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Transient hysteresis and inherent stochasticity
in gene regulatory networks
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Cell fate determination, the process through which cells commit to differentiated states is
commonly mediated by gene regulatory motifs with mutually exclusive expression states.
The classical deterministic picture for cell fate determination includes bistability and hys-
teresis, which enables the persistence of the acquired cellular state after withdrawal of the
stimulus, ensuring a robust cellular response. However, stochasticity inherent to gene
expression dynamics is not compatible with hysteresis, since the stationary solution of the
governing Chemical Master Equation does not depend on the initial conditions. We provide a
quantitative description of a transient hysteresis phenomenon reconciling experimental evi-
dence of hysteretic behaviour in gene regulatory networks with inherent stochasticity: under
sufficiently slow dynamics hysteresis is transient. We quantify this with an estimate of the
convergence rate to the equilibrium and introduce a natural landscape capturing system’s
evolution that, unlike traditional cell fate potential landscapes, is compatible with coexistence
at the microscopic level.
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ARTICLE

n a deterministic description, binary decision making is

attributed to the irreversible state transition between two

mutually exclusive stable steady states in response to a signal.
This state transition is usually governed by regulatory motifs with
the capacity for bistability and hysteresis!, thus ensuring that the
system does not switch back immediately when the signal is
removed?.

The stochastic dynamic behavior of a gene regulatory network
is governed by a chemical master equation (CME), which
describes the time evolution of the probability distribution of the
system state. The stationary solution of the CME is unique and
independent on the initial state of the system? and therefore,
incompatible with memory effects or hysteresis. The incompat-
ibility of hysteresis with intrinsic noise in gene regulatory net-
works has been addressed, for example, by Lestas et al.%. However,
there are numerous works providing experimental evidence of
hysteretic behavior under significant levels of stochasticity”-S.

In the context of phenotypic switching and cell fate determi-
nation, three different scenarios have been distinguished and
experimentally observed for binary decision making: determi-
nistic irreversible’~11, stochastic reversible!2, and stochastic yet
irreversible state transitioning!3. Reversibility is understood here
as the capacity of individual cells to switch back in absence of
external signals. According to a pseudo-potential interpretation,
dynamics are directed by a pseudo-potential landscape divided by
a separatrix into two basins of attraction such that each local
minimum corresponds to a specific cellular state. Stochastic
irreversible transitions are found to appear when cells are initi-
alized on (or near) the separatrix!3.

In this article we provide a quantitative description of hyster-
esis and apparent irreversibility in stochastic gene regulatory
networks at the single cell level as transient effects, which dis-
appear at the stationary state. Our analysis is based on an accurate
approximation of the CME. This means that our results are valid
for purely stochastic regimes far from the thermodynamic limit,
and thus complementary to those based on the classical linear
noise approximation for systems closer to the thermodynamic
limit414, Since the stationary solution of the CME is unique?, if
the solution corresponds to a bimodal distribution, state transi-
tions at the single cells level occur necessarily in a random and
spontaneous manner, switching back and forth between regions
of high probability.

Fang et al.1> experimentally determined an energy potential-
like landscape as the negative logarithm of the probability dis-
tribution, as well as the transition rates, based on previous
theoretical studies!®. In this contribution, we provide a theoretical
basis that explains coexistence of different expression states. In
fact, under the assumption of protein bursting!’, we propose an
efficient form of the CME!7!8 that allows us to construct a
meaningful probability based landscape. Furthermore, a clear link
between the characteristic kinetic parameters of regulation
dynamics and the resulting landscape is established.

Results

Deterministic description. We consider the simplest gene reg-
ulatory motif exhibiting hysteresis, a single gene with positive
self-regulation (see Supplementary Fig. 1). In its deterministic
description, the evolution of the amounts of mRNA and protein
X (m and x, respectively) for the self-regulatory gene network is
given by the set of ODEs:

dm

— = - 1

i k,c(x) —y,m (1)
dx
— = - 2
I k,om —y x, (2)

where y,, and y, are the mRNA and protein degradation rates,
respectively. k,c(x) is the transcription rate, that is essentially
proportional to the input function c(x) which collects the
expression from the activated and inactivated promoter states.
This function incorporates the effect of protein self-regulation
and takes the form!%-20;

c(x) = (1 = p(x)) + p(x)e, (3)

with p(x) being a Hill function?! that describes the ratio of
promoter in the inactive form as a function of bound protein:

o) = = (4)

X
x4+ K

The above expression, can be interpreted as the probability of the
promoter being in its inactive state, where K = k.4 /k,, is the
equilibrium binding constant and H € Z\{0} is an integer (Hill
coefficient) which indicates whether protein X inhibits (H >0) or
activates (H < 0) expression. Finally, expression (3) includes basal
transcription or leakage with a constant rate ¢ = k,/k,, (see
Supplementary Fig. 1) typically much smaller than 1. The para-
meters of the Hill function employed along the paper are H = —7
(the value taken from To and Maheshri?2) and K = 100, whereas
€=0.05. Unless other value is indicated, we use a = 54.
Assuming that mRNA degrades faster than protein X we have that
m* =k, c(x)/y,, and model (1) reduces to:

dx

oo 5T abe(x), (5)
where T =ty,, a=k,/y,, and b =k./y,. Along the paper we
use the values y, = 4x107* s7! and y,, = 20y, s7!, taken from
Friedman et al.?>.

The self-regulatory network described by the deterministic
Egs. (1) and (2) shows bistability and hysteresis (see Fig. 1a). For
a range of the control parameter b the system evolves toward one
stable state or another depending on the initial conditions. We
therefore say that the system has memory, since steady state
values provide information about the system’s past. In systems
with hysteresis (dependency of the state of the system on its past),
forward and reverse induction experiments follow different paths
resulting in a hysteresis loop (the system switches back and forth
for different values of the control parameter)?4.

Stochastic description. Gene expression is inherently stochastic.
Taking into account that mRNA degrades faster than protein X in
most prokaryotic and eukaryotic organisms2>, protein is assumed
to be produced in bursts!%20:23.26 at a frequency a = k,, /y, (see
Eq. (5)). From this assumption, it follows20-23 that the temporal
evolution of the associated probability density function p:
R, xR, — R, can be described by a partial integro-differential
equation (PIDE) of the form:

22) I o [ ot = )etps) dy — acop(s. ). (6)

where x and 7 correspond with the amount of protein and
dimensionless time, respectively. The latter variable is associated
to the time scale of the protein degradation, as in the previous
deterministic description. In addition, w(x — y) is the conditional
probability for protein level to jump from a state y to a state x
after a burst, which is proportional to

o =) = e[ 52, )

with b, as in Eq. (5), representing the burst size. The stationary

form of the one dimensional Eq. (6) has analytical solution!%20
all

p*(x) = Clp(x)] 7 y~(106) 6% where p(x) is defined in (4) and C
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Fig. 1 Hysteresis in deterministic vs stochastic descriptions. a Hysteresis loop of the deterministic self-regulatory system (positive roots of Eq. (5)). For
values of the control parameter b below a given threshold, there is a unique stable steady state of low protein x toward which the system evolves
independently of the initial conditions. For input signals above a second threshold, the system evolves toward a unique stable steady state of high x. For
signal values within both thresholds, the system is bistable, and evolves toward one stable state or another depending on the initial conditions. In the
bistability region, enclosed by two saddle-node bifurcations, three different steady states coexist for a given b (stable and unstable branches are depicted
using solid and dotted lines, respectively). b Transient hysteresis in the stochastic self-regulatory system: slow transients lead to multiple mean states
leading to a transitory hysteretic behavior. Red and blue lines are transient solutions obtained from two different initial conditions in the form of Gaussian
distributions A (, o) with mean y and standard deviation o. When the system achieves the stationary state (black solid line corresponds to the stationary
solution of the PIDE model), there is a unique mean x-value for given b (hysteresis disappears). As time increases, the solution gets closer to the stationary

distribution. Simulations have been carried out in SELANSI'8

is a normalizing constant such that [;°p*(x) = 1. It has been
shown that the equilibrium solution associated to a CME is
unique and stable3. This is also the case for the Friedman Eq. (6)
whose stability has been recently proved by entropy methods?7-28,
which eventually makes it to qualify as a master equation itself. It
is important to remark that stability properties remain valid for
higher dimensions (i.e., multiple genes and proteins). While the
mean x-values of the stationary solution do not depend on the
initial conditions, the means obtained at the transients depend on
the initial number of proteins (Fig. 1b).

Note that under sufficiently slow dynamics, transient values
may look stationary, thus leading to plots (red and blue lines) that
resemble hysteresis, as different mean values coexist within a
given interval of the b parameter. Interestingly, this interval
coincides with bimodal distributions in which the two most
probable states are separated by a region, in the protein space,
with very low probability. This explains recent experimental
observations?® in which the range of apparent hysteresis was
found to shrink with time. Here we denote this phenomenon as
transient hysteresis and show how, in fact, the low probability
region acts as a barrier that hinders transitions between low and
high protein expression, contributing in this way to slow down
the dynamics toward the corresponding stationary distribution.
Supplementary Fig. 2 compares transient and stationary distribu-
tions for different values of the control parameter and different
initial conditions. This figure provides a clear illustration of how,
in presence of stochasticity, hysteresis is transitory: it shrinks with
time and disappears as the system achieves the stationary state.

In order to compute an estimate of the convergence rate to
equilibrium we make use of entropy methods?®?” and define the
entropy norm as G = [;~ H(u(r,x))p*(x)dx where H(u(,x)) is a
convex function in u, that in this study has been chosen to be
H(u) = u? — 1, with u = p(7,x)/p*(x). According to Pjaro et al.28
and Caiizo et al.?’, G satisfies the following differential inequality:

dG
&G 8
4 S MG, (8)

where # is a positive constant (its dimension is the inverse of
time) related to regulation (parameters H and K), as well as the

transcription-translation kinetics (a, b). The smaller #, the slower
its convergence toward the corresponding equilibrium solution.
Computing # requires a full simulation of (6) until the system
reaches the equilibrium distribution for each parameter on a
given range, what is computationally involved. In this work, the
PIDE model (6) is solved by using the semi-lagrangian method
implemented in the toolbox SELANSI!S.

Alternatively, we provide a truncation method to approximate
the rate of convergence that we use here for verification purposes.
The method makes use of the discrete jump process representa-
tion (see Supplementary Fig. 3), which is a precursor of Friedman
PIDE model, by making the protein amount a continuous
variable!”. With this method (see Methods section) we compute
the negative eigenvalue with smallest absolute value of the state
change matrix M which we refer to as A,. This eigenvalue is a
good approximation of the convergence rate 7.

Figure 2 compares the eigenvalue A, with the convergence rate
1 obtained by simulation, for different values of the parameter b.
In the parameter range where bimodal distributions occur, the
negative eigenvalue A, is a good approximation of the
convergence rate of the PIDE model. The figure also shows
how the smaller # values correspond to the solution near
equilibrium which lies within the hysteresis region in the b
parameter space. Remarkably, low convergence rates coincide
with the parameter region in which bimodal behavior take place.

The estimation of the convergence rate (either in terms of # or
A,) can be obtained from kinetic coefficients a and b previously
estimated from experiments. To that purpose, we can use the
PIDE model to find by least squares from typically time
dependent distributions obtained from a cell population by flow
cytometry, the best set of parameters. Alternatively, distributions
could be reconstructed from single cell time series. With the
resulting model, simulations will be executed to estimate rate of
convergence.

This example has served as a proof of concept to clarify how
hysteresis, as it is known in deterministic nonlinear systems (i.e.,
as a long-term stationary phenomenon) has not an equivalence in
a microscopic world governed by a CME. For stochastic systems,
hysteretic behavior is a transitory phenomenon, i.e., it can be only
obtained under transients that may resemble stationary solutions
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Fig. 2 Parameter region leading to bimodal distributions. a Mean x-values
plotted as a function of parameter b for different initial conditions.
Simulations have been carried out in SELANSI'8. b Convergence rates of the
solution (1 from (8) and A; from matrix M expressed in units of inverse of
time) toward the equilibrium distribution in logarithmic scale. Such slow
dynamics is responsible for the phenomenon of transient hysteresis. If the
system is allowed to achieve the equilibrium, hysteresis disappears. The
parameter region leading to bimodal distributions corresponds with the
slowest convergence rates

due to the extremely slow dynamics at which bimodal distribu-
tions evolve. Nonetheless, some correspondence can be drawn
between the most frequently visited states on a microscopic
system and the stable states on the deterministic counterpart (see
Supplementary Note 1).

Figure 3 shows that the logarithm of the eigenvalue decreases as
the parameters a and b become higher and smaller, respectively.
Variations of the logarithm of the eigenvalue are more pronounced
inside the bimodal (if one of the peaks lies at zero the bimodal
distribution is also known as binary) and bistable regions.
Moreover, as discussed by Pajaro et al.30, as the parameter a
increases the system approaches the thermodynamic limit.

Hysteresis in a mutual repression gene network. We consider
the gene regulatory network in Ellis et al.>! and Wu et al.!3, where
the Lacl promoter is repressed by the protein expressed by the
TetR promoter and vice versa, and ATc is used to inhibit the
expression of TetR (see details in Supplementary Note 2).

We simulate the dynamics from two different initial conditions,
po = N ([600,10],5I) and p, = N([50,200],5I), and take snap-
shots at 50, 100, and 150 h. In Fig. 4, we depict the dose-response
curves at t = 100 h for each initial condition (red and blue lines,
respectively) and the stationary dose-response curve. It can be
observed clearly how hysteresis disappears at the stationary. Note
that the transient hysteresis observed at t = 100 h is in agreement
with experimental observations by Wu et al.13,

The transient distributions are depicted in Supplementary Figs.
4 and 5 representing the corresponding marginal distribution for
the same snapshots. As it is shown, the distribution at 50h
resembles a stationary distribution, since no significant differ-
ences are observed with those obtained at t = 100 h and even at
t =150h. However, comparing those distributions with the
stationary distribution (see also third row in Supplementary Fig.
6), we clearly conclude that the system is not at the stationary
state. Thus, the corresponding dose-response curve at ¢t = 50h
describes a transient hysteresis phenomenon. Note that as shown
in Supplementary Figs. 6 and 7 even snapshots taken at much
longer times (e.g., 1500h) still differ significantly from the
stationary solution.

The results for + = 50h are coherent with the observation by
Wu et al.!13 that if a trajectory starts clearly within one of the basins
of attraction remains there for a long time. Note that the time
needed to reach the stationary state might be longer than the
natural timescales of relevance to the process. This is in accordance
with Wu et al.!3 where the transitions are characterized as
stochastic yet irreversible.

The convergence rates of the solution toward the equilibrium
are depicted in Fig. 5. As it happens for the 1D example in Fig. 2
the parameter region leading to bimodal distributions corre-
sponds with the slowest convergence rates; such slow dynamics is
responsible for the phenomenon of transient hysteresis.

Supplementary Fig. 8 compares the set of stable and unstable
equilibrium states obtained from a deterministic representation
with the most and least probable microscopic states, respectively.
Note that this equivalence does not support the existence of long-
term (stationary) hysteresis at the microscopic level. Essentially,
what the picture shows is that, rather than a parameter-
dependent preferential state among two stable ones, there are
two highly probable states that coexist for a given parameter
region on a cell population.

Discussion

These results provide us with an important insight on how to
interpret experimental results showing hysteretic behavior at the
level of gene regulatory networks: if the system is governed by
the CME, hysteresis is necessarily transient. Note that for slow
dynamics (high a and low b values) the time needed to reach the
stationary state might be longer than the natural timescales of
relevance to the process. This is in accordance with previous
studies reporting large mean passage times'# and also with Wu
et al.13 where they engineer a synthetic switch with stochastic yet
irreversible transitions (the same mutually inhibitory gene reg-
ulatory motif is analyzed next using our PIDE approach).

The characterization of a cell response as hysteretic or
non-hysteretic is important. For example, in a a recent study
concerning epithelial to mesenchymal transition (EMT), a
process through which epithelial cells transdifferentiate into
a mesenchymal cell fate, the authors characterize two types of
responses, hysteretic and non-hysteretic EMT, and report the
notable influence of hysteresis on the metastatic ability of cancer
cells?2,

Invoking pseudo-potential concepts to interpret dynamics in
GRN under fluctuations!3, although attractive from an intuitive
point of view, may be misleading since it cannot capture the
notion of coexistence. By coexistence we mean that two different
protein expression levels coinciding with the peaks of the bimodal
distribution coexist on a cell population (assuming no cell to cell
variability on the initial conditions).

The pseudo-potential landscape is not easy to compute either,
specially when increasing the number of proteins expressed.
Alternatively, we can use the stationary solution of (6) to
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Fig. 4 Transient hysteresis in the mutual repression gene network. a Mean states depend on initial conditions showing transitory hysteretic behavior for
Lacl. b Mean states depend on initial conditions showing transitory hysteretic behavior for TetR. Red and blue lines are transient solutions (t =100 h)
obtained from two different initial conditions in the form of multivariate Gaussian distributions A/ (g, £) with mean vector g and covariance matrix £. When
the system achieves the stationary state (black solid line corresponds to the stationary solution of the PIDE model), there is a unique mean x-value for
given ATc (hysteresis disappears). Initial conditions were chosen to be near the peaks of the stationary distribution. Simulations have been carried out in
SELANSI™®

construct on the natural framework of probability distributions, ~Methods
a landscape informing of the possible transitions or evolution of ~ Stochastic model and simulation. We use the PIDE model'7 described in Eq. (6).
the un derlying microscopic system. As we illustrate in the ggf :;\;)Sﬁls is simulated by a semi-lagrangian method implemented in the toolbox
example discussed in the supplementary material, its computa- ’
t1_0n ca,n be extenfl ed in a stra}ghtforward manner to l'arger Rates of convergence (truncation method). Let P : R, x N — [0, 1], be the
dimensional protein spaces. This can be of use to efﬁc1ently probability of having n proteins at time 7 = y, . The time evolution of P(z,n) is
identify most prevalent phenotypes coexisting on a given cell  given by the following CME with jumps that reads
population.

The main assumption of the PIDE model is protein bursting dP(t,n) &AL XK
(mRNA degrading faster than proteins). As reported in Péjaro ar ;g" Pri) i;ﬂ;gm(ﬂ m)+ (n+ )Prn+ 1) —nP(r,m),
et al.l7, the approximation remains generally valid even for )
degradation rate ratios around 2-3 (5 in the most restrictive
cases). In terms of protein copy numbers, although the PIDE  yhere the transition probability g/ is proportional to the production rate of mes-
model is valid in any range, we expect a significant effect of the  senger RNA, so that
inherent intrinsic noise for low copy numbers (in the order of

thousands and lower). Note that, for prokaryotic cells this is the g = %c(i)e%, ) > i. (10)
case for the majority of the proteins®3. Although in eukaryotic
cells proteins are in general more abundant there is still a sig- In order to obtain an approximation of the convergence rate of the PIDE model

nificant portion of the cases for which the copy numbers appear toward the §tationary s.tate, we use the trunc'ated form of the discrete Eq.'(9). Let N
34 . 35 be the maximum possible number of proteins. Then, Eq. (9) can be written in

to be low (see for example, Schwanhausser et al.’%, Shi et al>>, = " =

Nguyen et al.3%). We would like to remark that extrinsic noise is

not taken into account in this study since we are quantifying the dP(,n)

R / 11
effect of intrinsic noise in hysteresis. dr MP(x, ), )
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where the matrix M reads

—d, 1 0 - 0 0 0
g —d 2 - 0 0 0
& g -4 . 0 0 0
M= ) (12)
AR A A —dy, (N-1) 0
&g g & —dya N
& g F A 2 -1 —dy
with the elements of the diagonal d; being of the form
. N n ies_
= Ui+, i, 8 ifi=0,..., N—-1, (13)
N ifi=N,
equivalently
o ac(i) iy .
d=i+—F7—"—(1—e? ) fori=0,...,N. 14
TEETLN (14)

The steady state is given by the null space of matrix M, which is spanned by the
normalized eigenvector associated to the unique zero eigenvalue, as the associated
eigenspace has dimension one. Actually, since the graph associated to matrix M
(See Supplementary Fig. 3) has one trap, all the eigenvalues are negative except one
(which is zero)®”. By 1,, we denote the negative eigenvalue closer to zero, i.e., the
one with smallest absolute value.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data needed to reproduce the results are included in the text and
supplementary information.

Code availability
The semi-lagrangian method to simulate the PIDE model is freely avaliable and can be
downloaded at: https://github.com/selansi/Selansi.

Received: 5 December 2018; Accepted: 30 August 2019;
Published online: 08 October 2019

References

1. Veening, J. W., Smits, W. K. & Kuipers, O. Bistability, epigenetics and
bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193-210 (2008).

2. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65-68 (2008).

3. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry. 3rd edn
(Elsevier, Netherlands, 2007).

4. Lestas, L, Paulsson, J., Ross, N. E. & Vinnicombe, G. Noise in gene regulatory
networks. IEEE Trans. Autom. Control 53, 189-200 (2008).

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden,
A. Multistability in the lactose utilization network of Escherichia coli. Nature
427, 737-740 (2004).

Thomas, P., Popovic, N. & Grima, R. Phenotypic switching in gene regulatory
networks. Proc. Natl Acad. Sci. USA 111, 6994-6999 (2014).

Gniigge, R., Dharmarajan, L., Lang, M. & Stelling, J. An orthogonal permease-
inducer-repressor feedback loop shows bistability. ACS Synth. Biol. 5,
1098-1107 (2016).

Hsu, C,, Jaquet, V., Gencoglu, M. & Becskei, A. Protein dimerization generates
bistability in positive feedback loops. Cell Reports 16, 1204-1210 (2016).
Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’
that governs a cell fate decision. Nature 426, 460-465 (2003).

Wang, L. et al. Bistable switches control memory and plasticity in cellular
differentiation. Proc. Natl Acad. Sci. USA 106, 6638-6643 (2009).

Ferrell, J. E. Bistability, bifurcations, and Waddington’s epigenetic landscape.
Curr. Biol. 22, R458-R466 (2012).

Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic
equilibrium in populations of cancer cells. Cell 146, 633-644 (2011).

Wu, M. et al. Engineering of regulated stochastic cell fate determination. Proc.
Natl Acad. Sci. USA 110, 10610-10615 (2013).

Scott, M., Hwa, T. & Ingalls, B. Deterministic characterization of stochastic
genetic circuits. Proc. Natl Acad. Sci. USA 104, 7402-7407 (2007).

Fang, X. et al. Cell fate potentials and switching kinetics uncovered in a classic
bistable genetic switch. Nat. Commun. 9, 2787 (2018).

Wang, J. Landscape and flux theory of non-equilibrium dynamical systems
with application to biology. Adv. Phys. 64, 1-137 (2015).

Pajaro, M., Alonso, A. A., Otero-Muras, I. & Vazquez, C. Stochastic modeling
and numerical simulation of gene regulatory networks with protein bursting. J.
Theor. Biol. 421, 51-70 (2017).

Pajaro, M., Otero-Muras, L., Vazquez, C. & Alonso, A. A. SELANSI: a toolbox
for Simulation of Stochastic Gene Regulatory Networks. Bioinformatics 34,
893-895 (2018).

Ochab-Marcinek, A. & Tabaka, M. Transcriptional leakage versus noise: a
simple mechanism of conversion between binary and graded response in
autoregulated genes. Phys. Rev. E 91, 012704 (2015).

Péjaro, M., Alonso, A. A. & Vazquez, C. Shaping protein distributions in
stochastic self-regulated gene expression networks. Phys. Rev. E 92, 032712
(2015).

Alon, U. An Introduction to Systems Biology. Design Principles of Biological
Circuits. (Chapman & Hall/CRC, London, 2007).

To, T. L. & Maheshri, N. Noise can induce bimodality in positive transcriptional
feedback loops without bistability. Science 327, 1142-1145 (2010).

Friedman, N., Cai, L. & Xie, X. S. Linking stochastic dynamics to population
distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97,
168302 (2006).

Otero-Muras, I, Yordanov, P. & Stelling, J. Chemical reaction network theory
elucidates sources of multistability in interferon signaling. PLoS Comp. Biol.
13, 1005454 (2017).

Dar, R. D. et al. Transcriptional burst frequency and burst size are equally
modulated across the human genome. Proc. Natl Acad. Sci. USA 109,
17454-17459 (2012).

Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden,
A. Regulation of noise in the expression of a single gene. Nature Genet. 31,
69-73 (2002).

Caiiizo, J. A., Carrillo, J. A. & Péjaro, M. Exponential equilibration of genetic
circuits using entropy methods. J. Math. Biol. 78, 373-411 (2019).

Péjaro, M., Alonso, A. A., Carrillo, J. A. & Vazquez, C. Stability of stochastic
gene regulatory networks using entropy methods. IFAC-PapersOnLine 49, 1-5
(2016).

Hsu, C., Jaquet, V., Maleki, F. & Becskei, A. Contribution of bistability and
noise to cell fate transitions determined by feedback opening. J. Mol. Biol. 428,
4115-4128 (2016).

Péjaro, M. & Alonso, A. A. On the applicability of deterministic
approximations to model genetic circuits. IFAC-PapersOnLine 49, 206-211
(2016).

Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction
of synthetic gene networks with predicted functions. Nat. Biotechnol. 27,
465-471 (2009).

Celia-Terrassa, T. et al. Hysteresis control of epithelial-mesenchymal
transition dynamics conveys a distinct program with enhanced metastatic
ability. Nat. Commun. 9, 5005 (2018).

Soufi, B., Krug, K., Harst, A. & Macek, B. Characterization of the E. coli
proteome and its modifications during growth and ethanol stress. Front.
Microbiol. 6, 103 (2015).

Schwanhiusser, B. et al. Global quantification of mammalian gene expression
control. Nature 473, 337-342 (2011).

Shi, T. et al. Conservation of protein abundance patterns reveals the regulatory
architecture of the EGFR-MAPK pathway. Sci. Signal. 9, rs6 (2016).

6 | (2019)10:4581 | https://doi.org/10.1038/s41467-019-12344-w | www.nature.com/naturecommunications


https://github.com/selansi/Selansi
www.nature.com/naturecommunications

ARTICLE

36. Nguyen, C. et al. A sensitive and simple targeted proteomics approach to
quantify transcription factor and membrane proteins of the unfolded protein
response pathway in glioblastoma cells. Sci Rep. 9, 8836 (2019).

37. Fife, D. Which linear compartmental systems contain traps? Math. Biosci. 14,
311-315 (1972).

Acknowledgements

M.P. and A.A.A. acknowledge funding from grant PIE201870E041; 1.O.M. acknowledges
funding from Spanish MINECO (and the European Regional Development Fund) project
SYNBIOCONTROL (grant number DPI2017-82896-C2-2-R). C.V. has been partially
funded by the spanish MINECO project MTM2016-76497-R and Xunta de Galicia grant
ED431C2018/033.

Author contributions

A.A.A. and .LO.M. conceived the research. M.P. and A.A.A. performed the research. C.V.,,
M.P.,, 1.O.M.,, and A.A.A. contributed to the simulation methods. A.A.A., M.P., .O.M.,
and C.V. wrote the paper. A.A.A. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-12344-w.

Correspondence and requests for materials should be addressed to A.A.A.

Peer review information Nature Communications thanks Attila Becskei and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

| (2019)10:4581 | https://doi.org/10.1038/s41467-019-12344-w | www.nature.com/naturecommunications 7


https://doi.org/10.1038/s41467-019-12344-w
https://doi.org/10.1038/s41467-019-12344-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Transient hysteresis and inherent stochasticity in�gene regulatory networks
	Results
	Deterministic description
	Stochastic description
	Hysteresis in a mutual repression gene network

	Discussion
	Methods
	Stochastic model and simulation
	Rates of convergence (truncation method)
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




