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Predicting odor from molecular 
structure: a multi‑label 
classification approach
Kushagra Saini1 & Venkatnarayan Ramanathan2*

Decoding the factors behind odor perception has long been a challenge in the field of human 
neuroscience, olfactory research, perfumery, psychology, biology and chemistry. The new wave of 
data-driven and machine learning approaches to predicting molecular properties are a growing area of 
research interest and provide for significant improvement over conventional statistical methods. We 
look at these approaches in the context of predicting molecular odor, specifically focusing on multi-
label classification strategies employed for the same. Namely binary relevance, classifier chains, and 
random forests adapted to deal with such a task. This challenge, termed quantitative structure–odor 
relationship, remains an unsolved task in the field of sensory perception in machine learning, and we 
hope to emulate the results achieved in the field of vision and auditory perception in olfaction over 
time.

For decades, scientists from various disciplines have been searching for an olfactory classification system on a 
psychological or physiochemical basis1. A robust model that can accurately predict odor would cut down sig-
nificantly on the time and capital spent in formulation, extraction, and production of new odors for which there 
is substantial commercial demand. There is also an incentive to find substitutes for odorants that are environ-
mentally hazardous or very scarce. For example, sandalwood scent is derived from santalol, and in an effort to 
synthetically reproduce the scent, chemist Jacques Vailliant spent more than a year creating structural variations 
of santalol by changing the ring and branch structures with very little success2.

The biological process of olfaction is characterized by the odorant molecules entering the nasal cavity where 
odor perception is due to the interaction of volatile compounds with the olfactory receptor neurons (ORNs) 
that lie in the olfactory epithelium, which occupies a 3.7 cm zone in the upper part of the nasal cavity3. Humans 
have around 12 million ORNs in each epithelium (right and left); as the olfaction system is bilateral, there are 
two of each structure3.

Broadly there are two general approaches to odor classification: -

1.	 By featurizing of the molecular properties/Structure of odorous compound-This approach tries to establish 
a link between the molecular/structural properties like molecular vibration, molecular weight, molecule 
shape, electron donor, acid–base, and other physicochemical parameters and perceived odor on the principle 
of capturing some global relation between a set of features and target variable4. For example, it is common 
knowledge that molecules with an ester functional group usually have a fruity and floral smell. The vibrational 
spectrum can also serve as a proxy for the structure of a molecule and form the feature space5.

2.	 As features of the sensory percept- This school of thought argues that odor is merely a psychological construct 
and therefore entirely subjective. The basis for classification then becomes the verbal odor descriptions used 
by subjects to describe a particular odor. A review of a large body of research reported that many of the 
proposed perception-based classification systems are vague or even contradictory6.This can be attributed to 
differences in subjects’ vocabulary, sensitivity to odor with age, cultural experience, etc. It is now, therefore, 
rarely used in scientific literature and is more or less obsolete.

Another less frequently used approach focuses on mouse olfactory sensory neurons (OSNs) where receptor 
activity through a calcium signal forms the basis for odor instead of subjective descriptors from human subjects7.
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QSOR modelling in the past.  As a subdomain of the molecular property prediction problem (also called 
QSAR or quantitative structure–activity relationships)8, interest has been revived in QSOR over the last decade, 
with machine learning algorithms becoming more and more complex, and especially with breakthroughs in the 
field of deep learning and neural networks9.

Early implementations of neural networks for QSOR were very shallow and modelled on overly small odor 
and sample spaces (rarely more than 100 molecules were used and categories of odor to classify numbered 
between one and 10)10–12.While the exact structure of odor space and its dimensions is still an area of active 
research, it is well established that the magnitude of a global odor space, if it exists, is at least in the100s.

Challenges in QSOR.  The main hurdle in QSOR is the drastic change in odor caused by very small changes 
in the structure or functional group of a molecule. Early attempts at generating a set of rigid empirical odor rules 
on the basis of molecular substituent, intramolecular distances, and other molecular properties for odor predic-
tion were immediately broken any time a new odorant molecule was discovered and thus were full of exceptions. 
Here are some of the examples which defied the odor rules:

1.	 Enantiomeric compounds, also known as optical isomers, have the same chemical functions and are structur-
ally close, but only as few as 5% of enantiomer couples have a similar smell. Two such examples are shown 
in Fig. 113.

2.	 Structurally different organic compounds having a similar smell, for example, musk-related odors shown in 
Fig. 214.

3.	 Besides changing the odor, a small structural change to a molecule may also cause a decrease in odor intensity 
as shown in Fig. 3.

Methods
Forming an integrated dataset.  Two separate expertly labeled odor datasets were used during the course 
of this study, namely Leffingwell PMP 2001 and the training data made available during the “learning to smell 
challenge” by Firmenich. The Leffingwell dataset was originally curated for researching olfaction and all the 
odorant molecules in it were labeled with one or more odor descriptors, hand-picked by olfactory experts (usu-
ally a practicing perfumer). In order to come up with an integrated dataset that could be directly fed to our 
model, merging of the aforementioned datasets using a common schema was required along with the filtering 
of duplicate odorous molecules.

Firmenich’s dataset had a total of 4704 molecules and a vocabulary of 109 unique odor descriptors, while the 
PMP dataset contained 3523 molecules and 113 unique odor descriptors. We observed that 61 odor descrip-
tors were common in both the datasets and upon closer inspection, it was found that some odor descriptors 
were identical semantically but different syntactically (’black currant’ vs. ’blackcurrant,’ ’leafy’ vs. ’leaf ’ etc.). A 
similarity-based string search using the fuzzywuzzy module was done to make a list of such odor descriptors; 

Figure 1 .   Examples of enantiomeric compounds with dissimilar odors.
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we manually removed any pairs which were not deemed to be referring to the same odor. Further transforma-
tion of the pair of odor descriptors to fit in with Firmenich’s vocabulary was done which resulted in a total of 75 
intersecting odor descriptors. The final dataset formed by merging both the datasets had a total of 7374 molecule 
samples and 109 unique odor classes with varying sample counts (Fig. 4).The highest number of samples were 
associated with the fruity class at a count of 2050 samples, while the fennel class had the lowest associated sam-
ple count with 9 samples. A standard training/test split of 80:20 percent was set for our model evaluation and a 
five-fold cross-validation was conducted on the training set.

Exploring label imbalance.  Multi-label datasets (MLDs) typically have heavy label imbalance. To verify 
this a couple of label imbalance metrics by the name of MeanIR and IRLbl were computed along with plotting a 
histogram of odor labels to visually infer if any such imbalances remained. Further, class_weight hyper param-
eter for the models was set to “balanced” to tackle class imbalances within our dataset.

Exploring label correlation.  Where a multi-class task would have only one odor label associated with the 
molecule out of 109 unique odors in the dataset, a multi-label task has one or more than one odor labels associ-
ated with a molecule out of 109 unique odors.

For example.

Multi-class Multi-label

Molecule Odor Molecule Odor

CSC#N [’alliaceous’] CCC(=O)O [’pungent’, ’sour’, 
’dairy’]

Figure 2.   Examples of odorants with different structures but similar odor (musk).

Figure 3.   Example of the changing odorant character of a compound with slight structural modification.
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Generally, complete independence between the labels is assumed. However, most researchers highlight the 
importance to take into account label dependency information15. For example, a ‘fruity’ label may be more likely 
to occur with the label ‘apple’ based on linguistic similarity. A co-occurrence matrix (109 × 109, for 109 unique 
odors in the integrated dataset) where i’th row and j’th column represents the frequency of the co-occurrence of 
the two labels was built to gauge label dependency up to second degree. To get a more global knowledge of any 
such label correlation, we ran the Louvain community detection algorithm on the odor labels which attempts to 
optimize modularity; a measure for the quality of partition between communities of nodes.

Featurizing molecules.  To get a meaningful numerical representation of odor molecules which to be fed 
to our model, we used three traditional featurization techniques:- Mordred, Morgan, and daylight fingerprint-
ing. The first of the three was generated using Mordred descriptor calculator16 while Rdkit was used for the other 
two.

Pre‑processing.  Some columns from the feature space were dropped due to a large percentage of missing 
values. The remaining missing values were imputed using a KNN Imputer. Furthermore, each label set was 
converted into a 109-length bit vector; 1 denoting the presence of the label and 0 denoting its absence with the 
associated molecule.

Training machine learning models.  We used a random forest classifier with multi-label support17 in the 
scikit-learn library as our baseline model. Further, we use two different model approaches for chaining random 
forest models together:- Binary Relevance and Classifier chains18.

Using evaluation metrics to validate model performance.  To measure multi-label classifiers, we 
averaged the classes. We used the micro-averaging method where the individual true positives, false positives, 
and false negatives of the system for different label sets were averaged. The micro-averaged F1-Score represented 
the harmonic mean of micro averaged recall and micro averaged precision.

Results and discussion
A preliminary histogram plot (Fig. 5) revealed that fennel has the least occurrence in our dataset while fruity 
is the highest occurring label. As apparent, the distribution is highly skewed implying a heavy label imbalance. 
This imbalance was further verified by computing the MeanIR (29.169). The disparity between the absolute 
frequency of the top 10 most frequently occurring and least frequently occurring odor labels make the skewness 
more apparent in Table 1.

To ensure that the training and test dataset have a general representation of the data, we used iterative strati-
fied sampling instead of random sampling while splitting our dataset by importing the iterative_train_test_split 
class from the scikit-multilearn library as the random sampling resulted in completely omitting the fennel odor 
descriptor adding to the already skewed label imbalance (Fig. 6).

The construction of the co-occurrence matrix whose heatmap is shown in Fig. 7, revealed that green and 
fruity labels co-occurring 518 times and sweet and fruity labels co-occurring 433 times are the top 2 frequently 
occurring label pairs (Table 2). That means of all the molecules having a fruity odor 25% of them also have a 

Figure 4.   A scatter plot representing the number of samples in each of the 109 unique odor classes.The size of 
each point in the plot is proportional to the magnitude of the number of samples in that odor class.
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green odor. Conversely, 40% of all molecules having a green odor also have a fruity odor. This follows suit with 
the general observation with MLDs that there usually exists some label correlation.

Louvain community detection reveals the correlation between larger length label sets and it was observed that 
some of the groupings obtained by running the algorithm can be corroborated by common sense; for example, 
medicinal, phenolic, and chemical being in the same community intuitively seems right. The same is true for 
odor labels like fruity, apple, pear, banana, tropical fruit, melon, and grape. At the same time, some odor labels 
occur in communities one would not expect them to, for example, food with plastic, honey with lemon, etc. The 
network graph confirms that there exists some global correlation between labels. As seen in Fig. 8 the algorithm 
uncovered 4 clusters among a total of 109 odor labels. This approach was based on a measure called modularity, 
which tries to maximize the difference between the actual number of edges in a community and the expected 
number of edges in the community.

Figure 5.   Label imbalance with the fruity label occurring approximately 27% of the time as opposed to fennel 
occurring less than 1% times in our data.

Table 1.   Top 10 most frequently (from ‘Fruity’ till ‘Earthy’) and least frequently (from ‘Fennel’ till 
‘Watery’) occurring Odors respectively.

Odor No of associated samples

Fruity 2050

Green 1314

Sweet 1140

Floral 1104

Herbal 928

Woody 805

Fresh 712

Spicy 510

Fatty 493

Earthy 415

Fennel 9

Ambrette 11

Blueberry 11

Overripe 13

Ammoniac 13

Ambergris 24

Plastic 27

Clove 33

Cedar 35

Watery 35
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The cardinality of our dataset (mean number of labels per sample) is three, suggesting the multilabel-ness of 
our data is typical (most MLDs are in the {1, 5} interval) and the label density (cardinality divided by the num-
ber of labels) is 0.02846 (most MLDs have density values below 0.1). This value is useful to know how sparse is 
the labels sets in the MLD. Higher density values denote label sets with more active labels than the lower ones.

Figure 9 shows the feature importance which was generated with random forests to get an idea of the features 
which contribute most significantly to the odor prediction task. Centered moreau-broto autocorrelation of lag 
5 weighted by van der Waals volume (ATSC5v) and Geary coefficient of lag 5 weighted by ionization poten-
tial (GATS5i) are the top two Mordred features of importance, and further study into these might provide us 
with some insight into the kind of structural fragments or their relative spatial positions that result in imparting 
a particular odor to molecules.

Both of these two descriptors are spatial autocorrelation descriptors which in general explain how the con-
sidered property is distributed along the topological structure of the molecule. Representing the molecule as a 
graph with atoms at the vertices and bonds as the edges, both the auto descriptors consider a certain molecular 
property (e.g. atomic masses, atomic van der Waals volumes, atomic Sanderson electronegativities, atomic polar-
izabilities, etc.) distribution between pair wise atoms in the molecule at a certain topological distance (smallest 
number of interconnecting bonds between the two atoms).

Our model performance evaluated on micro averaged scores for each featurization revealed that the binary 
relevance model trained on Daylight fingeprints yielded the best F1_score. It is also worth mentioning that Binary 
relevance produced somewhat comparable F1_scores for mordred and Morgan featurizations with classifier 
chains and superior F1_scores with random forest models.

It is worthwhile noting that although there is a label correlation between our odor labels, we got better model 
performance from binary relevance which discards these correlations as opposed to classifier chains which take 
them into account, as evident from Table 3. Fivefold cross validation was carried out on the training set in order 
to further authenticate the scores shown in Table 4. One possible explanation for this contradiction might lie in 
the ordering of target labels which we have taken to be random. Because the models in each chain are arranged 

Figure 6.   Random split versus a stratified split respectively on the data. The difference in the height of blue and 
orange bars represents the relative difference in the occurrence of a particular label in the test and training set. It 
is clearly visible that stratified sampling produces a much more representative training and test set.
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randomly there is significant variation in performance among the chains. Presumably, there is an optimal order-
ing of the classes in a chain that will yield the best performance. However, we do not know that ordering a priori.

We also computed label-wise scores (Table 5) and observed that the top 15 F1_scores generally belonged to 
labels that had a higher percentage of associated samples in our dataset (mean percentage of samples associated 
with top 15 labels = 3.553), although there were exceptions to it like fennel (0.122 percentage) and ammoniac 
(0.176 percentage).

In contrast, the bottom 15 F1_scores generally belonged to labels that had a lower percentage of associated 
samples (mean percentage of samples associated with bottom 15 labels = 1.027).From this, it is inferred that our 
model performs better on frequent labels than infrequent labels.

Conclusion
We assembled a novel and large dataset of expertly labelled odorants and applied multi-label classification 
techniques to predict the relationship between a molecule’s structure and its smell. We achieved close to state-
of-the-art results obtained using GNN’s y4 on this QSOR task, employing multi-label classification techniques, 
and further demonstrated the label correlations that occur in our label space. Finally, we evaluated labels for 
which our best performing model is a weak learner and others for which it performs well.

Figure 7.   Heat map of our co-occurrence matrix truncated to top 80 odor.
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Table 2.   Top 20 odor associations labels. The darker the intensity of a square, the lesser the magnitude of 
co-occurrence count and correlation between the two labels.

Label pairs Co-occurence count

Green-fruity 518

Fruity-sweet 433

Fruity-floral 358

Fruity-herbal 317

Sweet-floral 313

Fresh-fruity 255

Herbal-green 217

Green-flora 216

Herbal-floral 205

Green-sweet 134

Fruity-apple 174

Fruity-ethereal 174

Floral-fresh 165

Woody-floral 162

Fatty-fruity 160

Woody-fruity 159

Fresh-herbal 158

Woody-herbal 149

Herbal-sweet 141

Fruity-tropicalfruit 136

Figure 8.   Graph constructed on the basis of Louvain method for community detection in networks. Nodes 
with the same colour belong to the same community.
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Figure 9.   Feature importance based on closeness to the root node of decision trees in the forest computed on 
mordred featurization.

Table 3.   Showing micro averaged precision, recall, and F1 test scores for each featurization and model 
approach.

Random forest Binary relevance Classifier chains

F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall

Mordred features 0.2944 0.3973 0.2338 0.3454 0.3938 0.3075 0.3246 0.4087 0.2692

Morgen fingerprint 0.2874 0.3850 0.2292 0.3351 0.3778 0.3011 0.3191 0.3963 0.2671

Daylight fingerprint 0.3221 0.3757 0.2819 0.3523 0.3563 0.3483 0.3287 0.3745 0.2930

Table 4.   Showing micro averaged precision, recall, and F1cross-validation scores for each featurization and 
model approach.

Random forest Binary relevance Classifier chains

F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall

Mordred features 0.2576 0.3796 0.1950 0.3151 0.3865 0.2661 0.3028 0.4042 0.2422

Morgen fingerprint 0.2604 0.3739 0.1998 0.3044 0.3651 0.2610 0.2952 0.3889 0.2379

Daylight
fingerprint 0.3027 0.3671 0.2576 0.3319 0.3520 0.3141 0.3191 0.3795 0.2753
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All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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