromas becomes challenging and requires sensitive instrumentation. Due to
the nature of volatiles, the regular toolbox used by flavor chemists is usually sufficient for off-aroma
analysis. Based on the differences in the polarity of odorants and various physical properties
of matrices, extraction of aroma or off-aroma from a wide range of samples could be achieved
with many approaches, including direct solvent extraction, liquid-liquid extraction, solid-phase
extraction/microextraction, and stir bar sorptive extraction. Liquid-liquid extractionis a time-consuming
approach and may cause decomposition of unstable volatiles. It is occasionally used owing to its
relatively low equipment investment. Solid-phase extraction/microextraction and stir bar sorptive
extraction are popular techniques because of their simple sample preparation, acceptable reproducibility,
and environmentally friendly nature [96]. Stir bar sorptive extraction has higher sensitivity compared
to solid-phase microextraction due to the large phase ratio between the sample and stir bar coating [97].
Solvent-assisted flavor evaporation is also a good option because of its exhaustive volatile extraction and
minimal thermal artifacts during isolation [98,99]. Many studies employed direct solvent extraction
plus solvent-assisted flavor evaporation [20,21,23] or solid-phase microextraction [31,50,100,101]
for determining off-aromas in dairy ingredients. The identification and quantitation of odorants,
as previously discussed, is usually achieved through well-established flavor research instrumentation,
such as gas chromatography-mass spectrometry (GC-MS), flame ionization detectors (GC-FIDs), or
pulsed flame photometric detectors (GC-PFPDs) equipped with olfactometry. It is worth noting that
PFPD has the capability of sensitively and selectively detecting low concentration sulfur-containing
compounds [102].
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4.2. Novel Approaches

Several novel flavor analysis methods have been developed and refined over the past few decades
in order to resolve the major disadvantages of classic GC methods, such as limited separation and
resolution, tedious sample pretreatment, and aroma isolation. As a high-resolution analytical method,
multidimensional gas chromatography (MDGC) has evolved into promising technology to enhance
the resolving power of aroma analysis by incorporating multiple separation dimensions; namely,
more than one GC column [103]. Since a considerable challenge for aroma analysis is overlapping
chromatographic peaks resulting from complex matrices, the MDGC technology can improve the
separation of samples of interest and enhance identification more reliably. While MDGC is innovative
for advanced separation and detection, adoption of this method is primarily restricted to academic
settings, the industry application is still limited. Nevertheless, MDGC is a potential approach to
improve the understanding of aroma perception, and it could be adapted for rapid determination
of off-aromas in the dairy industry. On-line chemical ionization mass spectrometry (on-line CIMS)
has become a powerful tool in real-time detection of food-related aromas. The real-time detection
advantages of on-line CIMS make it feasible to explore the aroma release dynamics from food. More
importantly, this highly sensitive technique enables samples to be analyzed without mandatory yet
time-consuming pretreatment practices from routine aroma extraction and enrichment, so the sampling
frequency of the technique achieves several hertz (Hz) [104]. However, this technique is not ideal
for chemical-structural elucidation when compared to classic and specific GC-MS approaches [104].
Additionally, the food industry has started to incorporate machine olfaction as a regular instrumental
operation for quality control, research, and development. The electronic nose has been successfully
applied for evaluating fresh flavor in milk [105] and off-aroma in pineapples [106]. In general, machine
olfaction devices are less time-consuming, more portable, and cost effective compared to traditional
analytical methods and sensory panels. However, the complete replacement of human sensory
perception with machine olfaction is not yet possible [107].

Advanced data analysis techniques have been incorporated in understanding and predicting
aroma behaviors in foods [108-110]. An accurate predictive model was developed by Viry et al.
(2018) [109] for flavor partitioning and protein—flavor interactions in fat-free dairy solutions. Chen,
Husny, and Rabe (2018) processed raw instrumental data and examined its correlation to sensory
results by use of the machine learning approach, and successfully predicted the fishiness off-flavor in
dairy powders [110]. These novel data processing approaches are receiving increasing attention and
may soon be widely recognized and adopted for dairy ingredients.

5. Strategies to Minimize Off-Notes in Dairy Ingredients

The flavor of dairy ingredients is of significance because off-aromas will be carried into the finished
products [20] and become problematic for consumer acceptability. Off-aromas can be introduced
at the milk origin, processing, handling, and storage stages. The effect of processing and storage
treatments on off-note generation is significant. Heating temperature and time, oxygen exposure,
water activity, packaging materials, and lighting conditions will all have direct or indirect influences
on the reaction rate of lipid oxidation, Maillard reaction, and sugar degradation. Improving the
understanding of sensory descriptors and chemical natures of off-aroma as well as investigating their
formation pathways would be the fundamental approach to unveil flavor deterioration. For instance,
by knowing an elevated temperature during thermal processing is a preferred condition for Maillard
reaction, the manufacturers might be able to mitigate or at least reduce a “potato” off-note in a finished
bottle by decreasing the processing temperature. In short, selecting ingredients with caution and
optimizing manufacturing conditions with specific targets can be helpful for minimizing undesirable
flavor impacts in the final dairy-related products.
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6. Conclusions

This review established the connection between off-aroma lexicons and chemical structures
existing in dairy ingredients. Furthermore, the possible formation precursors and mechanisms of major
undesirable odorants were explored and compiled. With the growth of consumer interest in dairy
protein ingredients, a good understanding of off-aromas and their generation pathways is believed
to be useful in overcoming the flavor challenges of high protein formulations. Many off-aromas are
break-down compounds from proteins, fats, and sugars via lipid degradation and Maillard reaction
pathways. In order to minimize off-aromas over time, manufacturers should carefully select the
starting dairy ingredients for protein-based products and adjust the processing parameters to decrease
the rate of flavor degradation. Controlling storage conditions will also be helpful for minimizing
off-note development. Measuring undesirable odorants in dairy ingredients is time-consuming and
detail-demanding work despite the recent development of new technologies. The majority of off-aroma
investigation is still performed by use of classic flavor analysis tools. The review will facilitate solution
development to effectively control off-note formation and improve consumer experiences regarding
dairy-related products.
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