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With the advances in material science, hybrid nanomaterials with unique mechanical,

electrical, thermal and optical characteristics have been developed. Among them,

hybrids based on filamentous forms of carbon, such as carbon nanotubes and carbon

nanofibers, in combination with inorganic nanoparticles attract particular attention.

Due to the structure and morphology, charge and energy transfer processes lead to

synergistic effects that allow the use of less material with higher productivity. To clarify

these issues, this review will summarize and discuss the relevant studies of the use of

inorganic compounds of various chemical groups in modifying carbon nanomaterials for

ecological applications.

Keywords: carbon nanotubes, carbon nanofibers, hybrid nanomaterials, inorganic nanoparticles, environmental

application

INTRODUCTION

Carbon basedmaterials have a number of different properties, and today, are used in all areas of life,
including industry, metallurgy, medicine, optics, and environmental protection. However, the rapid
development of industries demands more advanced materials with new characteristics created for
future uses. The solution was found in the creation of hybrid materials that not only combine the
properties of individual components, but also lead to synergistic effects.

Briefly, hybrid materials (HMs) are a result of mixing chemically different components with the
formation of interactions, such as Van derWaals, hydrogen bonding, weak electrostatic interactions
or covalent bonds. When formed, HMs have a structure different from that of their component
materials, but inherit some of their properties and functions. The important factor is the inner
structure of the hybrid. By manipulating this aspect, we can control the physicochemical properties
of the hybridmaterial. Combination of carbon nanomaterials (CNMs) with polymers and inorganic
nanoparticles improves mechanical (Gomathi et al., 2005; Zhao et al., 2011; Dillon et al., 2015; Wu
et al., 2017), electrical (Whitsitt and Barron, 2003; Hang et al., 2005; Ivnitski et al., 2008; Liang
et al., 2012), thermal (Cui et al., 2011; Chen L. et al., 2014; Aghabozorg et al., 2016; Hameed
et al., 2019), sorptive (Deng et al., 2005; Choi et al., 2010; Czech et al., 2015; Saud et al., 2015;
Navrotskaya et al., 2019) and catalytic (Wu et al., 2009; Paula et al., 2011; Aazam, 2014; Kim et al.,
2014) properties(Kumar et al., 2008; Wu et al., 2009; Cui et al., 2011; Dillon et al., 2015).
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FIGURE 1 | Creation and application of hybrid materials.

Thus, currently there emerges an opportunity to modify
CNMs with various nanomaterials using elements of the periodic
table, namely metal and metal oxide nanoparticles and inorganic
salts. In this context, this review summarizes recent progress
in the fabrication and utilization of hybrid materials based on
carbon nanomaterials and inorganic nanoparticles. It is especially
worth noting that carbon structures, such as graphite, diamond,
glassy carbon, graphene, amorphous powders, carbon fibrous
materials, carbon nanofibers (CNFs), and carbon nanotubes
(CNTs), are very interesting materials for research, development
and large-scale production. One of the many advantages of
CNTs and CNFs is their length to width ratio (>1,000),
which results in a filamentous structure which translates to
a high specific surface area (Wu et al., 2009; Paula et al.,
2011; Aazam, 2014; Kim et al., 2014). In this regard, this
review focuses solely on the advances of hybrid materials based
on CNFs and CNTs for environmental applications, which
distinguishes it from a number of works dedicated to carbon
nanomaterials (Figure 1).

CARBON NANOMATERIALS

Carbon Nanotubes
Carbon nanotubes were first reported by Radushkevich
and Lukyanovich in 1952 (Thakur and Thakur, 2016) and
scientifically reported by Iijima in 1991 (Iijima, 1991). Carbon
nanotubes are a seamless cylindrical graphene layer with half of a
fullerene molecule at each end (Sarkar et al., 2018; Vashist et al.,
2018a,b). CNTs are several nanometers in diameter, but several
millimeters in length (Thakur and Thakur, 2016). Depending on
the number of layers, CNTs can be single-walled (single-layer)
(SWCNTs) or multi-walled (multi-layer) (MWCNTs) (Dai, 2002;
Aqel et al., 2012; Das et al., 2014; Postnov et al., 2016). MWNTs
are more attractive for widespread use as they are cheaper than
SWCNTs (Aqel et al., 2012; Liu et al., 2013; Postnov et al., 2016;
Thakur and Thakur, 2016). MWCNTs are made up of several
concentric graphene pipes. Individual layers may be described as
SWCNTs, which can be a semiconductor or metal. CNTs have a

porous structure (Zeng et al., 2014; Chen et al., 2015; Zaytseva
and Neumann, 2016).

Carbon nanofibers (CNFs) are filamentous nanomaterials
that have mechanical and electrical properties similar to
CNTs (Bergmann and Machado, 2015). There are, however,
some key differences. Firstly, CNFs are not hollow. Also, the
structure of CNFs can be described as graphene layers arranged
perpendicularly or at an angle to the fiber axis (Klein et al., 2008;
Mishakov et al., 2008; Feng et al., 2014; Yan et al., 2015). The
most common CNF structures are “stack of coins” (or plane-
parallel, “stacked”), “Christmas-tree structure” (or stack of cones,
“fishbone,” coaxial-conical), and “stack of cups” (or “lampshades,”
“bamboo”) (Klein et al., 2008).

The similar structure of CNFs is due to their growing
mechanism, which depends on the geometric characteristics of
metal catalyst particles and the carbon source gas (Poveda and
Gupta, 2016). CNFs are about several micrometers in length and
have diameters ranging from 5 to 200 nm (Huang et al., 2010;
Feng et al., 2014). Ballistic electron transport and tensile strength
along the axis, as in diamond, are inherent characteristics of
CNTs. CNFs, on the other hand, have higher reactivity and
electron transfer through the sidewalls, which is important for
functionalization and electrochemical application, respectively
(Klein et al., 2008).

Purification and Functionalization of CNTs
and CNFs
One of the stages of hybrid materials preparation is removing
amorphous carbon, fullerenes, and metal catalyst particles
from the CNFs and CNTs surface (Eder, 2010). There are
several purification methods, each with its own advantages and
disadvantages. Process efficiency should be the main criterion
when choosing a purification method. It depends on the purity
of the starting material, time and temperature of oxidation, pH
and oxidizing agent. For example, carbon impurities can be
removed via oxygen treatment, which is simply passing an H2S
and O2 air mixture over the CNFs and CNTs. However, oxidation
often results in broken surface tubes or fibers, especially when
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combined with ultrasonic and high-temperature processing.
Oxidation via strong acids, such as HNO3, H2SO4, another
purification method, leads to broken surface tubes or fibers,
as well as the formation of various functional groups. For
the removal of metal catalyst particles without interfering with
the carbon nanostructure, non-oxidizing acid treatment (for
example HCl) is usually used. This leads to the fact that
the metal nanoparticles move into the solution and leave the
nanosystem. As an alternative to the above methods, high-
temperature annealing in vacuum or inert gas can be performed.
The processing temperature depends on the purpose and ranges
from 600 to 2,000◦C.

Much research has been dedicated to the surface
functionalization of nanotubes for the creation of new materials
with unique properties. This implies that CNTs are treated with
different substances to form different functional groups on the
surface (Thakur and Thakur, 2016). Covalent functionalization
occurs when a covalent bond is formed between the carbon
surface and the modifying agent. Functional groups can form at
the end or on a sidewall of the nanotubes and nanofibers. For
a single-walled carbon nanotube, this type of functionalization
can lead to a shift in the electronic structure and thereby
affect the conductivity. In the case of multi-walled carbon
nanotubes, the internal electronic structure is preserved and new
surface characteristics appear, which expands the possibilities of
their application (Thakur and Thakur, 2016). In fact, covalent
functionalization is carried out by organic molecules that interact
with carboxyl groups after surface oxidation (Bright, 2000; Sahoo
et al., 2010; Gao et al., 2012; Rabti et al., 2016).

Another type of functionalization—namely non-covalent
functionalization—arises through Van der Waals forces
and hydrogen bonding (Eder, 2010). Unlike covalent
functionalization, it one does not lead to numerous surface
defects or to any changes in the mechanical and conductive
properties. In this case, modifying agents are various active
substances and polymers that increase the solubility of CNTs
in hydrophilic solvents and their dispersion in a polymer or
ceramic matrix. Aromatic compounds (porphyrins, pyrenes)
can also be included here due to π-π–interaction with the
delocalized electron cloud of CNTs. The high curvature of CNTs
determines reactivity connecting with π-orbital mismatch. The
nanotube end, the fullerene hemispheres, are more reactive than
the sidewalls. These properties can be used for the selective
functionalization of CNTs.

Articles (Bright, 2000; Sahoo et al., 2010; Gao et al., 2012;
Rabti et al., 2016) pay special attention to the positive influence
of CNT surface modification. Through this process, the metal
catalyst particles enter the solution in the form of salt and
leave the nanosystem (Rao et al., 2007). In addition, the surface
modification of carbon nanomaterials can lead to the formation
of hydroxyl, carbonyl and carboxyl groups (Yang et al., 2009;
Zawisza et al., 2012), and is most effectively achieved when the
nanotubes (as sorbent) are oxidized using NaOCl, HNO3 and
KMnO4 (Rao et al., 2007; Ihsanullah et al., 2016).

Carbon nanofibers can also be subjected to surface
functionalization, but (unlike CNTs) their entire surface can
be modified. CNFs activation by nitric acid or electrochemical

oxidation can be used to form oxygen-containing groups without
degradation of CNFs structure (Huang et al., 2010).

SYNTHESIS OF HYBRID MATERIALS

Inorganic hybrids based on CNTs and CNFs can be synthesized
via ex situ and in situ methods. The first of these involves
the separate preparation of the inorganic component in the
desired size and morphology (usually spherical nanoparticles),
then the attachment of this component to the carbon surface
through covalent, non-covalent or electrostatic interactions. On
the contrary, the in situ method involves the synthesis of an
inorganic component in the presence of initial or functionalized
CNTs and CNFs, on which the component grows in the form
of particles, nanowires, or thin films (Eder, 2010). Filling the
inside of a CNTwith inorganic compounds from the gas or liquid
phase is carried out by capillary forces based on condensation
or wetting.

The valuable advantages of hybrid materials are the variety
of synthesis routes and their relative simplicity. These materials
can be obtained at low temperatures, through sol-gel and
hydrothermal reactions, as well as in various morphologies, for
example, in the form of three-dimensional structures, thin films
or nanoparticles. The choice of methods for the synthesis of
inorganic hybrids based on CNTs and CNFs and the degree of
their synergistic effect depend on the type and purity of carbon
materials, as well as their surface functionalization.

Sol-Gel Method
Sol-gel method is nowadays a common practice and can be said to
be a comparatively new type of synthesis. This synthesis method
results in the uniformed distribution of inorganic particles on the
surface of the carbon nanomaterials. This process is diffusion-
controlled, and the changing pH causes precursors to polymerize
and form the inorganic particles. Different types of inorganic
coatings can be created depending on the precursors used. For
example, the hydrolysis of titanium isopropoxide resulted in a
titanium dioxide matrix (Kim et al., 2011; Li et al., 2011; Hamid
et al., 2014; Ge et al., 2015); iron (III) nitrate–iron (III) oxide
matrix (Sun et al., 2005, 2018; Hassan et al., 2013; Wan et al.,
2015); and also probably the creation of ZrO2, HfO2, and Ta2O5

oxide gels (Miller and Ko, 1996; Benad et al., 2018; Kiselev et al.,
2019). Fixing elemental oxide on CNTs or CNFs surfaces changes
hybrid materials characteristics.

Hydrothermal Treatment
Hydrothermal (and solvothermal) synthesis is conducted with
a special piece of equipment called an autoclave under fixed
pressure and temperature. Reagents are loaded into the autoclave
then left in the oven for a period of time, allowing the
reaction to take place without direct supervision (Byrappa and
Adschiri, 2007; Yoshimura and Byrappa, 2008; Baruah and
Dutta, 2009). During hydrothermal synthesis, aqueous solvents
or mineralizers work under temperature and pressure to dissolve
and recrystallize usual insoluble materials and decompose or
recycle any waste material (Byrappa and Yoshimura, 2013). This
process is carried out at high temperatures. As the precursors
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are the same as with the sol-gel synthesis method, hydrolysis
is possible (Pirajno, 2009; Byrappa and Yoshimura, 2013). In
this study, synthesized core-shell-structured carbon nanofiber
(CNF)-titanate nanotubes (TiNT) by alkaline hydrothermal
treatment. The CNF core could act as a support, and the TiO2-
decorated TiNT shell could act as a photocatalyst. The surface
area increase as a result of the alkaline hydrothermal treatment
may be responsible for the efficient photocatalytic activity of
CNF-TiNTs (Kim et al., 2014; Kong et al., 2014; Guo et al., 2019).

Chemical Vapor Deposition (CVD) on
Catalyst Nanoparticles
This method is often used in the semiconductor industry to
obtain high clearing solid materials or thin films. Typically,
during CVD, the substrate (catalyst) is placed in the precursor
vapor and then the reaction produces the necessary substance.
This process is used to obtain clean CNMs by making CNTs
and CNFs then removing them from the nanoparticle-catalyst
(substrate) surface (Bhat, 2006; Kumar and Ando, 2010; Prasek
et al., 2011; Zhang et al., 2013; Bauman et al., 2017).

Nanomaterials can be used with the catalyst particles without
separation. This resulting material is a hybrid. Here, catalyst
particles act as both a substrate under the growing carbon
nanomaterials, and as an arming dopant (Lee et al., 2002; Nessim,
2010). For use in ecology or the medical industry, catalysts
must be non-toxic or must decrease the toxicity of carbon
nanomaterials (Yu et al., 2011; Cendrowski et al., 2014; Chen J.
et al., 2014).

In their publication, Cao et al. (2003) use this method to
control the position and growth of CNTs (their length and
direction) on the plane. Nanotube bridges connect samples
of SiO2 and demonstrate good electrical properties. It is
important to note that SiO2 neither coats CNTs nor decreases
the conductivity. This method seems simple, inexpensive and
controlled. Synthesized nanowires with dielectric shells present
a new possibility for the effective and simple creation of high-
pressure vertical broadband devices (Li et al., 2007).

Growing nanofibers on sphere nanoparticles leads to a
significant increase in the fiber surface area. The reaction of
growing CNTs decreases fiber strength, but the fiber module
significantly increases, with compounds having grown CNTs
fibers exhibiting significant improvement (up to 150%) in
apparent shear strength in the transverse direction (Qian et al.,
2010). The idea of hybridizing CNTs and Al2O3 is based
on agglomeration prevention of CNTs due to Van der Waals
interaction. Epoxide compounds with CNTs-Al2O3 demonstrate
magnification >100% of compressive strength and Young’s
modulus (Zakaria et al., 2016). The introduction of nanocatalysts
by this method is designed to improve the thermal properties of
CNMs (Kumar et al., 2008; Ahmad et al., 2009, 2010).

Electrostatic Self-Assembly
This method is realized due to the interaction of the charged of
particles on surface charged substrate, resulting in strong bond
formation and uniformed distribution (Fang and Böhringer,
2008; Liu Y. et al., 2009; Olmedo et al., 2011; Choi et al., 2014).
One-dimensional nanocomposite colloids are prepared through
electrostatic self-assembly of CdTe nanocrystals on both carbon

nanotubes (CNTs) and silica coated CNTs. The dense coverage
of these linear nanoparticle assemblies minimizes the spacing
between the nanocrystals, thereby facilitating efficient electron
and energy transfer along the nanotubes (Grzelczak et al., 2006;
Bogani et al., 2009; Liu Y. et al., 2009; Downes et al., 2015).

HYBRID MATERIALS FOR
ENVIRONMENTAL APPLICATIONS

Hybrid carbon nanomaterials are used in many areas of our life,
such as medicine, material science, and environmental concerns.
These are not the only areas, but, due to the main properties
of CNMs, the nanosystems would be most effective in the
aforementioned fields due to the synergetic effect (Table 1). In the
current climatic conditions, the environmental situation is such
that there is a rising demand to protect the environment from
toxic substances. Pollution, the release of harmful substances into
the environment, is one of the results of the human lifestyle.
The huge release of copper, mercury and other trace elements
has produced a list of complex environmental problems. These
materials are likely toxic to all living organisms. Highly sensitive
and selective results show that these substances have received
considerable attention in the last few years (Ghiasvand et al.,
2020). Removal of these compounds is a mandatory step in
protecting the environment. This topic has interested many
scientists from around the world (Song et al., 2010; Ashrafi et al.,
2014; Sareen et al., 2014; Zare et al., 2015).

The important area is removing divalent heavy metal ions
Cu2+, Zn2+, Pb2+, Cd2+, Co2+ from aqueous solutions. Pure
CNTs (Tofighy and Mohammadi, 2011) and CNFs (Zheng et al.,
2014) can be used as sorption agents. Preference of adsorption
onto the oxidized CNT sheets can be ordered as Pb2+ > Cd2+ >

Co2+ > Zn2+ > Cu2+ (Tofighy and Mohammadi, 2011). In the
research of Asmaly et al. (2015), adsorption capacities increase
in a row CNFs, untreated CNTs, CNFs-Fe2O3. The maximal
sorption capacity has a material CNTs-Fe2O3. In their research
Dr. Bagheri et al. propose a CNTs-magnetic SiO2 compound for
finding Cu2+ and Hg2+, detectable even by human eyes (Li et al.,
2007; Khani et al., 2010; Song et al., 2010; Bagheri et al., 2011;
Ganjali et al., 2011). Because of its widespread use in modern
society, copper poses serious environmental problems and is
potentially toxic to all living organisms. Highly sensitive and
selective detection of Cu2+ or Cu+ has received much attention
in recent years.

The environmental impact of uranium and its associated
health effects on humans has recently become a major concern—
mainly due to the use of weakened uranium in armor-piercing
bullets (Konstantinou et al., 2013). Radioactive uranium (VI)
is weakened and loaded unto silver hydroxide nanoparticles—
MWCNTs, which have been identified as an excellent adsorbent
for the removal of UO2+

2 ion from aqueous solutions (Zare et al.,
2015). In this technique, the application of an ultrasonic wave
during the synthesis of these nanomaterials led to properties,
such as high surface area; enhanced removal percentage and high
adsorption capacity; a high number of active centers; and a large
number of vacant, available reactive surface sites in addition
to metallic or semi-metallic behavior necessary for removal of
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TABLE 1 | Summary of the efficiency of various hybrid materials.

Hybrid material Toxic substances Sorption capacity References

CNTs-Sb Pb2+, Cd2+ 37.50 ng/g, 0.34µg/g (Ashrafi et al., 2014)

CNTs-AgOH UO2+
2 140 mg/g (Zare et al., 2015)

CNTs sheets Pb2+, Cd2+, Co2+, Zn2+, Cu2+ 117.65, 92.59, 85.74, 74.63, 64.93 mg/g (Tofighy and Mohammadi,

2011)

CNTs-Ni Methylene blue 312 mg/g (Jin et al., 2018)

CNTs-SiO2/Al2O3 NaCl 6.5 mg/g (Santos et al., 2018)

CNFs-Fe2O3, CNTs-Fe2O3 Phenol 1.684, 2.778 mg/g (Asmaly et al., 2015)

CNTs-Cu-BDC MOFs Bisphenol A 164.1 mg/g (Ahsan et al., 2019)

BN/rCNT S 43 mg/g (Xia et al., 2019)

CNF-GnP Methylene blue, Congo red 1178.5. and 585.3 mg/g (Yu et al., 2020)

PHO-CNF U (VI) 1550.0 mg/g (Lehtonen et al., 2020)

Hybrid material Dye Photocatalytic activity References

CNTs-TiO2 Reactive Black 5 90%/15min (Hamid et al., 2014)

CNTs-TiO2-SiO2 Bisphenol A, carbamazepine 50%/30min (Czech and Buda, 2015)

CNFs-Fe3O4 Methylene blue, Rhodamine B (RhB) 95%/15min (Ren et al., 2012; Si et al.,

2012)

CNFs-TiO2-ZnO Methylene blue 40%/15min (Pant et al., 2013)

CNTs-PbBiO2Br Ciprofloxacin 50%/30min (Wang B. et al., 2019)

CNTs-MoS2/SnS2 Cr (VI) 100%/90min (Dong et al., 2019)

CNTs-CoSnS Rhodamine B 91.7%/80min (Jeyagopal et al., 2020)

CNFs-Cu Chlortetracycline hydrochloride 68.2%/60min (Wang H. et al., 2019)

various toxic materials (Fasfous and Dawoud, 2012; Sun et al.,
2012; Chen et al., 2013; Tan et al., 2015).

Photocatalytic or adsorptive removal of organic pollutants
has often been based on the example of phenol, that propagates
to other toxic, organic, aromatic poisons (Ren et al., 2012; Si
et al., 2012; Asmaly et al., 2015; Tho et al., 2018). Also, it
can be methylene blue (Kim et al., 2011; Yu et al., 2011; Saud
et al., 2015; Yu et al., 2015; Tho et al., 2018), 4-chlorophenol
(Liu H. et al., 2009; Ihsanullah et al., 2015; Zouzelka et al.,
2016), Remazol Black Brilliant (Shakouri et al., 2016), visible-
light photocatalytic activity in the degradation of Rhodamine B
(RhB) (Shang et al., 2013; Jiang et al., 2015), bisphenol A and
carbamazepine (Czech and Buda, 2015), acetaminophen (Czech
and Buda, 2015). In the submitted article (Ivnitski et al., 2008)
nanocomposite CNT-TiO2/SiO2 was synthesized using the sol-
gel method. Up to a 2.2 eV decrease in the bandgap was observed
in the resulting material. Composites containing 8 mass % CNT
exhibited maximum photoactivity. This article (Whitsitt and
Barron, 2003) illustrates the decreased toxicity of this material.
There is no limit to a number of components for a potential
hybrid material. For example, TiO2/CCNFs (Graphene/carbon
composite nanofibers) TiO2/ZnO/CNFs, CdS/TiO2/CNFs, Ag-
AgI-TiO2/CNFs in articles (Kim et al., 2012; Pant et al.,
2013, 2014; Yu et al., 2015), respectively show multicomponent
hybrid materials. The composites showed high adsorption and
photocatalytic activity under irradiation due to the synergetic
effect between high adsorption ability, good conductivity of
CNMs, and extraordinary plasmonic effect of nanoparticles.

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

Today, the scientific community has obtained promising results
in the filamentous carbon based hybrid materials area. Hybrid
materials are unique in that their properties are not the sum of
the properties of the individual components, but their synergy.
The hybrid structure provides an additional degree of freedom,
which when developing new materials can lead to the emergence
of new or improved properties (conductivity, sorption, catalytic,
mechanical, optical, and magnetic properties). Currently, the
problem of environmental protection remains one of the most
urgent in the world. Hybrids based on carbon nanotubes and
carbon nanofibers in combination with inorganic (metal oxide)
nanoparticles can potentially solve the problems of water and
air pollution, and recycling. With them being highly efficient
sorbents and photocatalysts, higher productivity can be seen
using less material. Therefore, this area of the research has high
potential in the development of high-performance materials.
Meanwhile, future work toward obtaining the compatibility
between carbon nanomaterials and functional nanomaterials
is essential to advance the use of these hybrids in electronic,
magnetic and environmental applications. Additionally, a better
understanding of the key features of forming carbon based
hybrids (including by functionalizing the carbon surface) will the
development of novel protocols that can generate ideas for more
affordable and reliable approaches to the production of advanced
hybrid materials.
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