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Abstract

Although estrogen-receptor-positive (ER+) breast cancer is generally associated with favor-

able prognosis, clinical outcome varies substantially among patients. Genomic assays have

been developed and applied to predict patient prognosis for personalized treatment. We

hypothesize that the recurrence risk of ER+ breast cancer patients is determined by both

genomic mutations intrinsic to tumor cells and extrinsic immunological features in the tumor

microenvironment. Based on the Cancer Genome Atlas (TCGA) breast cancer data, we

identified the 72 most common genomic aberrations (including gene mutations and indels)

in ER+ breast cancer and defined sample-specific scores that systematically characterized

the deregulated pathways intrinsic to tumor cells. To further consider tumor cell extrinsic fea-

tures, we calculated immune infiltration scores for six major immune cell types. Many indi-

vidual intrinsic features are predictive of patient prognosis in ER+ breast cancer, and some

of them achieved comparable accuracy with the Oncotype DX assay. In addition, statistical

learning models that integrated these features predicts the recurrence risk of patients with

significantly better performance than the Oncotype DX assay (our optimized random forest

model AUC = 0.841, Oncotype DX model AUC = 0.792, p = 0.04). As a proof-of-concept,

our study indicates the great potential of genomic and immunological features in prognostic

prediction for improving breast cancer precision medicine. The framework introduced in this

work can be readily applied to other cancers.

Author summary

Many genomic biomarker tests such as Oncotype DX have been developed for breast can-

cer and have helped guide clinical decisions. We have developed gene signatures to
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integrate cancer genomic and transcriptomic data to characterize the downstream effect

of driver genomic events. These signatures recapitulate the de-regulated pathways under-

lying the corresponding driver genomic events and are more correlated with clinical phe-

notypes such as recurrence free survival than mutation status alone. We apply this

framework to ER+ breast cancer and define gene signatures for a total of 72 most com-

monly observed genomic events including gene mutations, amplifications and deletions.

We find that many of these gene signatures are predictive of patient prognosis in ER+

breast cancer, and some of them achieved comparable accuracy with the Oncotype DX

assay. We combine these tumor-intrinsic signatures with infiltration signatures for major

immune cell types (tumor-extrinsic features) to construct integrative models for prognosis

prediction. The models predicts the recurrence risk of patients with significantly better

performance than the Oncotype DX assay.

Background

Breast cancer is the leading cause of cancer in women worldwide. In 2021, it is estimated that

284,200 new patients will be diagnosed and 44,130 will die from breast cancer in the USA [1].

Breast cancer patients are often grouped by estrogen receptor (ER) and progesterone receptor

(PR) status. Approximately 80% of breast cancers are estrogen receptor-positive (ER+) [2],

and these patients show better response to endocrine therapy and have favorable prognosis as

compared to ER-negative breast cancer [3]. Regardless, there exists a wide disparity in progno-

sis within ER+ breast cancer patients. A subtype of ER+ breast cancer patients with an insensi-

tivity to endocrine therapy has been reported, involving complex interactions between the

human epidermal growth factor receptor-2 (HER2), ER, and other signaling pathways [2,4]. In

fact, the PAM50 gene expression test for intrinsic cancer subtyping has been shown to provide

greater prognostic information than immunohistochemistry (IHC) for ER status or clinical

variables [5]. For example, some ER+ patients with Luminal A breast cancer will live for over

10 years without experiencing breast cancer recurrence when treated with adjuvant tamoxifen

despite exhibiting high grade, lymph node invasion, and overall higher recurrence risk, while

other ER+ patients in the Basal subtype all relapse within 5 years [5]. This variance in progno-

sis even within the ER+ breast cancer subtype has motivated significant efforts to develop gene

signatures to predict clinical outcomes and provide personalized treatment.

Indeed, a number of gene signatures have been developed to predict prognosis and stratify

patients. The Oncotype DX Breast Recurrence Score has been the most widely validated gene

signature in predicting prognosis for ER+ breast cancer patients, considering metrics such as

its clinical utility and its impact on decision making [6]. The assay assigns a score from 0–100

(Onco-score) based on a breast cancer biopsy which classifies a patient as having a low (Onco-

score: 0–17), intermediate (Onco-score: 18–30), or high (Onco-score: 31–100) risk for distal

metastasis. The analysis is based on 21 genes with specific functions in tumor proliferation or

invasion, HER2, and hormone receptor [7]. These 21 genes were selected based on their high

association between gene expression levels and patient recurrence. Patients classified as high

risk by the Oncotype DX Assay have been shown to experience a significantly lower risk for

distal recurrence when treated with chemotherapy, whereas patients in the low or intermediate

risk category experience little benefit from chemotherapy [8]. Interestingly, for patients treated

with tamoxifen, a form of endocrine therapy, patients classified with a low or intermediate risk

experience a significantly improved distal metastasis-free survival (DMFS) rate whereas

patients in the high-risk category have a smaller benefit [9]. Another gene signature,
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MammaPrint, has also been well-studied and has shown efficacy in predicting both ER+ and

ER- breast cancer prognosis. It is based on 70 genes that were chosen using a “leave-one-out”

strategy from 231 genes that were significantly associated with patient prognosis [10]. The

MammaPrint signature classifies patients into good or poor signature groups based on their

risk for distal metastasis. Similar to Oncotype DX, patients with high risk experience signifi-

cant benefit from chemotherapy, whereas those in the low risk category do not [11]. It is evi-

dent that prognostic prediction and the discovery of risk groups via genomic assays can guide

therapeutic decisions.

A number of cancer driver genes, including oncogenes and tumor suppressors, are fre-

quently altered through somatic mutations and copy number variations (CNVs). Such geno-

mic events are responsible for the initiation, progression and metastasis of tumors [12,13]. For

example, the TP53 oncogene has functions in tumor suppression and DNA repair and is the

most commonly mutated gene in cancer: depending on cancer type, up to 50% of cancer cases

have a somatic mutation in the TP53 gene [14]. Specifically, 25% of breast cancer patients have

somatic TP53 mutations [14]. Mutations in driver genes leads to aberrant activation (onco-

genes) or inactivation (tumor suppression), which in turn deregulate downstream oncogenic

pathways. However, genomic aberrations such as somatic mutations and CNVs are often only

weakly associated with prognosis [15–18]. As an example, the prognostic value of the TP53
gene mutation is inconsistent and sometimes controversial in breast cancer [19,20]. Numerous

different mechanisms can deactivate the p53 pathway besides TP53 mutations, such as hyper-

methylation, CNV, or mutation of other genes in the p53 pathway [21], convoluting the impact

of TP53 mutations on oncogenic pathways. Gene signatures that recapitulate the downstream

pathways of p53 mutations have been proposed as better prognostic markers [22–25]. Signa-

tures for other genes have also been developed to predict prognosis, such as PIK3CA [26,27],

BRAF [26], KRAS [26], TMPRSS-ERG [28], etc. However, the prognostic value of signatures

for all common genomic alterations have not been investigated in a systematic manner.

Genomic aberration of driver genes occurring in cancer cells represent a set of tumor-

intrinsic features. In addition to genomic changes intrinsic to cancerous cells, patient progno-

sis is also determined by immunological features in the tumor microenvironment (TME).

Tumor-infiltrating immune cells interact with the TME through a complex process known as

cancer immunoediting, which involves both immunologic clearance of cancer cells and the

promotion of non-immunogenic cancer clones that edits the overall immunogenicity of the

tumor [29]. Somatic mutations in cancer cells can be presented as neoantigens that can be rec-

ognized by T cells to trigger an immune response. Thus, an increase of CD8+ and CD4+ T-cell

infiltration in the TME is correlated with better prognosis across cancer types, including colo-

rectal [30], lung [31], and breast cancers [32]. However, the presence of regulatory T cells

serves to facilitate tumor escape and expansion, worsening prognosis [33]. Although less com-

monly studied, infiltrating B cells in the tumor microenvironment have also been correlated

with good prognosis in melanoma [34] and multiple subtypes of breast cancers [35]. Natural

Killer cells, despite functioning as tumor cell killers, have also been correlated with advanced

disease and may facilitate cancer growth and poor prognosis [36,37]. Lastly, increased macro-

phagic infiltration has been correlated with favorable clinical outcomes [38]. These various

effects of immune infiltration on prognosis highlight the importance of such data in prognosis

prediction models.

In this study, we aim to systematically investigate the prognostic value of tumor-intrinsic

and -extrinsic features in ER+ breast cancer. Particularly, we define gene signatures for 72

genomic aberrations, including somatic mutations in TP53, PIK3CA, CDH1, and GATA3,

which comprise tumor-intrinsic features. We also infer the immune infiltration of 6 immune

cells, which comprises tumor-extrinsic features. We then construct predictive models that
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integrate these genomic features (Sig model), immunological features (Imm model), and a

combination of both (Sig+Imm model). We compare the predictive power of these models

with Oncotype DX scores as a reference with or without incorporating established clinical vari-

ables (e.g. age, tumor stage, etc.). Our results indicate that many of our individual signatures

and immune cell infiltration scores are prognostic when used as solo predictors. We also find

that an optimized model that integrates both intrinsic and extrinsic features achieves a signifi-

cantly higher prediction accuracy than Oncotype DX. Our study provides a generic framework

to define integrative models based on genomic data to combine intrinsic and extrinsic features

for predicting clinical outcomes.

Results

Overview of this study

Cancer is a genetic disease, in which mutations of oncogenes or tumor suppressors lead to the

aberrant activation or inactivation of specific oncogenic pathways and eventually deregulated

gene expression (see examples shown in Fig 1A). Previous studies have shown that gene signa-

tures modeling deregulated path ways better predict prognosis than the corresponding gene

mutations. In this study, we develop a statistical framework to systematically investigate a com-

prehensive list of genomic events of genes frequently observed in ER+ breast cancer, including

4 mutations, 53 amplifications, and 15 deletions (Table 1). By using gene-specific multivariate

regressions, we modeled the combinatorial effect of these genomic events in regulating gene

expression in TCGA ER+ breast cancer samples. Based on these models, we defined a gene sig-

nature for each of these genomic events. These gene signatures can be used to calculate sam-

ple-specific scores that indicate downstream pathways associated with the corresponding

genomic events. We rationalized that these signatures will provide a systematic characteriza-

tion of deregulated pathways intrinsic to tumor cells and are thus informative for predicting

patient prognosis in ER+ breast cancer.

Fig 1. Schematic diagram of this study. a Definition of gene signatures to recapitulate the pathways underlying driver

genomic aberrations. Here we use three genomic aberrations (TP53 mutation, ERBB2 amplification and ATM
deletion) as examples. In ER+ breast cancer, we defined a total of 72 gene signatures, each for a specific genomic

aberration. b To predict patient prognosis in ER+ breast cancer, we constructed prediction models to integrate the 72

gene signatures (intrinsic features), 6 types of infiltrating immune cells (extrinsic features), and clinical factors (e.g.,

age, tumor stage). Gene signature scores and immune cell scores were calculated based on gene expression of tumor

samples. Random Forest models were used to classify good versus poor prognosis, and Cox regression models were

used to predict prognostic risk scores.

https://doi.org/10.1371/journal.pcbi.1009495.g001
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To further include tumor-extrinsic features, we considered the infiltration levels of six

major types of immune cells in the tumor microenvironment, which can also be calculated

based on gene expression profiles of tumor samples. We then developed prediction models to

integrate these intrinsic and extrinsic features as well as established clinical factors to predict

prognosis in ER+ breast cancer (Fig 1B). Specifically, classification models based on Random

Forest were constructed to classify patients with good versus poor prognosis; and Cox propor-

tional hazards regression were constructed to predict prognostic risk of patients and support

the Random Forest results. Using this framework, we can systematically characterize potential

tumor intrinsic and extrinsic features fully based on transcriptomic data for prognostic

prediction.

Gene signature scores recapitulate the mutation status of driver genes

Based on the TCGA data, we defined a total of 72 gene signatures to characterize all frequently

occurring genomic aberrations in ER+ breast cancer. Patients with higher gene signature

scores have expression profiles with a greater degree of similarity to the expression profile of

patients with the genomic aberration. To investigate the interdependence between different

gene signatures, we calculated pairwise Spearman correlation coefficients (SCCs). Most of

these signatures were weakly correlated (Fig 2A), indicating that they capture different down-

stream signaling outputs.

To examine whether these gene signatures recapitulate their genomic events, we applied

them to independent ER+ breast cancer expression datasets that provided gene mutation sta-

tus. As shown in Fig 2B, the TP53 mutation (TP53_mut) signature scores were significantly

higher in TP53 mutant samples than wild-type samples (p = 1e-12). Similarly, for another

three genomic aberrations (HER2 amplification, PIK3CA mutation, and GATA3 mutation),

patients with the aberration displayed significantly higher signature scores than wild-type

patients (Fig 2C, 2D and 2E). To quantify the accuracy of signature scores in classifying mutant

versus wild-type samples, we determined the receiver operating characteristic (ROC) curves

for the TP53_mut (Fig 2F) and ERBB2_amp (Fig 2G) signatures in multiple ER+ breast cancer

Table 1. Summary of features in each model discussed in the manuscript.

Feature Type Features

Clinical Age, Stage, Lymph node status, Grade, Size

Signature (somatic
mutation)

CDH1, GATA3, PIK3CA, TP53

Signature (gene gain) ABL2, ARNT, BRIP1, CCND1, CD79B, CDK12, CIITA, CLTC, COL1A1, COX6C,

CREBBP, DDX5, ELK4, ERBB2, ERCC4, EXT1, FCGR2B, FGFR1, FH, FUS, GNAS,

H3F3A, HEY1, HLF, HOOK3, IL21R, MDM4, MSI2, MUC1, MYC, MYH11, NCOA2,

NDRG1, NTRK1, PALB2, PBX1, PLAG1, PRKAR1A, PTPRC, RAD21, RNF43, SDC4,

SDHC, SOCS1, SPOP, SRSF2, SS18L1, TCEA1, TNFRSF17, TPM3, TPR, TSC2,

WHSC1L1
Signature (gene loss) ARHGEF12, ATM, BIRC3, CBFA2T3, CDH1, CYLD, FLI1, HERPUD1, MAF, MAP2K4,

PCM1, PCSK7, POU2AF1, SDHD, WRN
Immunological Naïve B (NavB), Memory B (MemB), CD4+ T (CD4T), CD8+ T (CD8T), natural killer

cells (NKcell), and Monocytes

Random Forest optimized
model

Size, lymph_nodes_positive, age_at_diagnosis, TP53_mut, ABL2_amp, CCND1_amp,

CD79B_amp, CIITA_amp, CLTC_amp, COX6C_amp, ELK4_amp, FH_amp,

MSI2_amp, MYC_amp, NCOA2_amp, NTRK1_amp, PLAG1_amp, SDC4_amp,

SS18L1_amp, TCEA1_amp, TNFRSF17_amp, MemB

Cox optimized model Size, lymph nodes status, age at diagnosis, ELK4_amp, CCND1_amp, NTRK1_amp,

CREBBP_amp, MAP2K4_del, PCM1_del, SDHD_del, PCSK7_del, MemB,

SOCS1_amp, DDX5_amp, SDHC_amp, MSI2_amp

https://doi.org/10.1371/journal.pcbi.1009495.t001
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datasets (TP53: GSE3494 and GSE22093, ERBB2: GSE 22358 and GSE22597). High area under

the receiver operating characteristic curve (AUC) scores are observed (AUC>0.8), indicating

that our gene signature scores are able to recapitulate information on the aberration status of

driver genes in validation datasets.

Since these signatures were defined based on ER+ breast cancer data, we expected that they

might only be effective in ER+ breast cancer. Indeed, when applied to ER- breast cancer, these

signatures poorly discriminated mutant versus wild-type samples as exemplified by the TP53
and ERBB2 signatures (S1 Fig).

Association of gene signatures and immune cell infiltration with patient

prognosis

We then analyzed the distribution of individual signature scores based on patient prognosis,

reasoning that individual signature scores must be differently distributed to be able to predict

prognosis. In the Curtis dataset, which contains microarray data for 1508 ER+ breast cancer

patients [39], we stratified ER+ breast cancer patients into a good (alive after 10 years) and

poor (death due to disease before 10 years) prognosis group with 387 and 293 patients, respec-

tively. For each of the 72 gene signatures, we examined the association with patient prognosis

and found that 52 gene signatures were prognostic (S1 Table). For example, TP53_mut signa-

ture scores were significantly higher in patients with poor prognosis as compared to those with

Fig 2. Gene signatures recapitulate the downstream pathways of mutated driver genes. a Spearman correlation coefficients (Correlation) between

different gene signatures defined based on the TCGA ER+ breast cancer data. Signature scores can distinguish ER+ breast cancer samples with

TP53_mut (b), ERBB2_amp (c), PIK3CA_mut (d), and GATA3_mut (e) from samples without the aberrations. b, c were based on the Curtis data;

(d) was based on GSE41994; and (e) was based on GSE101780. ROC curves showing that TP53_mut (f) and ERBB2_amp (g) signature scores can

predict the mutation status of their respective driver genomic aberration.

https://doi.org/10.1371/journal.pcbi.1009495.g002
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good prognosis (p = 7e-14, Fig 3A). This is consistent with previous reports that mutations in

the TP53 gene and disruption of the p53 pathway were correlated with poorer prognosis [40–

42]. Similarly, the TNFRSF17_amp signature scores were significantly different between

groups with higher values in patients with good prognosis (p = 2e-13, Fig 3B). Such an associa-

tion has not been previously reported in ER+ breast cancer, but its prognostic value has been

studied for ER- breast cancer [43–45]. TNFRSF17 is an immune response gene with overex-

pression correlating with better prognosis [43].

In additional to these gene signatures, we also investigated the prognostic value of infiltra-

tion levels of six types of immune cells, including Naïve B (NavB), Memory B (MemB), CD4

+ T (CD4T), CD8+ T (CD8T), natural killer cells (NKcell), and Monocytes (see S2 Table).

Based on the inferred infiltration scores, we observed a correlation between MemB cell infiltra-

tion and patient prognosis in ER+ breast cancer: patients with good prognosis had significantly

higher MemB cell infiltration scores than those with poor prognosis (p = 8e-9, Fig 3C).

For all gene signatures and infiltrating immune cell types, we calculated AUC scores to

quantify the ability to classify good versus poor prognosis groups in ER+ breast cancer (S1 and

S2 Tables). Specifically, the AUC scores for TP53_mut, TNFRSF17_amp and MemB cells were

0.665, 0.663 and 0.626, respectively, which was comparable to the accuracy achieved by the

widely used Onco-score (AUC = 0.668) (Fig 3D). All together, our results indicated that both

Fig 3. Gene signatures and immune infiltration scores predict patient prognosis. a-c Signature scores for TP53_mut (a),

TNFRSF17_amp (b), and MemB (c) distinguish patients with good and poor prognosis. d ROC curves showing that TP53_mut,

TNFRSF17_amp and MemB infiltration score predicts prognosis at a comparable level to Onco-score. e AUC scores of random forest

models with different combinations of predictive features. Our Sig+Imm model performs with higher AUC scores than the Onco-score

models with and without clinical features. f Relative importance of the top 20 most important genomic aberration and immune infiltration

features.

https://doi.org/10.1371/journal.pcbi.1009495.g003
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intrinsic gene signatures and extrinsic infiltrating immune cells were informative for predict-

ing patient prognosis in ER+ breast cancer.

Integrative models for classifying good and poor prognosis patient groups

After showing the clinical significance and prognostic power of our individual signature

scores, we constructed RF models with different combinations of scores to classify patient

prognosis. We then determined their performance by 10-fold cross-validation in the Curtis

data (Fig 3E). First, we constructed three RF models that integrated the 72 gene signatures

(Sig), the six immune cell types (Imm) and a combination of both features (Sig+Imm). The Sig

model achieved an accuracy of AUC = 0.707, which was higher than the accuracy achieved by

the Onco-score (AUC = 0.668). In contrast, the Imm model had a relatively low AUC

(AUC = 0.595). In addition, the Sig+Imm model had similar accuracy as the Sig model, sug-

gesting that adding immunological features does not further increase the performance of the

Sig model. In fact, breast cancer has been reported as immune cold and the overall response

rate of ER+ breast cancer patients to immunotherapy is about 12% [46,47]. Second, we further

incorporated several clinical factors (age, tumor size, grade, stage and lymph node status) to

construct the Sig+Clin, Imm+Clin, Sig+Imm+Clin models. The AUC scores of these models

(0.811, 0.808 and 0.817, respectively) were higher than the accuracy of the Clin model

(AUC = 0.764), which was solely based on clinical factors. Moreover, the accuracies of these

models were also higher than the Onco+Clin model (AUC = 0.792), suggesting that both geno-

mic features and immunological features provide additional prognostic value that surpass the

predictive ability of the Oncotype DX assay. Of note, incorporating the Onco-score (the Sig

+Imm+Onco+Clin model) did not further improve the classification accuracy, suggesting that

information provided by the Onco-score is captured by the genomic and/or immunological

features. Thus, our gene signatures and immune infiltration scores may encompass informa-

tion contained in the Oncotype DX assay and provide additional prognostic prediction

potential.

To identify features that contributed most to the prediction ability, we examined the relative

importance of all features included in the Sig+Imm+Clin RF model. As shown in Fig 3F, the

top 10 most important Sig or Imm features are CCND1_amp, ABL2_amp, COX6C_amp,

TNFRSF17_amp, MYC_amp, MemB, NTRK1_amp, TP53_mut, CLTC_amp, and ELK4_amp.

A complete list of the relative importance for all features can be found in S3 Table. Out of the

most predictive features, many have been studied previously as prognostic factors in breast

cancer, such as CCND1_amp [48], ABL2_amp [49], TP53_mut [50], TNFRSF17_amp [43–

45], and memory B infiltration [51]. However, there are other important gene aberrations like

COX6C_amp that have not been previously reported as prognostic. Our models thus shed

light on the roles of various unexplored mutations/CNVs in breast cancer prognosis.

An optimized model outperforms Oncotype DX scores for prognosis

classification

We optimized the Sig+Imm+Clin model by iteratively removing the least important features

from the model and then recalculating the relative importance of the remaining features (Fig

4A). Eventually, we obtained an optimized model with a total of 22 (including 18 Sig, 1 Imm,

and 3 Clin features) predictive features (Table 1). The accuracy of this optimized model was

AUC = 0.841 according to cross-validation results in the Curtis data, which was much higher

the Onco+Clin model (AUC = 0.791, p = 0.04) and the Clin model (AUC = 0.763, p = 2e-4)

(Fig 4B). The significance test was performed using Delong’s test for two correlated ROC

curves. In addition, when trained in the Curtis discovery dataset and evaluated in the Curtis
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validation data, the optimized model achieved an AUC of 0.837. Conversely, an AUC 0f 0.798

was obtained when the training and test datasets were swapped (Fig 4C).

To demonstrate the model’s ability to predict prognosis in clinical situations, the optimized

model was trained in a training dataset and then applied to an independent test dataset, the

Ur-Rehman dataset, which contains curated data from 856 ER+ breast cancer patients [52].

When the optimized model was trained in the Curtis data and tested in the Ur-Rehman data,

we observed an accuracy of AUC = 0.708, and vice versa, an accuracy of AUC = 0.737 (Fig

4D). This performance was significantly higher than that of the Onco+Clin model, which

achieved AUC = 0.594 and AUC = 0.671 for Curtis-to-Rehman and Rehman-to-Curtis predic-

tions, respectively (Fig 4E). Altogether, our results indicated that the optimized model

achieved consistently higher performance than the Oncotype DX assay.

Integrative models for predicting prognostic risk based on Cox regression

We constructed Cox proportional hazards models to further validate the prognostic values of

the gene signatures and infiltrating immune cells. We applied univariate and multivariate Cox

regression models to investigate the association between these individual features and patient

disease-free survival with or without including clinical variables in the Curtis dataset. Using

the gene signature scores or the immune infiltration scores as continuous variables, we found

50 features (46 gene signatures and 4 immune cells) that were significantly associated with

patient survival without considering clinical variables (Fig 5A and S4 Table). After adjusting

for clinical variables, 36 features (34 gene signatures and 2 immune cells) were significantly

associated with patient survival (Fig 5B and S4 Table). These results indicated that many of

gene signatures alone can stratify ER+ breast cancer patients into subgroups with different

Fig 4. Optimized model outperforms Oncotype DX risk scores for prognostic prediction. a Results from backward

selection to find an optimized set of features—AUC score of the model plotted as a function of the number of features

removed. The optimized model is chosen as the highest AUC score at the smallest number of features. b ROC curves of

the performance of our optimized model as compared to the Onco-score + Cli model and just the Cli model, showing

that our optimized model overperforms both Oncotype DX and clinical features. c ROC curves of our optimized

model when trained in Curtis discovery and validated in Curtis validation, and vise versa. d ROC curves of our

optimized model when trained in Curtis discovery and validated in the test dataset, the Ur-Rehman dataset, and vise

versa. e ROC curves of the Onco+Cli model trained and validated in the same way as (d), showing decreased

performance compared to our optimized model.

https://doi.org/10.1371/journal.pcbi.1009495.g004
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prognosis. For example, patients with high TP53_mut score showed significantly shorter sur-

vival time than those with low score (p = 2e-16, Fig 5C). In contrast, patients with high

TNFRSF17_amp (Fig 5D) or MemB infiltration scores (Fig 5E) had significantly prolonged

survival. For comparison, we showed the survival curves of patients dichotomized based on

the Onco-score (p = 5e-12, Fig 5F), which exhibited a lesser or comparable significance as

compared to our signatures. Our results indicated that many gene signatures could give rise to

better or comparable prognostic stratification than Onco-score in ER+ breast cancer.

Following this, we integrated all 78 signature scores and immune infiltration scores using

multivariate Cox regression models and performed feature selection to obtain an optimized

model with 16 variables. The selected features are listed in Table 1. We applied this optimized

model to predict patient prognostic risk, which achieved a fairly high performance with a con-

cordance index (CI) of 0.758 based on cross-validation in the Curtis data. Of note, a similar

model based on clinical factors achieved a CI of 0.701, and the CI increased to 0.718 if Onco-

type scores are further incorporated with clinical variables.

An optimized Cox regression model for prognostic risk prediction

To demonstrate the clinical utility of the Cox-optimized model, we trained the model in the

Curtis discovery dataset and then applied it to predict patient risk score in the Curtis validation

dataset. Based on the predicted risk scores, we stratified patients into high-, intermediate- and

low-risk groups of equal size. As shown in Fig 6A, the optimized model was overall able to sep-

arate patients into different risk groups (p = 1e-23). In particular, patients in the high risk cate-

gory had a hazard 8.015 times that of the low risk category (p = 6e-20), and patients in the

Fig 5. Individual signature and immune infiltration scores can identify prognostic patient groups. Signature and immune infiltration

scores fitted in a univariate Cox proportional hazards model without clinical adjustment (a) and with clinical adjustment (b) are associated

with survival time. Patients are significantly dichotomized by their TP53_mut (c), TNFRSF17_amp (d), and MemB (e) score. f Risk groups

dichotomized by the median Onco-score have lower or comparable significance to some of our signature and immune infiltration scores.

https://doi.org/10.1371/journal.pcbi.1009495.g005
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intermediate risk category had a hazard 2.523 times that of the low risk category (p = 0.001).

We also considered the predictive power of model after adjusting for the contributions of the

clinical features by removing clinical features from the model (Fig 6B). The overall significance

of the risk groups decreased moderately (p = 1e-09). Patients in the high risk group had a haz-

ard 7.394 times that of the low risk category (p = 3e-17), and patients in the intermediate risk

category had a hazard 1.616 times that of the low risk category (p = 0.05). The performance of

our models in predicting prognostic risk were then compared to that of the three Onco-classes

for patients in the Curtis validation dataset (Fig 6C). Overall, the Onco-classes slightly under-

performed the optimized model adjusted for clinical features (p = 5e-8). Patients classified as

high risk had a hazard 3.533 times that of patients in the low risk category (p = 2e-7), and

those classified as intermediate risk had a hazard 1.784 times that of the low risk category

(p = 0.04). Although the ability to distinguish low risk from intermediate risk patients was sim-

ilar between Onco-class and our clinical variable-adjusted optimized model, our model was

able to more significantly define a higher risk group from the intermediate risk group (p = 3e-

5 for our model vs p = 3e-4 for Onco-class).

To investigate whether the optimized model has the potential to improve the Oncotype DX

assay, we used our optimized model’s risk predictions to further dichotomize patients in each

Oncotype DX class. In each of the Onco high (Fig 6D), Onco intermediate (Fig 6E), and Onco

low (Fig 6F) classes, our optimized model’s risk prediction was able to separate patients into

two statistically significant risk groups (Onco high: p = 3e-9, Onco int: p = 0.001, and Onco

low: p = 0.05). To identify the prognostic power of our signature and immune scores alone, we

repeated this test with the clinical variables removed (S2 Fig). We found that the Onco high

Fig 6. Optimized Cox regression model for prognostic risk prediction. a Patients in the Curtis validation dataset are significantly grouped

by their risk as predicted by the optimized model trained in the Curtis discovery dataset. b Patients are still significantly dichotomized by

their risk when clinical variables are removed from the optimized model. c Onco class achieves slightly lower performance than our

optimized model without clinical information in grouping patient risk categories. d-f Our optimized model is able to further stratify the

Onco high (d), intermediate (e), and low (f) risk classes.

https://doi.org/10.1371/journal.pcbi.1009495.g006
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and Onco intermediate risk classes were significantly separated (p = 0.009 and p = 0.004,

respectively) and the Onco low risk class was moderately separated (p = 0.2). These results

show the potential of our models to be integrated in conjunction with Oncotype DX to provide

more precise risk predictions.

Discussion

In this study, we defined gene signatures for a comprehensive list of gene aberrations fre-

quently observed in ER+ breast cancer to recapitulate their downstream regulatory pathways.

These signatures were then used to calculate sample-specific scores based on tumor gene

expression profiles. These scores represented a collection of tumor-intrinsic features that proj-

ect gene expression to cancer-related pathway activities. The prognostic values of these signa-

tures were validated by both Random Forest classification and Cox regression models. The

performance of these prediction models that integrated gene signatures and immune cell infil-

tration scores were evaluated with or without including clinical variables. Our results indicated

that these features have the great potential to further improve the prediction accuracy achieved

by the Oncotype DX assay.

A number of genomic aberrations, such as TP53 mutation and ERBB2 amplification, have

been frequently observed in breast cancer [53]. These genomic mutations lead to the deregula-

tion of specific downstream pathways and confer selection advantage to tumor cells at certain

stage of cancer development and progression. Essentially, it is the downstream pathways that

drive tumorigenesis and determine clinical outcomes. The frequently observed gene mutations

represent the most likely but not the only mechanism that deregulate the corresponding path-

ways. For example, it has been shown the p53 pathway can be inactivated not only by TP53
mutation but also by alternative mechanisms like hypermethylation or mutation of other

genes in the p53 pathway [21]. Therefore, the gene signatures defined by the proposed method

provide a collection of candidate features that are prognostic. Importantly, a tumor sample

may harbor multiple driver genomic mutations. Some of the driver genomic mutations are

correlated, presenting together or mutually exclusive. As such, we defined gene signatures for

72 frequent gene mutation events in a systematic manner, where all signatures are calculated

together in a multivariate linear model. The resulting gene signatures takes into the correla-

tions between different genomic events and the cross-talking in their downstream pathways,

and therefore are expected to better predict prognosis when combined using integrative mod-

els. We have also defined gene signatures for the same set of genomic aberrations but in a sepa-

rate fashion, where the gene signatures are defined based on only their value in a univariate

linear model (see Methods). Such a definition most directly correlates with the aberration sta-

tus of the driver gene, but the lack of consideration for the interdependence between signa-

tures makes them unfit for multivariate prediction models. Indeed, integrative prediction

models based on these signatures resulted in worse prediction accuracy compared with those

simultaneously defined signatures.

In addition to the gene signatures designed for charactering tumor-intrinsic features, we

also include immune infiltration scores to capture tumor-extrinsic features. However, our

results indicated that the prognostic values contributed by these immunological features, with

the exception of MemB, were relatively low compared with gene signatures and clinical factors.

This might be explained by the fact that breast cancer is relatively immune cold compared to

other cancers. Immune cytolytic activity, mutation burden, and neoepitopes load are often

correlated with immune response, yet breast cancer patients generally have relatively moderate

levels of these factors [17,54]. Indeed, the overall response rate of ER+, HER2 negative breast

cancer to pembrolizumab, an antibody targeting programmed cell death-1/programmed death
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ligand-1, is only about 12% [46]. Specific infiltrating immune cell subsets associated with

patient prognosis are also low in ER positive breast cancer. Such immune cells include CD8+

T and CD4+ T, which have been extensively reported as good prognostic markers [55,56],

whereas regulatory T cells are known to be poor prognostic markers [57]. While triple negative

breast cancer most commonly exhibit high infiltrations of these tumor-infiltrating lympho-

cytes (TILs), ER+ patients generally have lower TIL infiltration levels [58], making infiltration

levels difficult to be accurately inferred by immune deconvolution methods from gene expres-

sion data. In fact, TIL levels have been found to not correlate with overall survival rate for ER+

breast cancer patients [59]. Even so, the memory B immune infiltration score was included in

the random forest optimized model. Including immune features may allow for better and

more accurate feature optimization of the predictive model. In addition, they also provide crit-

ical insights about different immunological features in terms of prognostic prediction. Future

work may investigate the prognostic potential of these tumor extrinsic immune cell infiltration

scores in prognostic prediction models for immune hot cancers like melanoma, lung cancer,

and acute lymphoblastic leukemia.

Our analysis showed that the clinical factors alone can achieve relatively high accuracy in

prognostic prediction. The prognosis of ER+ breast cancer is largely determined by prolifera-

tion rate of tumors [60], which can be captured at least partially by the clinical variables, tumor

size and stage. Nevertheless, the prognostic prediction accuracy can be further improved when

the gene signatures and immune infiltration scores are used (the Sig+Clin and the Imm+Clin

models). In particular, the Imm+Clin model showed an improved prediction accuracy than

the clinical model, even though immunological features alone had fairly poor performance.

Overall, these results indicate that additional biomarkers developed from genomic, molecular

or immunological characterization of tumors can further improve prognostic prediction in

ER+ breast cancer.

Conclusions

In conclusion, we have proposed a framework to systematically extract both tumor-intrinsic

and extrinsic features from gene expression data for integrative prediction of prognosis in ER

+ breast cancer. Using this framework, we assessed the prognostic values contributed by differ-

ent categories of features as well as by different genomic aberration events. This framework

can be readily applied to all cancer types for improving precision medicine.

Methods

Datasets used in this study

Level 3 processed RNA sequencing (RNA-seq) data for 1097 breast cancer patients was down-

loaded from The Cancer Genome Atlas (TCGA) via FireHose (http://gdac.broadinstitute.org/

). The data was normalized in the RNA-seq by Expectation-Maximization (RSEM) format.

The processed somatic mutation data and copy number variation (CNV) segments were

downloaded as Mutation Annotation Format (MAF) and segmented copy number alterations

(sCNA) files, respectively, from TCGA using FireHose.

Gene expression profiles of other datasets were obtained as follows. The first dataset is from

Curtis et al. (METABRIC)[61] and was downloaded from the European Genome Phenome

Archive with accession ID EGAS00000000083. This dataset consists of 1992 breast cancer

patients in two cohorts, the discovery cohort (997 patients), and the validation cohort (995

patients). 1508 patients were ER+. The data was measured using the Illumina HT-12 v3 plat-

form (Illumina_Human_WG-v3). This dataset included the mutation status of the TP53 gene,

determined by examining exons 2–11 for mutations and scoring them using Mutation
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Surveyor software. It also included HER2 amplification status (whether the patient was

experiencing HER2 gain or HER2 neutral), which was determined based on their empirical

expression distributions using MCLUST. Additional seven datasets were downloaded from the

Gene Expression Omnibus (GEO) under accession numbers GSE41994, GSE101780,

GSE3494, GSE22093, GSE22358, GSE22597, and GSE47561. GSE41994 contains PIK3CA
mutation status and gene expression data from 95 ER+ breast cancer patients [62]. GSE101780

contains GATA3 mutation status and gene expression data from 13 ER+ breast cancer samples

[63]. GSE3494 [23] and GSE22093 [64] contain information on 251 and 103 distinct breast

cancer samples, respectively, and also contain TP53 mutation status. GSE22358 [65] and

GSE22597 [66] contain data on HER2 amplification status of 158 and 82 breast cancer samples,

respectively. The Ur-Rehman dataset, GSE47561, combines 10 other breast cancer datasets

and contains a total of 1570 samples, 856 of which are ER+ [67]. The expression was measured

by the Affymetrix microarray platform.

Identification of frequently mutated or amplified/deleted genes in ER

+ breast cancer

MAF somatic mutation data from TCGA contained the number of nonsynonymous mutations

in each gene. We considered all genes with mutations in which there was at least one nonsy-

nonymous point mutation in at least 10 percent of all ER+ samples.

CNV data from TCGA contained genomic segments that significantly deviated from dip-

loid (as in normal tissues) and their copy numbers in each tumor samples. Based on these

data, copy numbers of genes were calculated by referring to the Ensemble human genome

annotation file, which contains the genomic localization of genes. We log2 transformed these

numbers to obtain the fold change of each gene’s copy number. Genes that showed amplifica-

tions with a fold increase greater than log
2

2:8

2

� �
or deletions with a fold decrease less than

log
2

1:3

2

� �
were selected for further investigation. A list of genes commonly exhibiting mutations

and CNVs based on our approach are shown in Table 1, along with the type of genomic aber-

ration occurring in that gene.

Definition of weighted gene signatures for genomic events

For each recurrent genomic event (gene mutations, amplifications and deletions), we defined

a weighted gene signature based on TCGA ER+ breast cancer RNA-seq data. The expression

levels of genes (originally represented as RSEM) were adjusted based on the formula log2(-

RSEM+1) to avoid extreme values. First, the status of each genomic aberration j in Table 1 (Xj

= 1 if there is an aberration, 0 if no aberration) is used in a multivariate linear model (Eq 1) as

predictive variables, and the log2(RSEM+1) expression of gene i in the gene expression profile

is the response variable (Yi) (Eq 1).

Yi ¼ bi;0 þ bi;1X1 þ � � � þ bi;jXj þ � � � þ bi;72X72 Eq1

For each genomic aberration j in Table 1, the linear coefficients (βi,j) and p value (pi,j) for

each gene i in the gene expression profile is calculated. Two sets of weights are then calculated

for each combination of genomic aberration j and gene i in the gene expression profile, wþi;j
and w�i;j. If the expression of gene i in the gene expression profile is positively correlated with

the presence of genomic event j (βi,j>0), then wþi;j ¼ � logpi;j and w�i;j ¼ 0. For negative correla-

tions (βi,j<0), then w�i;j ¼ � logpi;j and wþi;j ¼ 0. The weights are then normalized by capping

the maximum weight at 10 and dividing by the range to transform the weights to a decimal

between zero and one. The result of this definition of wþi;j and w�i;j is the following: comparing
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patients with and without genomic aberration j, if gene m is more upregulated than gene n,

then wþm;j > wþn;j and w�m;j ¼ 0. Similarly, if gene m is more downregulated than gene n, then

w�m;j < w�n;j and wþm;j ¼ 0.

The above gene signatures take co-occurrences and mutual exclusiveness among different

genomic features into consideration. We also defined univariate gene signatures that charac-

terize the regulation of genes for individual genomic aberrations without considering inter-

feature dependencies. A similar procedure was applied except that in the model only a single

genomic aberration was used as the independent variable (Eq 2).

Yi ¼ bi;0 þ bi;jXj Eq2

Calculation of tumor-intrinsic genomic aberration scores

For each genomic aberration, we calculated a score that describes its pathway activity from

gene expression data using the univariate and multivariate weighted gene signatures described

in the previous section. To do so, we applied a rank-based statistical method called Binding

Association with Sorted Expression (BASE) [68], which examines the expression of signature

genes in each tumor sample to calculate a sample-specific score. First, we use median normali-

zation on the gene expression profile. We then rank the expression profile in order of decreas-

ing expression, g = {g1, g2, . . . gn}, where n is the total number of genes. Then, we calculate a

foreground f(i) and background function b(i) as shown below.

f ið Þ ¼
Pi

k¼1
gkwkPn

k¼1
gkwk

; 1 � i � n

b ið Þ ¼
Pi

k¼1
gkð1 � wkÞPn

k¼1
gkð1 � wkÞ

; 1 � i � n

The foreground function captures the distribution of the highly informative genes, whereas

the background function captures random distribution. The maximum deviation between these

functions is then calculated. For the w+ weights, the score is defined Score+, and for the w-

weights the score is defined Score-. We then normalized the Score+ and Score- scores by dividing

them by their null distribution. The null distribution is calculated based on recalculating the

Score+ and Score- scores, but using a random ordering of the gene expression profile g. This pro-

cess is permuted 1000 times to generate the null distribution. The sample specific score for each

genomic aberration is finally calculated as the difference between the normalized Score+ and

Score-. More details on signature score calculation has been described previously [28,69]. Each

patient in the Curtis and Ur-Rehman datasets was given a score for each of the 78 genomic aber-

rations, using both the univariate and the multivariate weights. A higher score correlates with a

more deficient pathway due to a greater propensity for occurrences of the genomic aberration.

The scores based on the multivariate weights are used for our Random Forest or Cox pro-

portional hazards models because they may benefit from the inter-dependent adjustments in

the multivariate gene signature. On the other hand, scores defined by the univariate weights

are used to show that our scores recapitulate driver genomic aberrations by themselves, as

these scores more closely correlate with the aberration status when scores for the other geno-

mic aberrations are not considered.

Calculation of tumor-extrinsic immune infiltration scores

To calculate the six immune cell infiltration scores given the expression profile of a patient, we

utilized a method described previously [70], which includes first defining immune cell-specific
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reference gene expression profiles and then examining immune-specific gene expression in

the patient gene expression profile. Essentially, a high score indicates higher infiltration of the

corresponding immune cell type in the tumor sample, while a low score indicates low infiltra-

tion level. In this study, we focused on six major immune cell types that have previously been

reported to have potential prognostic value, including naïve B (NavB), memory B (MemB),

CD4+ T, CD8+ T, NK cells and monocytes.

Calculation of Oncotype DX classes and scores

We used the genefu R package to calculate the Oncotype DX risk category (Onco-class) and

score for a given breast cancer gene expression dataset [71]. Specifically, the function “oncoty-

pedx” was used. The Oncotype DX score (denoted as Onco-score in the figures) is a number

from 0 to 100, where higher scores correlate with a higher risk for distal metastasis. The Onco-

class is directly calculated from the Onco-score (0–17 is low risk, 18–30 is intermediate risk,

and 31–100 is high risk).

Construction of random forest models to classify ER+ breast cancers into

good versus poor prognostic groups

In both the Curtis and Ur-Rehman datasets, the data for prognosis was provided as time-to-

event. For the Curtis dataset, the event was defined as disease-specific death. The Ur-Rehman

dataset contained data on the time to recurrence and to distal metastasis. To maintain consis-

tency between the datasets, we used “distal metastasis of disease” as the definition of an event

for the Ur-Rehman dataset, since distal metastasis is a better indicator of poor prognosis and

likely death due to disease.

To convert the time data to a classification problem, we defined a patient as having good

prognosis when an event did not occur within 10 years of follow-up. Poor prognosis is defined

as the incidence of an event within 10 years. Patients censored before 10 years are not included

in the analysis. In the Curtis dataset, we counted 387 samples as having good prognosis and

293 samples as having poor prognosis. In the Ur-Rehman dataset, 168 samples were counted

as having good prognosis and 177 samples were considered to have poor prognosis. We next

built a Random Forest model using the R package “randomForest” to classify good vs poor

prognosis with various combinations of features. We used a 10-fold cross-validation method,

where the data is divided in tenths, and one tenth is used as validation while the other nine-

tenths are used to train the Random Forest model. The tenths are cycled such that each tenth

serves as the validation set once, and the area under the curve (AUC) scores from all the valida-

tions are pooled to generate the aggregate AUC score.

We also trained the optimized random forest model in one dataset and used that predefined

model to predict prognosis in external validation datasets. The “predict” function in the “ran-

domForest” library was used to extract the probability of a good prognosis for each patient in

the validation datasets. These probabilities are then used to generate the receiver operating

characteristic (ROC) plot and calculate the AUC scores using the R package “ROCR.”

Construction of Cox regression models for predicting patient survival and

recurrence risk

To determine the performance of individual signatures and immune scores, we fit a univariate

cox proportional hazards model for all 78 scores using the “coxph” function from the “sur-

vival” package in R and extracted the p-value and hazard ratios. To adjust for clinical variables,

we included age, stage, lymph node status, grade, and size as covariates in addition to the
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signature or immune cell scores in a multivariate cox proportional hazards model. To plot

Kaplan-Meier (KM) survival curves, we used the median score as the cutoff to dichotomize

low-score and high-score patients and utilized the R function “survfit” to plot the curve. The

log-rank test is applied to calculate the p-value for the null hypothesis that no difference in sur-

vival exists between the two patient groups.

We also calculated the C-index (CI) to quantify the performance of our integrative, opti-

mized Cox proportional hazards model compared to Cox proportional hazards models with

just clinical variables or Onco+Clin as predictive features. The CI is calculated as the propor-

tion of all comparable patient pairs with predicted risks concordant with their survival time

(for example, a patient pair is concordant if the patient with higher risk has a shorter survival

time). Note that patients are only comparable if both patients experience the event, or if one

patient experiences the event before the other patient is censored.

To calculate the recurrence risk of patients in a validation dataset with a Cox proportional

hazards model fitted in the training dataset, we used the “predict” function from the “survival”

package in R to extract the predicted patient risks in the validation dataset. We then ranked

the patients by their risk score and separated patients into three roughly equally sized groups

to define the low, intermediate, and high risk groups. The KM method and log-rank test is

again used to determine the performance of the model in defining risk groups.

Optimization of classification and regression models

To determine the optimal combination of predictive features for the RF model, we performed

backward selection by successive removal of features with the lowest importance as deter-

mined using the RF relative importance function. The AUC score is calculated after each addi-

tion/removal by a 10-fold cross-validation using both Curtis discovery and validation datasets.

We then picked the predictive features with the highest AUC and the least number of features

as our optimized model.

To similarly optimize the Cox proportional hazards model, we used the R function “My.

stepwise.coxph” in the R package “My.stepwise” on the Curtis discovery dataset, with and

without clinical features. This function performs a stepwise feature selection using the coxph

model. The features chosen in the optimized model are shown in Table 1 as “Cox optimized

model.”

Supporting information

S1 Fig. Gene signatures do not generalize to ER negative breast cancer patients. ROC

curves showing that TP53_mut (a) and ERBB2_amp (b) predict driver aberration status at rel-

atively low AUC scores in the ER negative breast cancer patients as compared to the ER posi-

tive patients.

(TIF)

S2 Fig. Oncotype DX risk classes dichotomized by optimized model without clinical fea-

tures. Our optimized model’s risk prediction without including clinical features is able to sig-

nificantly stratify the Onco high (a) and intermediate (b) risk classes, and moderately stratifies

the Onco low (c) risk class.

(TIF)

S1 Table. Many individual gene signature scores are predictive of prognosis. The p value

was determined based on the hypothesis that the patients with good prognosis have different

gene signature scores than patients with poor prognosis. The AUC was calculated based on the

gene signature’s ability to predict prognosis. The prognostic value shows whether higher
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signature scores correlate with better or poorer prognosis. Onco-score is also included to com-

pare with our signatures.
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S2 Table. Immune infiltration scores are predictive of prognosis. Higher infiltrations of

immune cells significantly correlated with prognosis predicts good prognosis, as expected.
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