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Abstract

Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has
the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in
Niemann-Pick Type C (NPC) disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene.
In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress
from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated
form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in
phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) and murine double minute
(Mdm2) E3 ligase. Growth cone collapse induced by genetic (npc12/2) or pharmacological modification of cholesterol
metabolism was Rho kinase (ROCK)-dependent and associated with increased RhoA protein synthesis; both processes were
significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased
phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc12/2 mice. These results indicate
that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway
consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results
also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of
cholesterol metabolism.
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Introduction

Axonal degeneration is a common feature of many neurode-

generative diseases, including Alzheimer’s disease (AD), amyotro-

phic lateral sclerosis, Parkinson’s disease, and Niemann-Pick type

C (NPC) disease. NPC disease is caused by mutations in NPC1 or

NPC2 gene, with late endosomal/lysosomal cholesterol accumu-

lation as its characteristic pathologic feature. Intriguingly,

although NPC proteins are ubiquitously distributed in the body

and regulate intracellular cholesterol trafficking [1], the most

prominent pathological feature of the disease is progressive

neuronal death, particularly of neurons in cerebellum, cortex,

thalamus and brainstem [reviewed in [2]]. Neuronal degeneration

as well as other neuropathological features, including abnormal

formation of meganeurites (spindle-shaped swelling in the initial

segments of axons) and axonal spheroids, and inflammation have

been reproduced in murine models of the disease [3,4,5,6].

Interestingly, NPC pathology shares several features with AD

pathology, including neurofibrillary tangles, autophagic/lysosomal

dysfunction, inflammation, and cholesterol metabolism abnormal-

ities [7,8,9,10]. In some late onset NPC cases, amyloid plaques

dependent on ApoE4 genotype are also present in certain parts of

the brain [11]. Thus, NPC has often been used as a model system

to study AD pathology.

Axonal degeneration together with intraneuronal cholesterol

accumulation can be detected as early as postnatal day 9 in mice

with mutant Npc1 proteins (npc12/2 mice) [12]. In vitro

experiments with sympathetic neurons cultured from npc12/2

mice showed that, in parallel with cholesterol accumulation in late

endosomes/lysosomes, cholesterol levels were decreased in the

distal portions of axons [13]. Treatment of cultured hippocampal

neurons from wild-type mice with the cholesterol transport

inhibitor, U18666A, leads to a reduction in cholesterol content

in axonal plasma membranes [14]. As inhibition of cholesterol

synthesis induces axonal growth impairment [15], these results

raise the possibility that cholesterol deficiency in axons may

contribute to the axonal abnormalities found in NPC and other

neurodegenerative diseases. In addition, defects in vesicle

trafficking and abnormal autophagic/lysosomal function reported

to be present in npc12/2 mice [7] could also affect axonal growth.

Axonal growth during development and axonal regeneration in

adult nervous system depends on the motility of axonal growth cones.

The dynamics as well as the directional motility of axonal growth

cones are governed by both intrinsic factors and environmental clues.
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Guirland et al. recently showed that brain-derived neurotrophic factor

(BDNF)-induced growth cone attraction was eliminated by membrane

cholesterol depletion, and rescued by subsequent cholesterol

restoration [16]. Likewise, growth cone repulsion induced by netrin-

1 or semaphorin 3A was also disrupted by cholesterol depletion [16],

indicating that membrane cholesterol is critically involved in the

regulation of growth cone responses to environmental cues. We

recently showed that the tumor suppressor protein p53 regulates

growth cone motility through a transcription-independent mechanism

[17]. In the present study we report that disruption of cholesterol

egress from late endosomes/lysosomes induced by NPC1 deficiency

or pharmacological manipulation resulted in growth cone collapse

that was associated with abnormal activation of p38 mitogen-

activated protein kinase (MAPK), which in turn led to Mdm2-

dependent p53 degradation. Loss of p53 led to increased RhoA

protein synthesis followed by Rho kinase activation and growth cone

collapse. Our results indicate that this pathway plays a critical role in

the pathogenesis of NPC and potentially other axonal diseases.

Results

Increased growth cone collapse and decreased levels of
phosphorylated p53 in hippocampal neurons cultured
from npc12/2 mice

Hippocampal neurons from E18 npc12/2 and npc1+/+ embryos

were cultured for 4 days in vitro (DIV) and processed for double-

immunofluorescent staining with antibodies against E6-AP, an E3

ligase, and phosphorylated p53 (at Ser18 equivalent to human

Ser15, hereafter referred to as p-p53); both proteins were highly

expressed in axons and growth cones, as previously reported [17]. In

cultured neurons from npc1+/+ mice, high levels of p-p53 were

observed mainly in cell bodies, axons and growth cones (Fig. 1A,

Figure 1. Deregulation of p53 is associated with abnormal axonal development in neurons with genetically- or pharmacologically-
induced cholesterol transport perturbation. A&B. Immunofluorescence of p53 phosphorylated at Ser15 (p-p53, green) and E6-AP (red) in
hippocampal neurons cultured from E18 npc1+/+ (A) or npc12/2 embryos (B) and kept for 4 days in vitro (DIV4). Scale bar = 50 mm. C. Levels of p-
p53 in axons and growth cones are decreased in DIV4 hippocampal neurons from npc12/2 mice. P-p53-immunoreactivity was quantified as
described in Materials and Methods (n = 30 growth cones; **p,0.01 as compared to npc1+/+ mice). D&E. Over-expression of wild-type p53 blocks
growth cone collapse induced by cholesterol transport inhibition. D. Hippocampal neurons prepared from wild-type mice were transfected on DIV3
with either a EGFP vector, a EGFP-wild-type p53 (EGFP-p53-wt) vector, or a EGFP-p53 with R175H mutation (EGFP-p53-mu) vector, and treated with
1 mM U18666A for 18 h. Neurons were then fixed and processed for immunostaining with anti-E6AP (red). Scale bar = 20 mm. E. Quantitative analysis
of U18666A-induced growth cone collapse (p,0.01 as compared to EGFP-vector transfected; n = 30 growth cones from 3 individual experiments).
doi:10.1371/journal.pone.0009999.g001
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green), whereas in those from npc12/2 mice, only low levels of p-

p53 were found and mainly in cell bodies (Fig. 1B). Cultured

hippocampal neurons from npc12/2 mice exhibited a much higher

rate of growth cone collapse (7862% vs 862%; n = 100 growth

cones, p,0.01) with small growth cones and few or no filopodia, as

compared to those from npc1+/+ mice. Quantitative analysis

indicated that levels of p-p53 immunoreactivity in axons and

growth cones were decreased by about 80% as compared to wild-

type values (Fig. 1C). Decreased axonal levels of p-p53 were also

observed in brain tissues from 2-week old npc12/2 mice, especially

in the striatum (Figure S1).

U18666A-induced growth cone collapse was blocked by
over-expression of wild-type p53

As axonal growth cone collapse in hippocampal neurons from

npc12/2 mice was associated with decreased levels of p-p53, we

tested whether over-expression of wild-type p53 could reverse it. In

this set of experiments, we used the amphiphilic amine U18666A

to induce NPC-like phenotype in hippocampal neurons cultured

from wild-type mice; U18666A has previously been used to induce

NPC-like phenotype in various cultured cells, including neurons

[18]. Treatment with 1 mM U18666A for 18 h induced growth

cone collapse in about 80% of hippocampal neurons prepared

from wild-type mice and transfected with an EGFP-vector or a

vector containing p53 with the R175H mutation (a conformational

mutation that is frequently found in tumor cells, resulting in lack of

p53 function) (Fig. 1D&E). In neurons transfected with wild-type

p53, the same treatment resulted in only 20% growth cone

collapse (Fig. 1D&E). Wild-type p53 transfection also blocked

growth cone collapse elicited by short-time (2 min) treatment with

a higher concentration of U18666A (5 mM) (Figure S2). We

previously showed that p53-R175H proteins formed aggregates in

cell bodies and failed to be targeted to axons and growth cones in

cultured hippocampal neurons [17], which may explain their lack

of protective effects. To verify that treatment with 1 mM U18666A

for 18 h disrupted cholesterol distribution, hippocampal neurons

were stained with filipin, a fluorescent probe that has been widely

used to stain cholesterol [19]. In vehicle-treated controls, filipin

fluorescence was observed in cell bodies, axons (arrowheads), and

growth cones (Fig. 2A–C). In U18666A-treated neurons, a marked

decrease in fluorescence intensity was observed in axons and

collapsed growth cones (Fig. 2D&E) in concurrence with the

appearance of intensely labeled granules that resembled late

endosomes/lysosomes in cell bodies (arrows in Fig. 2F).

P38 MAPK and Mdm2 activation participated in U18666A
treatment-induced p-p53 degradation and growth cone
collapse

If decreased p-p53 levels were responsible for abnormal axonal

development in neurons from npc12/2 mice, then what could

lead to its down-regulation? In normal cells, p53 levels are tightly

regulated by a negative feed-back loop between p53 and Mdm2:

Mdm2 is a p53 target gene and Mdm2 activation results in p53

degradation. Since p38 MAPK has been shown to regulate both

p53 [20] and Mdm2 [21,22], we analyzed the roles of p38 MAPK

and Mdm2 in regulation of p53 levels and growth cone

morphology.

Immunoblotting analysis indicated that treatment of wild-type

cortical neurons at DIV4 with 5 mM U18666A for 2 min induced

a rapid decrease in p-p53 levels (arrow in Fig. 3A) with a

corresponding increase in levels of a p-p53 immunopositive band

with a slightly smaller molecular weight (thereafter referred to as

p-p53 breakdown product, p-p53D) than in control samples.

Since the p-p53D and p-p53 bands were very close in

immunoblots and the former was the predominant band, we

used p-p53D levels as an index of p-p53 degradation. We also

used immunoprecipitation to determine whether p-p53 trunca-

tion affected its association with the microtubule-associated

protein tau, a protein that is abundantly and exclusively

expressed in axons. p53 labeled by either anti-p-p53 or anti-

Figure 2. U18666A treatment decreases cholesterol levels in axons and growth cones. Cultured hippocampal neurons were treated with
1 mM U18666A (D-F) or DMSO (A–C) for 18 h before being processed for immunostaining with anti-E6-AP (red in A&D) and -p-p53 (green in A&D, to
label axons and growth cones) antibodies followed by filipin staining (blue in A&D). Panels B and E show filipin staining in axons while C and F show
staining in cell bodies. Scale bar = 20 mm.
doi:10.1371/journal.pone.0009999.g002
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p53 antibodies was immunoprecipitated by Tau1 antibodies

(Fig. 3B). Interestingly, although U18666A treatment resulted in

a marked increase in p-p53D levels in whole lysates, p-p53D was

absent in Tau1 pull-down products, suggesting that truncated p-

p53 is not associated with axonal tau.

Immunoblotting results also showed that U18666A treatment

markedly increased levels of Mdm2 phosphorylated at Ser166

(referred to as p-Mdm2 hereafter; Fig. 3A). Increased levels of p-

p53D and p-Mdm2 were quantified using ImageJ program

(Table 1). Levels of the dual-phosphorylated p38 MAPK

(Thr180/Tyr182, hereafter referred to as p-p38), the active form

of the enzyme [23,24], were also increased in U18666A-treated

neurons as compared to vehicle-treated (Fig. 3A), while levels of

the non-phosphorylated p38 MAPK were not altered (Table 1).

Immunofluorescent staining performed with antibodies against p-

p38 and p-Mdm2 indicated that levels of these phosphoproteins

were increased in axons and growth cones in U18666A-treated

neurons, as compared to vehicle-treated controls (Figure S3).

U18666A treatment also increased levels of RhoA and phosphor-

ylated Lim kinase (p-LIMK) (Fig. 3A).

To determine whether p38 MAPK activation was critically

involved in U18666A-induced growth cone collapse, we tested the

effects of a widely used p38 MAPK inhibitor, SB203580. Pre-

incubation of cultured neurons with 1 mM SB203580 for 2 h

before treatment with U18666A partially, but significantly,

reduced growth cone collapse elicited by U18666A (Fig. 3C).

P38 MAPK inhibition also markedly reduced Mdm2 and p38

MAPK phosphorylation, p-p53 degradation, and RhoA increase

resulting from U18666A treatment. The blocking effects of

SB203580 on p-p53 truncation (Fig. 3D) and RhoA increase

(Fig. 4A&B) were even more evident in axons and growth cones

when analyzed with immunohistochemistry. Immunoblots probed

with anti-ubiquitin (Ubi) and anti-p-LIMK antibodies indicated

that p38 MAPK inhibition also reduced U18666A treatment-

induced increases in protein ubiquitination and LIMK phosphor-

ylation (Fig. 3A; Table 1). Finally, U18666A-induced growth cone

collapse was blocked by a set of siRNAs specific for p38 MAPK

but not by control siRNAs, which further confirmed the

involvement of this kinase in this process (Fig. 5). P38 MAPK

siRNAs alone did not significantly modify growth cone morphol-

Figure 3. P38 MAPK activation is involved in growth cone collapse elicited by perturbation of cholesterol transport. A.
Immunoblotting analysis of various proteins in cultured cortical neurons. Cortical neurons prepared from wild-type mice were treated on DIV4 with
DMSO (D, vehicle), 5 mM U18666A (U), 5 mM U18666A plus p38 MAPK inhibitor, 1 mM SB203580 (U+S), or SB203580 alone (S). Shown are
representative images of immunoblots probed with anti-phospho-Mdm2 (p-Mdm2), anti-phospho-p38 MAPK (p-p38), anti-phospho-p53 (p-p53,
arrow), anti-RhoA, anti-phospho LIM Kinase (p-LIMK), anti-GAPDH (loading control), and anti-ubiquitin (Ubi) antibodies. U18666A treatment induced
the appearance of a p-p53 immunopositive band (p-p53D) with a slightly smaller apparent molecular weight than native p-p53. B. Truncated p-p53 is
not associated with axonal protein tau. Immunoprecipitation with Tau1 antibody or control IgG was performed as described in Material and Methods.
Immunoprecipitated products and whole lysates (WL) were subjected to immunoblotting and blots were then probed with antibodies against total-
p53, p-p53 or tau. U18666A U18) treatment resulted in a marked increase in p-p53D in whole lysates compared to DMSO treated or non-treated (NT).
C. Inhibition of p38 MAPK reduced cholesterol perturbation-induced growth cone collapse. Quantification of growth cone collapse in DIV4
hippocampal neurons treated with DMSO or U18666A in the presence or absence of SB203580 pre-treatment was performed as described in
Materials and Methods (**p,0.01 as compared to DMSO-treated, ##p,0.01 as compared to U18666A-treated; n = 100 growth cones from 3
individual experiments). D. Quantitative analysis of p-p53 levels in axons and growth cones of DIV4 hippocampal neurons. (**p,0.01 as compared to
DMSO-treated and ##p,0.01 as compared to U18666A-treated; n = 25-40 growth cones from 3 individual experiments).
doi:10.1371/journal.pone.0009999.g003
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ogy (Fig. 5A). The reduction of p-p38 levels by siRNA treatment

was also confirmed by immunoblotting (Fig. 5B).

The critical role of Mdm2 in U18666A-induced growth cone

collapse was further tested with an Mdm2 specific inhibitor

(Mdm2-in); pretreatment with 1 mM Mdm2-in significantly

reduced U18666A-induced growth cone collapse (Fig. 6B&C;

p,0.01, n = 100 growth cones). Immunoblotting results showed

that the Mdm2 inhibitor also significantly reduced the increase in

p-p53D (Fig. 6A; Table 1). Image analysis indicated that the

Mdm2 inhibitor significantly reduced U18666A-induced decrease

in p-p53 levels in axons and growth cones (Fig. 6D; p,0.01,

n = 25–40 neurons). Mdm2 inhibition also blocked U18666A-

induced increase in RhoA levels (Fig. 6A). Immunohistochemical

analysis showed that in U18666A plus Mdm2 inhibitor-treated

neurons, RhoA levels (expressed as % of vehicle treated) in axons

and growth cones were reduced from 640656% to 67616% and

257637% to 138624% (mean 6 SEM; p,0.01 when compared

to U18666A-treated; n = 25–40 from 3 individual experiments),

respectively. Mdm2 inhibitor alone did not significantly change

RhoA expression in either axons (102615%) or growth cones

(136620%). Mdm2 inhibition did not alter U18666A-induced

phosphorylation of either Mdm2 or p38 (Fig. 6A).

ROCK inhibition reduced U18666A-induced growth cone
collapse and p-p53 truncation

Rho kinase is critically involved in growth cone collapse and

we previously showed that growth cone collapse induced by

inhibition of p53 with pifithrin-m was rescued by ROCK

inhibitors [17]. Immunoblotting and immunohistochemical

results showed that U18666A treatment induced a marked

increase in RhoA levels, which was blocked by inhibition of p38

MAPK and Mdm2. To further test the role of the Rho-ROCK

signaling pathway in U18666A-induced growth cone collapse,

we pre-treated cultured neurons with the widely used specific

ROCK inhibitor, Y27632 that has been shown to inhibit the

ROCK family 100 times more potently than other kinases,

including protein kinase C, cAMP-dependent kinase, and myosin

light chain kinase [25]. Pre-incubation of wild-type hippocampal

Table 1. Effects of p38 MAPK and Mdm2 inhibitors on U18666A-induced changes in various proteins.

DMSO U18666A U18666A + SB203580 SB203580 U18666A + Mdm2_In Mdm2-In

p-Mdm2 100 549621** 10062## 9261 47668 10064

p-p38 100 493624** 9963## 96624 472619 108612

t-p38 100 10761 9863 9965 10761 10460

p-p53D 100 775629** 9766## 9466 280623## 10662

t-p53 100 9461 10361 10762 9864 10461

Ubiquitin 100 435614 ** 9366## 9567 11765## 10265

RhoA 100 418616** 216621## 9660 11466## 10561

p-LIMK 100 411615** 10163## 10063 147610## 11766

p-4EBP1 100 38967** 276619# 9963 32763## 10462

**p,0.01 as compared to DMSO-treated;
#p,0.05 and ##p,0.01 as compared to U18666A-treated;
n = 3–6 from 3 individual experiments.
doi:10.1371/journal.pone.0009999.t001

Figure 4. Inhibition of p38 MAPK blocked U18666A-induced increase in RhoA expression in axons and growth cones. Wild-type
hippocampal neurons were treated at DIV 4 with DMSO or U18666A in the presence or absence of SB203580 (SB) pre-treatment and processed for
immunostaining with anti-RhoA (green) and anti-E6-AP (red) antibodies as described in Materials and Methods. A. Representative images. B.
Quantitative analysis of RhoA levels in axons and growth cones (**p,0.01 as compared to DMSO-treated and ##p,0.01 as compared to U18666A-
treated; n = 25-40 growth cones from 3 individual experiments).
doi:10.1371/journal.pone.0009999.g004
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neurons at DIV4 with Y27632 (10 mM) for 2 h before treatment

with 5 mM U18666A for 2 min significantly reduced U18666A-

induced growth cone collapse (Fig. 7A; 4161% vs. 7262%;

p,0.01, n = 100 growth cones). Y27632 pretreatment also

reversed U18666A-induced decrease in p-p53 immunoreactivity

in axons and growth cones (Fig. 7A&B). Similar results were

obtained following pre-treatment with 1 mM Y27632 (not

shown). The involvement of ROCK was further tested by using

another inhibitor, H1152; pre-treatment with 100 nM H1152

for 3 h also blocked U18666A-induced growth cone collapse and

decrease in p-p53 immunoreactivity (Figure S4). Immunoblot-

ting results indicated that pre-treatment with Y27632 did not

block U18666A-induced increase in p38 and Mdm2 phosphor-

ylation, protein ubiquitination and RhoA levels (Fig. 7C&D), but

significantly reduced U18666A-induced increase in levels of

phosphorylated LIM kinase, an enzyme downstream of ROCK

(p-LIMK; Fig. 7C). These results suggest that ROCK activation

is downstream from p38 and Mdm2 activation and RhoA

up-regulation.

Intriguingly, ROCK inhibition also significantly reduced p-p53

truncation. We previously showed that growth cone collapse and

decreased levels of p-p53 in axons and growth cones induced by

p53 inhibition were also blocked by Y27632. Together, these

results suggest a mutual inhibitory regulation between p53 and

ROCK. We had also previously shown that p53 in axons and

growth cones was recognized by a ‘‘mutant’’ conformation specific

antibody but not by the ‘‘wild-type’’ conformation specific

antibody [17]. Treatment with U18666A markedly reduced levels

of ‘‘mutant’’ p53 in axons and growth cones, an effect also blocked

by Y27632 (Figure S5).

ROCK inhibition reduced axonal abnormality of npc12/2
mice in vitro and in vivo

We next tested whether ROCK activation was involved in

spontaneous growth cone collapse in neurons with genetic Npc1

deficiency. Hippocampal neurons cultured from npc12/2 mice

were treated for 18 h with vehicle or 10 mM Y27632 at DIV3.

Figure 5. P38 MAPK specific siRNAs reduce U18666A-induced growth cone collapse. A. Hippocampal neurons cultured from wild-type
mice were transfected with a set of siRNAs specific for p38 MAPK or control siRNAs and with a GFP vector on DIV3 and treated with U18666A on DIV 4
before being fixed and processed for immunostaining with anti-phospho-p38 (p-p38, red) antibodies. Inserts show enlarged images of growth cones.
Application of p38 MAPK siRNAs, but not control siRNA, markedly reduced p-p38 immunoreactivity and U18666A-induced growth cone collapse.
Results are representative of 3-4 culture dishes from 2 independent experiments. Scale bar = 50 mm. B. Immunoblotting analysis of p38 knock-down
by siRNA. Cortical neurons transfected with p38 MAPK specific or control siRNAs (CS) on DIV3 were collected on DIV4 and processed for
immunoblotting with anti-total p38, -p-p38, or GAPDH (loading control). Treatment with p38 MAPK specific siRNAs, but not control siRNA reduced
both total p38 and p-p38 by 90% as compared to non-treated (NT).
doi:10.1371/journal.pone.0009999.g005
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ROCK inhibition significantly reduced growth cone collapse

(4861% vs. 8062%; p,0.01, n = 100 growth cones) and

increased p-p53 immunoreactivity in axons and growth cones in

hippocampal neurons cultured from npc12/2 mice (Fig. 8).

To further confirm that ROCK inhibition could be beneficial to

axonal development in npc12/2 mice in vivo, we used another

ROCK inhibitor, hydroxyfasudil monohydrochloride that has

been shown to cross the blood-brain-barrier and reduce ischemia-

induced brain damage [26]. Continuous administration of this

ROCK inhibitor for 21 days not only increased p-p53 immuno-

reactivity but also increased the number of axonal neurofilaments,

as revealed by staining with SMI-312 antibody, especially in

corpus callosum and striatum (Fig. 9A&B). Furthermore, ROCK

inhibition also significantly increased SMI-312-immunopositive

areas (Fig. 9C), suggesting that this inhibitor improved axonal

development.

Inhibition of protein synthesis blocked U18666A-induced
RhoA up-regulation and growth cone collapse

Emerging evidence indicates that rapid protein synthesis in

axons and growth cones regulates growth cone behavior [see [27]

for a recent review]. Wu et al [28] recently reported that RhoA

transcripts are localized in developing axons and growth cones and

that intra-axonal translation of the small GTPase is necessary and

sufficient for semaphorin 3A-mediated growth cone collapse. We

therefore tested whether U18666A-induced growth cone collapse

was associated with increased RhoA synthesis. U18666A treat-

ment of cultured neurons from wild-type mice rapidly increased

levels of phosphorylated 4EBP1 (p-4EBP1), a widely used marker

of protein synthesis initiation (Fig. 10). Immunohistochemical

studies confirmed that p-4EBP1 levels were increased in axons and

growth cones (Fig. S6). Pre-treatment with emetine, a protein

synthesis inhibitor, significantly reduced U18666A-induced in-

crease in RhoA levels (Fig. 10). Emetine pretreatment also

significantly reduced U18666A-induced phosphorylation of LIMK

and growth cone collapse, suggesting that local RhoA synthesis

may contribute to ROCK-dependent growth cone collapse

(Fig. 10). Emetine treatment did not affect U18666A-induced

changes in levels of p-Mdm2, p-p38, and p-p53D (Fig. 10A),

indicating that RhoA protein synthesis is a downstream event. To

further test the idea that p53 could interfere with ROCK signaling

by suppressing RhoA synthesis, we treated wild-type cortical

neurons with the p53 inhibitor pifithrin-m in the presence or

absence of emetine pre-treatment. Immunoblotting results indi-

Figure 6. Mdm2 activation is involved in U18666A-induced p53 degradation and growth cone collapse. A. Mdm2 inhibition blocked
U18666A treatment-induced p-p53 truncation and ROCK activation. Cultured cortical neurons were treated with DMSO (D) or U18666A (U) in the
presence or absence of pre-treatment with an Mdm2 inhibitor (M). Shown are representative images of immunoblots probed with anti-phospho-
Mdm2 (p-Mdm2), anti-phospho-p53 (p-p53), anti-phospho-p38 MAPK (p-p38), anti-RhoA, anti-phospho LIM Kinase (p-LIMK), and anti-GAPDH (loading
control) antibodies. Mdm2 inhibitor (Mdm2-In) blocked U18666A-induced increases in p-p53D, RhoA, and p-LIMK, but not in pMdm2 or p-p38. B&C.
Mdm2 inhibition blocked U18666A treatment-induced growth cone collapse. DIV4 hippocampal neurons treated with DMSO or U18666A (U18) in the
presence or absence of Mdm2 inhibitor pre-treatment (Mdm2-In) were processed for immunostaining with anti-p-p53 (green) and -E6AP (red)
antibodies. B. Representative images. Scale bar = 20 mm. C. Quantitative analysis of growth cone collapse. (**p,0.01 as compared to DMSO treated,
##p,0.01 as compared to U18666A treated; n = 100 growth cones from 3 individual experiments). D. Quantitative analysis of p-p53 levels in axons
and growth cones of DIV4 hippocampal neurons (**p,0.01 as compared to DMSO-treated and ##p,0.01 as compared to U18666A-treated; n =
25-40 growth cones from 3 individual experiments).
doi:10.1371/journal.pone.0009999.g006

P53 and Axonal Growth

PLoS ONE | www.plosone.org 7 April 2010 | Volume 5 | Issue 4 | e9999



cated that p53 inhibition induced a rapid increase in levels of

RhoA and p-LIMK; both events were blocked by emetine

pretreatment (Fig. 10D). P53 inhibition also increased levels of

p-4EBP1, further supporting the notion that p53 tonically inhibits

protein synthesis. Finally, immunoprecipitation experiments

revealed a direct association between p53 and ROCK2, the main

isoform of ROCK in brain (Fig. 11A), suggesting that p53 directly

interacts with ROCK and possibly inhibits its kinase activity.

Discussion

Although axonal pathology and hypomyelination are prominent

features of both human NPC and mouse models of NPC, the

mechanisms linking NPC gene mutations to axonal pathology

remain to be understood. Our results showed for the first time that

hippocampal and cortical neurons cultured from npc12/2

embryos exhibited abnormal axonal development with a high

rate of growth cone collapse that was associated with a down-

regulation of phosphorylated p53 in axons and growth cones.

Decreased axonal levels of p-p53 were also found in developing

brains of npc12/2 mice, indicating that these changes did not

result from in vitro cultured conditions but were consequences of

the genetic Npc1 deficiency. Both increased growth cone collapse

and decreased p-p53 levels in neurons cultured from npc12/2

mice were significantly reduced by ROCK inhibition. Further-

more, in vivo ROCK inhibition not only increased axonal p-p53

levels but also increased axonal neurofilaments and the thickness

of fasciculated bundles, indicating that the p-p53-ROCK pathway

is critically involved in postnatal axonal development. Our results

further indicated that a similar high rate of growth cone collapse

was produced in cultured neurons from wild-type mice by

pharmacological perturbation of cholesterol transport and was

associated with degradation of p-p53 mediated by activation of

p38 MAPK and Mdm2. Pharmacological perturbation of

cholesterol transport also resulted in rapid increase in RhoA levels

and in ROCK activation, suggesting that genetic and pharmaco-

logical disruption of cholesterol transport-induced growth cone

collapse share common signaling pathways.

P38 MAPK-mediated activation of Mdm2 is responsible
for p53 degradation following perturbation of
cholesterol homeostasis

Levels of p53 are regulated mainly by Mdm2, an E3 ligase,

which triggers p53 ubiquitination followed by its degradation in

proteasomes [29,30,31,32,33]. Subcellular localization and activity

of Mdm2 are regulated by phosphorylation at various residues,

including Ser166 [34,35]. Mdm2 phosphorylation at Ser166,

Figure 7. ROCK inhibition blocks U18666A-induced p-p53 decrease and rescues growth cones in hippocampal neurons cultured
from wild-type mice. A. Immunofluorescence analysis of p-p53 (green) and E6-AP (red) distribution and growth cone morphology in cultured wild-
type hippocampal neurons treated with DMSO or U18666A (U18) in the absence or presence of 10 mM Y27632 (Y27). Scale bar = 20 mm. B.
Quantitative analysis of p-p53 levels in axons and growth cones of DIV4 hippocampal neurons (**p,0.01 as compared to DMSO-treated and
##p,0.01 as compared to U18666A-treated; n = 25-40 growth cones from 3 independent experiments). C&D. Immunoblotting analysis of various
proteins in cultured cortical neurons treated with DMSO (D) or U18666A (U) in the presence or absence of Y27632 (Y). C. Representative images of
immunoblots probed with antibodies against ubiquitin (Ubi), phospho-Mdm2 (p-Mdm2), phospho-p38 MAPK (p-p38), phospho-p53 (p-p53), RhoA,
phospho LIM Kinase (p-LIMK), and GAPDH (loading control). D. Quantitative analysis of p-p53D, RhoA, and p-LIMK (**p,0.01 as compared to DMSO-
treated; ##p,0.01 as compared to U18666A-treated; n = 3–6 from 3 individual experiments).
doi:10.1371/journal.pone.0009999.g007
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mediated mainly by Akt/PKB, enhances its binding to p53 and

increases p53 degradation, whereas Mdm2 dephosphorylation

releases and stabilizes p53 [35,36]. Recently, it has been shown

that Mdm2 is also phosphorylated by Pim kinase at Ser166 and

Ser186 [37]; however, the function of this posttranslational

modification is not clear. P38 MAPK phosphorylates both p53

[20] and Mdm2 [21,22]. Previous work has shown that p38

MAPK was present in axonal growth cones of retinal neurons and

that its inhibition blocked L-a-lysophosphatidic acid-induced, but

not semaphorin 3A-induced, growth cone collapse [38]. The role

of p38 MAPK in L-a-lysophosphatidic acid-induced growth cone

collapse has been linked to increased local protein synthesis and

protein degradation [38]. A recent study reported that abnormal

p38 MAPK activation was responsible for Npc1 deficiency-

induced impairment in self-renewal and differentiation of neural

stem cells from npc12/2 mice [39]. Our results showed that

inhibition of intracellular cholesterol transport rapidly activated

p38 MAPK, suggesting that this kinase might play a critical role in

NPC axonal pathology. This possibility was further supported by

results obtained by inhibiting p38 MAPK with a specific inhibitor,

SB203580 or with p38 specific siRNAs; both manipulations

significantly reduced growth cone collapse induced by cholesterol

transport inhibition. P38 MAPK suppression also reduced levels of

phosphorylated/active Mdm2 and truncation of p-p53. Although

p38 MAPK-mediated phosphorylation of p53 at Ser15 has been

reported [40], phosphorylation of Mdm2 at Ser166 is mainly

mediated by Akt/PKB [36]. We previously observed increased Akt

activation in brains of npc12/2 mice [41]; whether p38 MAPK

activates Mdm2 directly or indirectly through Akt remains to be

determined. Nevertheless, our results indicate that cholesterol

perturbation induces p38 MAPK activation, which in turn

activates Mdm2 and leads to p53 degradation. Consequently,

Mdm2 inhibition significantly reduced p53 truncation and growth

cone collapse.

P53 maintains growth cones by suppression of Rho
kinase

ROCK plays critical roles in regulating cell motility and growth

cone behavior. Abnormal activation of ROCK has been linked to

various neurodegenerative diseases and spinal cord injury [42].

We previously showed that growth cone collapse induced by p53

inhibition was reversed by ROCK inhibitors, suggesting that p53

promotes growth cone growth by inhibiting ROCK [17]. Results

from the present study showed that ROCK inhibitors significantly

reduced growth cone collapse in both genetic and chemical models

of NPC-type abnormal axonal development in vitro and in vivo.

These results therefore not only confirm our previous conclusion

that p53 promotes growth cone motility by inhibiting ROCK, but

further strengthen our hypothesis that de-regulation of p53

contributes to axonal pathology in NPC. Our results indicating

Figure 8. ROCK inhibition increases p-p53 levels and rescues growth cones in cultured hippocampal neurons from npc12/2 mice.
A–C. Immunofluorescence of p-p53 (green) and E6-AP (red) in cultured npc12/2 hippocampal neurons treated with DMSO (A) or Y27632 (B). Scale
bar = 50 mm. High power images of growth cones are shown in C. Hippocampal neurons were prepared from E18 npc12/2 embryos and treated
with 0.01% DMSO or 10 mM Y27632 (ROCK inhibitor) on DIV3 for 24 h before being processed for immunofluorescence staining. D. Quantitative
analysis of p-p53 levels in axons and growth cones (n = 30 growth cones; ##p,0.01 as compared to values in DMSO-treated neurons from npc12/2
mice).
doi:10.1371/journal.pone.0009999.g008
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that U18666A treatment increased levels of phosphorylated LIM

kinase, a downstream substrate of ROCK, and that the increase

was blocked by Y27632 provided direct evidence that ROCK was

activated under these conditions. ROCK activity is negatively

regulated by its C-terminal domain, which folds back to form an

auto-inhibitory loop on the kinase domain, thereby maintaining

the enzyme in an inactive state [43]. Binding of RhoA to ROCK is

believed to disrupt the negative auto-inhibition and to activate

ROCK [42]. Since p53 over-expression significantly reduced

U18666A treatment-induced growth cone collapse, it is tempting

to speculate that p53, especially in its phosphorylated form, can

bind to and block the structural transformation of ROCK from

inactive to active, an argument that is in good agreement with our

immunoprecipitation results, which indicated that p-p53 directly

binds to ROCK. Emerging evidence indicates that ROCK can

also be directly activated by intracellular second messengers, such

as arachidonic acid [44] and sphingosylphosphorylcholine [45],

independently of Rho proteins. Since both arachidonic acid and

sphingosylphosphorylcholine are lipid metabolites, it is possible

that they participate in the abnormal activation of ROCK in NPC

through p38 MAPK activation.

Increased local protein synthesis of RhoA contributes to
cholesterol perturbation-induced growth cone collapse

U18666A treatment of wild-type cultured neurons induced a

rapid increase in levels of RhoA and phosphorylated 4EBP1, and

these effects were blocked by the protein synthesis inhibitor,

emetine. Emetine also significantly reduced U18666A-induced

growth cone collapse. Together, these results suggest that local

RhoA synthesis participates in growth cone collapse produced by

perturbation of cholesterol transport. These results are in

agreement with the emerging notion that rapid protein synthesis

in axons and growth cones regulates growth cone behavior [see

[27] for a recent review]. Since emetine treatment did not affect

levels of p-Mdm2, p-p38, and p-p53D, RhoA/ROCK-mediated

growth collapse is downstream from Mdm2 and p38 MAPK.

Moreover, inhibition of p38 MAPK or Mdm2 partially reduced

U18666A-induced increase in RhoA and significantly suppressed

ROCK activation, indicating that, in addition to direct suppres-

sion of ROCK, p53 may also inhibit the local translation of RhoA.

Indeed, p53 suppression by pifithrin-m resulted in a rapid increase

in p-4EBP1 and RhoA levels, and both effects were blocked by

emetine. Increased RhoA synthesis was associated with increased

levels of p-LIMK, suggesting that p53 suppresses ROCK signaling

by inhibiting RhoA synthesis. Corroborating this notion, over-

expression of p53 resulted in rapid dephosphorylation of 4EBP1,

inhibition of ribosomal protein S6 kinase and inhibition of

translation initiation [46]. The signaling pathways linking lack of

NPC1 proteins (or perturbations of cholesterol transport) to

growth come collapse are summarized in Figure 11B.

The existing dogma in cell biology is that p53 is normally held

dormant in cells and is activated when cells encounter a variety of

stress signals. However, emerging evidence indicates that p53 also

functions under stress-free conditions and in transcription-

dependent and -independent manners. Our results for the first

time demonstrate that p53 deregulation participates in abnormal

axonal development in npc12/2 mice, and identify the signaling

pathway involved in this process. As p38 MAPK and Mdm2 have

also been shown to participate in pathogenesis associated with

other neurodegenerative diseases, our results could have significant

implications for a better understanding of a wide range of

neurodegenerative diseases. Finally, our results suggest that several

elements of this pathway could provide novel targets for potential

drug development for the treatment of NPC and other diseases

associated with axonal pathology.

Materials and Methods

Animals
A breeding colony of Npc1NIH heterozygous mice on BALB/c

background purchased from Jackson Laboratory (Bar Harbor, MA),

was established at Western University of Health Sciences. The

genotype was determined with PCR method, as previous described

[3]. The use of animals was conducted in accordance with the

National Institutes of Health Guide for the Care and Use of

Figure 9. ROCK inhibition increases p-p53 and neurofilament
immunoreactivity in striatal axons in developing npc12/2 mice.
Immunostaining was performed with anti-p-p53 (green) and anti-
neurofilament (SMI-312; red) antibodies in coronal brain sections from
npc1+/+ or npc12/2 mice treated with vehicle or hydroxyfasudil
monohydrochloride (npc12/2HFD). A. Representative images containing
fasciculated bundles in the caudoputamen. B&C. Quantification of levels
of p-p53 and SMI-312 immunoreactivity (B) and SMI-312 immunoreactive
(SMI-312-ir) areas (C) in images shown in A. ** indicates p,0.01 compared
to npc1+/+ mice and # and ## indicate p,0.05 and 0.01 respectively
compared to vehicle treated npc12/2 mice. Scale bar = 50 mm.
doi:10.1371/journal.pone.0009999.g009
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Laboratory Animals and animal husbandry, care and experimental

protocols were approved by the Institutional Animal Care and Use

Committee (IACUC) of Western University of Health Sciences.

Neuronal cultures
Cortical and hippocampal neurons were prepared from npc1+/+

and npc12/2 embryos at embryonic day 18 (E18); time-pregnant

wild-type BALB/c or npc1+/2 mice were obtained either from

Charles River Laboratories (San Diego, CA) or from our breeding

colony respectively. Neurons were cultured in NeuroBasal

(GIBCO, Carlsbad, CA) with 10% bovine serum albumin (BSA),

2% B27, and 1% glutamine for 3–4 days before being used.

Chemicals and antibodies
(R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox-

amide (Y27632) and H1152 (ROCK inhibitors), trans-4-lodo, 49-

boranyl-chalcone (Mdm2-inhibitor), SB203580 (p38 inhibitor),

emetine (protein synthesis inhibitor), and U18666A (cholesterol

transport inhibitor) were purchased from EMD Chemicals, Inc.

(Gibbstown, NJ). Control rabbit serum, anti-E6-AP, anti-ubiquitin

and anti-ROCK2 antibodies were from Sigma (St. Louis, MI).

Anti-RhoA and anti-p53 antibodies were from Santa Cruz

Biotechnology (Santa Cruz, CA). Anti-GAPDH antibody was

from Millipore (Billerica, MA). Anti-phospho-Mdm2 (Ser166),

anti-phospho-p53 (Ser15), antu-phosphor-4EBP1 (Thr37/46),

anti-phospho-LIMK1, 2(Thr508/505), anti-phospho-p38 MAPK

(Thr180/Tyr182), anti-p38 MAPK antibodies and a p38 MAPK

siRNA kit (SignalSilenceH) were from Cell Signaling Technology

(Danvers, MA). Mutant conformation specific p53 (Mu-p53)

antibody, Alexa488 conjugated anti-rabbit and Alexa594 conju-

gated anti-mouse antibodies were from Invitrogen (Carlsbad, CA).

Expression plasmids and transfection
The expression plasmids for EGFP-p53 (originally from

Invitrogen) and EGFP-p53-R175H mutant plasmids were gifts

from Dr. Zhiqun Tan (University of California at Irvine). Plasmid

transfection was performed as previously described [17]. Briefly,

neurons were incubated with DMEM (HyClone, Logan, UT) with

the addition of (per ml) 1 mg plasmid DNA, 40 ml 0.25 M CaCl2,

and 41 ml BES (pH 7.1) for 3 h. Cultured medium was then

replaced with fresh medium and neurons were further cultured for

18 to 24 h before being processed for time-lapse imaging

experiments or immunostaining analysis.

Treatment
For primary cultured neurons, chemicals (U18666A and

inhibitors of various enzymes) were first dissolved in 10% DMSO

before being diluted in cultured medium; final DMSO concen-

tration was lower than 0.01%. For in vivo treatment, hydro-

xyfasudil monohydrochloride (Sigma) was dissolved in double-

distilled H2O and injected subcutaneously at 10 mg/kg, twice a

day from postnatal day 7 to day 28.

Figure 10. Inhibition of protein synthesis blocks U18666A-induced increase in RhoA and growth cone collapse. A&B. Immunoblotting
analysis of various proteins in cultured cortical neurons treated with DMSO (D) or U18666A (U) in the presence or absence of the protein synthesis
inhibitor ementine (Em). A. Representative images of immunoblots probed with antibodies against ubiquitin (Ubi), phospho-Mdm2 (p-Mdm2),
phospho-p38 MAPK (p-p38), phospho-p53 (p-p53), RhoA, phospho LIM Kinase (p-LIMK), and GAPDH (loading control). B. Quantitative data of p-p53D,
RhoA, and p-LIMK (**p,0.01 as compared to DMSO-treated, ##p,0.01 as compared to U18666A-treated; n = 3–6 from 3 individual experiments). C.
Emetine application also significantly reduced U18666A treatment-induced growth cone collapse (n = 100 growth cones; ** p,0.001 as compared to
DMSO-treated growth cones and ##p,0.01 as compared to U18666A-treated). D. Treatment with p53 inhibitor, pifithrin-m (P) induced rapid
increase in levels of RhoA and p-LIMK; both events were blocked by emetine (E) treatment.
doi:10.1371/journal.pone.0009999.g010
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Immunofluorescent staining
Hippocampal neurons were fixed with 4% paraformaldehyde in

phosphate buffer (PB; pH 7.4) for 15 min. After washing with 1x

phosphate buffer saline (PBS), cells were permeabilized with

0.05% Triton X-100 in 1xPBS for 15 min, and incubated with

blocking buffer (3% BSA, 0.02% Triton X-100 in 1xPBS) for

15 min before being probed with primary antibodies. The

following primary antibodies were used: anti-E6AP (1:1000),

anti-phospho-p53 (1:250), anti-phospho-4EBP1 (1:1000), anti-

phospho-Mdm2 antibody (1:250), anti-phospho-p38 antibody

(1:250), anti-RhoA antibody (1:1500). All primary antibodies were

diluted in blocking buffer and incubated at 4uC for 18 h. After 6

washes (6610 min) with 1xPBS at room temperature, cells were

incubated with secondary antibodies, Alexa488-anti-rabbit (1:500)

or Alexa594-anti-mouse (1:500); both antibodies were diluted in

blocking buffer and incubated at room temperature for 1 h. Cells

were then washed with 1xPBS (6610 min) and sealed with

mounting medium (Vectashield; Vector Laboratories, Inc.,

Burlingame, CA) containing 49,69-diamidino-2-phenylindole

(DAPI) to stain nuclei. Immunofluorescent signal was detected

with a Nikon confocal microscope (Nikon TE 2000U with D-

Eclipse C1 system; Melville, NY).

Filipin staining
Filipin has been demonstrated to specifically stain free

cholesterol since treatment with cholesterol oxidase results in a

complete loss of fluorescence [19]. After immunostaining with

anti-E6-AP and anti-p-p53 antibodies and corresponding second-

ary antibodies conjugated with either Alexa FluorH 594 or Alexa

FluorH 488, neurons were washed with 1xPBS and incubated in

the dark with 375 mg/ml filipin in 1xPBS for 2 h at room

temperature. Neuronal cultures were then washed again with

1xPBS before being examined with confocal microscopy.

Perfusion and Immunohistochemistry
Mice were perfused with freshly prepared 4% paraformalde-

hyde in 1XPBS. Brains were then removed and post-fixed in 4%

paraformaldehyde for 16 h followed by incubation with graded

sucrose solutions. Brains were sectioned into 30 mm coronal

sections with a microtome. Floating sections were processed for

immunostaining as described previously [7]. Briefly, sections were

incubated with rabbit anti-p-p53 (1:250) and mouse anti-pan

axonal neurofilament (SMI-312, 1:500; Covance) antibodies in 5%

horse serum diluted in 0.1M PB overnight at 4uC. After three

washes, sections were incubated with Alexa FluorH 488 conjugated

goat anti-rabbit and Alexa FluorH 594 conjugated goat anti-mouse

secondary antibodies. After four more washes, sections were then

mounted onto SuperfrostH plus slides (VWR, West Chester, PA)

and confocal images were acquired by using the Nikon

microscope. Quantification of p-p53 and neurofilament immuno-

reactivity in fasciculated bundles in the striatum was performed by

using NIH ImageJ software. Briefly, images of the caudoputamen

from different animals were taken at the same coronal level using

Figure 11. Potential signaling pathways involved in axonal
pathology induced by genetic or pharmacological disruption of
cholesterol homeostasis. A. p53 directly interacts with ROCK. Cortical
neurons cultured from wild-type mice were collected on DIV4 and
processed for immunoprecipitation (IP) with anti-mu-p53 antibodies
(monoclonal made in mice) or control mouse IgG; immunoblots (IB) were
probed with anti-p53 or anti-ROCK2 antibodies (both are rabbit
polyclonal). WL, whole lysates. B. Perturbation of cholesterol transport,
either genetically or pharmacologically, induces abnormal p38 MAPK
activation, which then activates Mdm2 resulting in p53 degradation. p53

degradation disinhibits ROCK and stimulates local synthesis of RhoA
leading to further increase in ROCK activation. ROCK phosphorylates and
activates LIMK, leading to phosphorylation and inactivation of cofilin,
which favors stabilization of filamentous actin (F-actin). On the other
hand, numerous studies have shown that ROCK activation increases
myosin light chain (MLC) phosphorylation through direct phosphorylation
or indirectly through inhibition of MLC phosphatase-mediated dephos-
phorylation of MLC. Phosphorylation of MLC promotes its binding to F-
actin and stimulates F-actin contraction, leading to growth cone collapse.
Arrows indicate stimulation, while filled circles represent inhibition.
doi:10.1371/journal.pone.0009999.g011
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the same acquisition parameters. Analyzed area consisted of

450 mm x420 mm that was taken from two sections per mouse;

three different mice were used for each experimental group.

Means of integrated density and areas were quantified and

expressed as percentage of values from npc1+/+ mice.

Quantification of growth cone morphology and
immunoreactivity

Confocal images were taken using the 60x oil-immersion

objective. About 20–30 images were randomly selected from each

culture dish (20 mm in diameter); at least 4–6 dishes from 3–6

independent culture preparations/experiments were used for each

experimental group. Within an experiment, cultures used for

different experimental groups and designed for comparison were

stained simultaneously and imaged with the same acquisition

parameters. Quantification was done blindly by multiple research-

ers. Growth cones with less than 1 filopodium were considered

collapsed; 100 growth cones were quantified for each experimental

group. Image J software was used to quantify immunoreactivity

intensity of p-p53 and RhoA in axons and growth cones; the ‘‘total

integrated density’’ was used instead of ‘‘average intensity’’.

Briefly, individual growth cones were outlined manually and the

total integrated density was measured using Image J software. For

quantification of immunoreactivity in axons, a 50 mm fragment of

axons from the neck of growth cones towards the cell body was

selected and integrated density measured.

Immunoprecipitation and immunoblotting procedures
For immunoprecipitation, cultured cortical neurons were lysed

in lysis buffer [0.05 M Tris base, 0.9% NaCl, pH 7.6, and 0.5%

Triton X-100 plus Protease Inhibitors Cocktail (1:100; EMD

Biosciences) and phosphatase inhibitor cocktails (1:500; Sigma)].

Lysates were centrifuged at 16,0006g for 30 min at 4uC.

Supernatant were then cleared with a mixture of protein A/G-

agarose beads (each 50%) for 1 h at 4uC, and after a brief spin,

pellets were discarded. A small portion of the supernatants was

used as input. The reminder of the supernatant was immunopre-

cipitated overnight with control IgG or Tau1 antibodies.

Immunoprecipitates were captured by incubation with protein

A/G-agarose beads for 3 h at 4uC. After several washes, the beads

were resuspended in 2XSDS sample buffer [4% sodium dodecyl

sulfate (SDS), 100 mM Tris-HCl (pH 6.8), 10% b-mercaptoeth-

anol, 20% glycerol and 0.2% bromophenol blue] and boiled for

10 min. The resulting proteins were separated by SDS-PAGE, and

transferred to polyvinylidene difluoride membranes for immuno-

blotting using previously described protocols [17].

Statistics
All experiments were performed at least 3 times with

independent culture preparations. Results were expressed as

means 6 SEM, and p values were determined by one-way

ANOVA followed by post-hoc analysis; p values less than 0.05

were considered statistically significant.

Supporting Information

Figure S1 Decreased axonal p-p53 immunoreactivity in the

striatum of Npc12/2 mice. Immunofluorescent staining with

anti-p-p53 (green) and anti-axon specific neurofilament (SIM-312;

red) was performed on coronal brain sections from 2 week-old

Npc1+/+ and Npc12/2 mice. In the striatum, p-p53 immuno-

reactivity was clearly reduced in axonal bundles containing axonal

neurofilaments in Npc12/2 mice as compared to wild-types. p-

p53 immunoreactivity was also present in oligodendrocytes. Scale

bar = 50 mm.

Found at: doi:10.1371/journal.pone.0009999.s001 (6.53 MB TIF)

Figure S2 Over-expression of wild-type p53 blocks U18666A-

induced growth cone collapse. DIV3 hippocampal neurons from

wild-type mice were first transfected with EGFP-vector (A), EGFP-

wild-type-p53 (p53-wt; B), or EGFP-mutant-p53 (p53-mu; C);

18 h later they were treated with 5 mM U18666A for 2 min before

being processed for immunostaining with anti-E6AP antibodies

(red). Scale bar = 20 mm.

Found at: doi:10.1371/journal.pone.0009999.s002 (4.42 MB TIF)

Figure S3 Localization of p38 MAPK and Mdm2 in axons and

growth cones. DIV4 hippocampal neurons from wild-type mice

were treated with DMSO or 5 mM U18666A for 2 min before

being processed for immunofluorescence analysis of phosphory-

lated p38 (p-p38, green) and Mdm2 (p-Mdm2, green) distribution

in axons and growth cones. Neurons were doubled immunostained

with anti-E6AP antibodies (red). Inserts show enlarged images of

growth cones. Scale bar = 50 mm.

Found at: doi:10.1371/journal.pone.0009999.s003 (5.40 MB TIF)

Figure S4 ROCK inhibition with H1152 blocks U18666A-

induced p-p53 decrease and rescues growth cones in cultured

hippocampal neurons. Hippocampal neurons were treated on

DIV4 with the ROCK inhibitor, H1152 (100 nM) for 3 h before

being exposed to U18666A (U18, 5 mM) or DMSO for 2 min.

Neurons were then subjected to immunofluorescence analysis of p-

p53 (green) and E6-AP (red) distribution in axons and growth

cones. Scale bar = 20 mm.

Found at: doi:10.1371/journal.pone.0009999.s004 (6.77 MB TIF)

Figure S5 ROCK inhibition blocks U18666A treatment-

induced decreases in ‘‘conformational mutant’’ p53 in axons and

growth cones. DIV4 hippocampal neurons from wild-type mice

were treated with DMSO or 5 mM U18666A for 2 min with or

without pre-incubation with 10 mM Y27632. Neurons were then

immunostained with anti-p-p53 (green) antibodies and a ‘‘confor-

mational mutant’’ p53 specific antibody (mu-p53, red). Scale

bar = 20 mm.

Found at: doi:10.1371/journal.pone.0009999.s005 (3.21 MB TIF)

Figure S6 Localization of phospho-4EBP1 in axons and growth

cones. DIV4 hippocampal neurons from wild-type mice were

treated with DMSO or 5 mM U18666A for 2 min before being

processed for immunofluorescence analysis of phosphorylated

4EBP1 (p-4EBP1, green) and E6AP (red) distribution in axons and

growth cones. Inserts show enlarged images of growth cones. Scale

bar = 50 mm.

Found at: doi:10.1371/journal.pone.0009999.s006 (3.34 MB TIF)
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