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Novel anthracenone derivatives were designed through in silico studies including 3D QSAR, pharmacophore mapping, and
molecular docking approaches. Tubulin protein was explored for the residues imperative for activity by analyzing the binding
pattern of colchicine and selected compounds of anthracenone derivatives in the active domain.The docking methodology applied
in the study was first validated by comparative evaluation of the predicted and experimental inhibitory activity. Furthermore, the
essential features responsible for the activity were established by carrying out pharmacophore mapping studies. 3D QSAR studies
were carried out for a series of 1,5- and 1,8-disubstituted10-benzylidene-10H-anthracen-9-ones and 10-(2-oxo-2-phenylethylidene)-
10H-anthracen-9-one derivatives for their antiproliferation activity. Based on the pattern recognition studies obtained from QSAR
results, ten novel compounds were designed and docked in the active domain of tubulin protein. One of the novel designed
compounds “N1” exhibited binding energy −9.69 kcal/mol and predicted Ki 78.32 nMwhich was found to be better than colchicine.

1. Introduction

Cancer is a leading cause of death worldwide and accounted
for 7.6 million deaths (around 13% of all deaths) in 2008.
The search for new anticancer drugs plays central role in the
research programs of pharmaceutical companies and also for
many governmental organizations [1]. Despite these efforts,
the World Health Organization (WHO) estimates that the
rate of incidence of such diseases will increase by 50% by
the year 2020 [2]. It further projects that deaths from cancer
worldwide may continue to rise over 11 million in 2030 [3].
For this reason, new and effective drugs are needed urgently.

In recent years, a large number of anticancer agents have
been discovered to act at different levels [4] and have higher
efficacy and lower toxicity than existing treatments. These

databases can be exploited with the help of automated and
multivariate data analysis methods [5, 6]. The later relates
the molecular structures with their biological properties by
establishing computational models able to assign activity
values to new untested compounds [7, 8]. In the present
study we have targeted microtubule polymerization for the
inhibition of tumor cell growth. Microtubules are polymeric
protein complexes constructed from a heterodimer of two
highly homologous proteins known as 𝛼- and 𝛽-tubulin.
The assembly of tubulin heterodimers into a macromolecular
microtubule complex is a tightly regulated and dynamic
process [9]. They are involved in a broad range of cellular
processes, including the maintenance of cellular morphology
and active transport of cellular components throughout the
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cytoplasm [10, 11]. In the mitotic phase of the cell cycle,
microtubules are in dynamic equilibriumwith tubulin dimers
by assembling the tubulin into microtubules or, conversely,
disassembling microtubules to tubulin [12]. Disruption of
the dynamic equilibrium can induce cell cycle arrest and
ultimately lead to apoptosis. Therefore, the compounds that
could inhibit tubulin polymerization or interrupt micro-
tubule depolymerization would be useful in the treatment of
cancer.

In recent decades several compounds, mostly natural
products, targeting tubulin have been discovered and devel-
oped; some of them are already in clinical use, such as
epothilone, paclitaxel, and vindesine [13, 14]. Many of these
agents exert their effects by inhibiting polymerization of
tubulin to microtubules and almost all of them interact with
the 𝛼- and 𝛽-tubulin dimer, rather than with microtubule-
associated proteins (MAPs) or other proteins [15–18].

The Catharanthus bis-indole alkaloid vinblastine
(Figure 1(a)) and the taxanes, such as paclitaxel and
docetaxel, are important in the treatment of leukemias
and lymphomas as well as many types of solid tumors.
It was mainly the clinical success of these compounds
that has stimulated intensive research aimed at additional
microtubule-targeting drugs. The classic tubulin-binding
agent colchicine (Figure 1(b)), which was purified from
autumn crocus, has played an important role in elucidation
of the properties and functions of tubulin and microtubules
but has limited medicinal utility due to its high toxicity
to mammalian cells. A structurally diverse collection of
ligands, such as combretastatin A-4 [19] (Figure 1(c)) or
the epothilones [20] as well as some synthetic molecules
including sulfonamide E-7010 [21] (Figure 1(d)), triazolyl
indole T115 [22] (Figure 1(e)), and so forth are known to
exert cytotoxic activities through binding to tubulin.

Recently, tubulin polymerization inhibitors based on
anthracenone scaffolds have been intensively investigated.
A series of 10-(2-oxo-2-phenyl-ethylidene)-10H-anthracen-
9-ones was described as potent inhibitors of tubulin polymer-
ization [23]. These compounds were characterized by pos-
sessing an enone moiety between the anthracenone and the
terminal aromatic ring. It is well known that the chemical and
biological activities of anthraquinones, and related structural
systems are greatly affected by the substitution pattern of the
planar tricyclic ring system [24–29].

So in view of the above facts we hereby report the
designing of some novel antitumor agents by targeting the
inhibition of tubulin polymerization (ITP).This objectivewas
achieved with the help of conventional and modern QSAR,
pharmacophore mapping, and molecular docking studies
from a series of 1,5- and 1,8-disubstituted10-benzylidene-
10H-anthracen-9-ones and 10-(2-oxo-2-phenylethylidene)-
10H-anthracen-9-one derivatives. In the present paper we
account the pattern recognition studies through 3D QSAR
and pharmacophore mapping studies. The insight for the
binding mode of tubulin protein was established by docking
of selected compounds of the series; for example, ITP values
less than 1.8 𝜇M were docked into the binding pocket of
tubulin using AutoDock 4.2 program.The rationale for novel
designed compounds was established by docking of the

newly designed compounds in the active domain and further
through comparative analysis by considering colchicine as
standard.

2. Methods and Material

2.1. Data Set. A series of compounds of 1,5- and 1,8-disubsti-
tuted10-benzylidene-10H-anthracen-9-ones and 10-(2-oxo-
2-phenylethylidene)-10H-anthracen-9-ones were taken from
the literature [23]. The compounds were subjected to the
3D QSAR studies for their antiproliferation activity. Selected
representative compounds were further subjected to docking
studies in the active domain of tubulin protein to validate the
docking methodology.

There was high structural diversity and a sufficient range
of the biological activity in the selected series of these
derivatives (Table 1) which encourage us to select the data
set for 3D QSAR and docking studies. The biological activity
values (IC

50
(nM)) were used as dependent variable.

All the compounds were built on 2D drawing workspace
of molecular modeling software VLife MDS 3.5 (VLife
Sciences Technologies Pvt. Ltd., Pune, India) and then
the structure was exported to three-dimensional space for
further analysis. The software was installed on Sony VAIO
workstation having core 2 duo processor and windows 7 as
operating system. All the molecules were batch optimized for
minimization of energies using Monte Carlo conformational
search with 10000 cycles [30] and Merck Molecular Force
Field (MMFF) fields. All the 36 molecules of the series were
aligned (Figure 2(a)) using template based alignmentmethod
by choosing a minimum common structure as “Template”
(Figure 2(b)) and the most effective one as the “Reference
Molecule” (Figure 2(c)). The goal was to obtain optimal
alignment between the molecular structures necessary for
alignment of compounds [31]. These aligned conformations
were used to generate the predictive 3D QSAR models.

2.1.1. 3D QSAR Methodology. For 3D-QSAR studies the
aligned molecules of the series were exported to 3D-QSAR
module worksheet. Activity of the molecules was fed in
their respective columns. This was followed by the field
computation of various electrostatic and steric descriptors
available in the VLife descriptors list, which resulted in 2080
columns. The term descriptor has been utilized to indicate
field values at the lattice points.The columnswith fixed values
were considered as Invariable columns and were deleted.The
optimal training and test sets were generated using the sphere
exclusion algorithm. This algorithm allows the construction
of training sets covering descriptor space occupied by repre-
sentative points. A training set of 28 molecules and a test set
of 8molecules were generated. Once the training and test sets
were generated, the matrix with calculated descriptors was
applied to one of the modest statistical treatment methods,
that is, 𝑘NN-MFA (𝑘-Nearest Neighbor Molecular Field
Analysis). In this methodology the antiproliferation activity
of the compounds was taken as dependent variable and the
rest of the columns were considered as independent variable.



International Journal of Medicinal Chemistry 3

N

N

OH

HN
O

O O

N

H

H

OH

O
O

O
O

(a) Vinblastine

O

OOO

O
O

H
N

(b) Colchicine

O

OO OH

(c) Combretastatin A-4

S N
N
H

HN

OH

O O

O

(d) Sulfonamide E-7010

NN

N

N
O

O

O

(e) Triazolyl indole T115

Figure 1: Reported tubulin interacting agents.
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Figure 2: (a) Aligned molecules of the series. (b) Template Molecule for the alignment. (c) Reference molecule for the alignment.



4 International Journal of Medicinal Chemistry

Table 1: Structure of the molecules taken into study.
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Serial
number CPD R1 R2 R3 R4 R5 R6 R7

K562 ITP
(IC50 𝜇M) (IC50 𝜇M)

1 16a H OCH3 H H H Cl Cl 0.61 0.87
2 16b OCH3 OCH3 OCH3 H H Cl Cl 10 >10
3 16c OH OCH3 H H H Cl Cl 0.25 0.36
4 16d OCH3 OH H H H Cl Cl 5 6.8
5 16e H H OCH3 OH H Cl Cl 5 >2𝜇M
6 16f H OCH3 H OH H Cl Cl 0.5 1.6
7 16g OCH3 OH OCH3 H H Cl Cl 2.0 1.66
8 16h H OCH3 OH OCH3 H Cl Cl 0.10 0.36
9 20c H OCH3 H H Cl H Cl 1.40 0.69
10 20e OCH3 OCH3 OCH3 H Cl H Cl 18 ND
11 20i OH OCH3 H H Cl H Cl 0.21 0.42
12 26a H H H H H OH OH 2.3 >10
13 26b H OCH3 H H H OH OH 2.0 4.0
14 26c OCH3 OCH3 H H H OH OH 2.0 >10
15 26d OCH3 OCH3 OCH3 H H OH OH 2.6 >10
16 26e H OH H H H OH OH 2.0 ND
17 26f OH OH H H H OH OH 2.6 ND
18 26h OH OCH3 H H H OH OH 1.50 1.93
19 26i H CF3 H H H OH OH 1.7 ND
20 26j H NO2 H H H OH OH 1.7 >10
21 27 H OCH3 H H H OCH3 OCH3 1.42 >2
22 28c OH OCH3 H — H Cl Cl 1.60 1.20
23 29b H OCH3 H — Cl H Cl 13 ND
24 29c OCH3 H H — Cl H Cl 15 ND
25 29f OH OCH3 H — Cl H Cl 5.10 ND
26 31a H H H — Cl H Cl 0.29 1.70
27 31b H OCH3 H — Cl H Cl 0.22 0.53
28 31c OCH3 H H — Cl H Cl 0.25 0.69
29 31d OCH3 OCH3 H — Cl H Cl 0.24 0.69
30 31e OCH3 OCH3 OCH3 — Cl H Cl 0.23 0.36
31 31f H Cl H — Cl H Cl 1.60 ND
32 31g H Br H — Cl H Cl 1.70 0.51
33 31h H NO2 H — Cl H Cl 1.90 ND
34 31i H OCOCH3 H — Cl H Cl 3.4 0.41
35 32a H OCH3 H — H Cl Cl 0.93 0.73
36 32b OCH3 OCH3 OCH3 — H Cl Cl 0.72 1.62
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Like many 3D QSAR methods 𝑘-Nearest Neighbor
molecular field analysis (𝑘NN-MFA) requires suitable align-
ment of given set of molecules. This was followed by genera-
tion of a common rectangular grid around themolecules.The
steric and electrostatic interaction energies were computed at
the lattice points of the grid using a methyl probe of charge
(+1). These interaction energy values were considered for
relationship generation and utilized as descriptors to decide
nearness between molecules.

2.2. Feature Selection and Model Development. Feature selec-
tion is a key step in QSAR analysis. An integral aspect of
anymodel-building exercise is the selection of an appropriate
set of features with low complexity and good predictive
accuracy. This process forms the basis of a technique known
as feature selection or variable selection [32]. Among several
search algorithms, stepwise (SW) forward-backward variable
selection method, genetic algorithms (GA), and simulated
annealing (SA) based feature selection procedures are most
popular for building QSAR models and can explain the
conformational preference more effectively. In search of the
best models with improved 𝑞2 and pred 𝑟2 values, each of the
variable selection methods was attempted with the optimal
changes in statistical parameters until we got an acceptable
3D QSAR model. The three satisfactory 3D QSAR models
(A, B, andC) generated by changing the statistical parameters
have been reported here.

“Stepwise Forward-Backward” process was chosen as
variable selection method for “Model A” along with cross
correlation limit 0.5, variances cut-off zero, and “mean
centering” as scaling method for the development of this
model. Further, for 𝑘-Nearest Neighbor parameters, maxi-
mum and minimum number of neighbors was set as 9 and 2,
respectively, along with “𝑘NNclassification” as the prediction
scheme.

ForModel B “Simulated annealing” process was chosen as
variable selection method along with cross correlation limit
as 0.5, terms in model as 4, maximum temperature as 100,
minimum temperature as 0.01, iteration at given temperature
as 5, variance cut-off zero, and “mean centering” as scaling
method for the development of this model.

“Stepwise Forward-Backward” method was chosen as
variable selection method for “Model C” along with cross
correlation limit 0.5, variance cut-off two, and “None” as scal-
ing method for the development of this model. Further, for
𝑘-Nearest Neighbor parameters, maximum and minimum
numbers of neighbor were set as 9 and 2, respectively, along
with “Distance based weighted average” as the prediction
method.

2.2.1. Pharmacophore Mapping Studies. Generating a phar-
macophore is usually the first step for understanding the
interaction between a receptor and a ligand. Over the years,
pharmacophores have been successfully used in lead gen-
eration, scaffold hopping, mining small molecule databases,
and so forth [33, 34]. The pharmacophore tools can be used
to build pharmacophore models from a ligand, receptor,
or receptor-ligand complex. The tools can also be used to

analyze pharmacophore-ligand interactions, analyze phar-
macophore similarity, build and mine databases, screen
ligand libraries, and customize pharmacophore features.

Pharmacophore modeling experiment was carried out
to develop a hypothetical pharmacophore model for the
antitumor activity aiming to study the fitting of the series
of molecules under study. Pharmacophore mapping was
carried out through the Molsign package of VLife MDS
3.5 software. The pharmacophore model was developed by
choosing training set of most active anthracenone derivatives
including compounds 16f, 16g, 16h, 31a, 31b, and 31c.

3. Docking Studies

We have carried out molecular docking studies for selected
compounds of 1,5- and 1,8-disubstituted10-benzylidene-10H-
anthracen-9-ones and 10-(2-oxo-2-phenylethylidene)-10H-
anthracen-9-ones with the tubulin protein. Crystal structures
of tubulin protein in complex with colchicine (PDB ID:
1SA0) [35] with resolution 3.5 Å was downloaded from RCSB
Protein Data Bank to serve as the docking template. The
crystallographic water and ligand molecules were removed
from the tubulin complex. Docking studies were carried
out on AutoDock 4.2 [36], running on Linux Ubuntu 10.0,
installed on Pentium i3 workstation. ChemDraw ultra 8.0
software (Chemical Structure Drawing Standard; Cambridge
Soft Corporation, USA (2003)) was used for construction
of compounds which were converted to 3D structures using
Chem3Dultra 8.0 software and the constructed 3D structures
were energetically minimized by using MOPAC (semiem-
pirical quantum mechanics) with AM1 mozyme geometry,
100 iterations, and minimum RMS gradient of 0.10. The
program AutoDock Tools (ADT) released as an extension
suite to the Python Molecular Viewer was used to prepare
the protein and the ligand to convert the molecules into
AutoDock type, which is a prerequisite for the docking [37].
Pymol software [38] was used for visualization purposes of
docked confirmations.

All the receptor and ligand files were converted to “pdbqt”
format, which was pdb plus “q” charges and “t” AutoDock
type. For the macromolecule, polar hydrogens were added,
and then KollmanUnited Atom charges and atomic solvation
parameters were assigned. For the ligand, hydrogens were
added before computing Gasteiger charges, and then the
nonpolar hydrogens were merged. For each ligand, cor-
responding ATOM/HETATM and CONECT records were
extracted from protein complex in pdb file. After assigning
bond orders, missing hydrogen atoms were added. Then
in the AutoDock tools package, the partial atomic charges
were calculated using Gasteiger-Marsili method [39] and
after merging nonpolar hydrogens, rotatable bonds were
assigned. All amide bonds considered nonrotatable. For
receptor, the ligand, as well as any additional chains, and all
the heteroatoms including water molecules were removed.
By the use of AutoDock Tools all missing hydrogens were
added. Input molecules files for AutoDock experiments must
conform to the set of atom types supported by it. Therefore,
pdbqt format was used to write ligands, recognized by
AutoDock. The grid maps were calculated using AutoGrid
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[40]. In all dockings, a grid map with 66 × 66 × 66 points
and a grid spacing of 0.503 Å were used, and the maps were
centered on the ligand binding site.

Of the three different search algorithms offered by
AutoDock 4.2, the Lamarckian genetic algorithm (LGA)
based on the optimization algorithm [41] was used, which
utilizes (discredited) Lamarckian notation in which adapta-
tions of an individual to its environment can be inherited by
its offspring. For all dockings, the default values for all the
parameters were used. AutoDock 4.2 was used to generate
both grid and docking parameter files (.gpf and .dpf files).
The docking results from each calculation were clustered on
the basis of root-mean square deviation (RMSD) between
the Cartesian coordinates of the ligand atoms and were
ranked according to the binding free energy. The structure
with relative lower binding free energy and the most cluster
member was chosen for the optimum docking conformation.
For each docking experiment, the lowest energy docked
structure was selected from 100 runs. In order to evaluate
accuracy of docking, binding energy, root mean square
positional deviation (RMSD), and numbers in cluster were
used. Ki values (nM) were recorded for the lowest binding
energy mode. Lower binding free energy and lower Ki values
along with more numbers of clusters were considered as the
criteria of evaluation.

Ourmost active, selected representative compounds (16c,
16f, 16h, 20c, 20i, and 31a–e) were modeled by positioning
them in the colchicine (PDB ID: 1SA0) binding site in
accordance with the published crystal structure of colchicine
bound in the domain of chains A and B. The entire complex
was then subjected to alternate cycles of minimization and
dynamics. The intent was to get a satisfactory structure
for the complex that was consistent with the published
crystal structure. From the comparative docking study of our
compounds with standard binding compound (colchicine)
we could observe how our compounds might bind to the
polymer inhibition site, based on the knowledge of the
structure of similar active sites. We redocked colchicine
into the active site of the protein between chains A and B
(Figure 5) and then we docked with our compounds in order
to compare the binding mode of both ligand and the test
compound.

4. Results and Discussion

The importance and utility of 3D QSAR studies have been
established by applying it to known sets of molecules as
described above. In the present paper we further support
our study by pharmacophore mapping and docking of the
most active representative compounds in the active domain
of tubulin protein. In this study our main focus is to establish
pattern recognition of anthracenone derivatives for their
antiproliferation activity and to further design the novel
compounds with better binding affinity.

4.1. 3D QSAR Analysis. Several 3D QSAR models were gen-
erated by 𝑘NN-MFA in conjunction with Simulated Anneal-
ing (SA), Genetic Algorithms and Stepwise (SW) Forward

Table 2: 3D QSAR model summary for statistically significant
models.

Statistical parameter Model A Model B Model C
Training set size 28 28 28
Test set size 8 8 8
𝑘-Nearest Neighbor 2 5 2
𝑛 28 28 28
Degree of freedom 24 23 23
𝑞

2 0.8330 0.8008 0.7722
𝑞

2 se 1.8935 2.0682 2.2119
Pred 𝑟2 0.7456 0.6923 0.8243
Pred 𝑟2 se 1.2660 1.3923 1.0521
Descriptor S 692 E 448 S 1121
Range −0.3789 −2.8750 −0.7512

−0.3777 0.5249 −0.6729
S 813 S 957 E 583
−0.0707 −0.3844 10.0000
−0.0675 −0.3073 10.0000
S 714 E 1422 S 953

30.0000 0.1359 2.3057
30.0000 0.2768 15.4769

E 213 E 1113
0.0427 −3.7570
0.7289 −3.6936

Backward selectionmethods, and the corresponding few best
models generated were reported.

The training and test set for 3D QSAR studies were
distributed by random selection method. To ensure a fair
comparison, the same training and test setswere used for each
model’s development. Some statistically significant models as
shown in Table 2 have been considered to be discussed here.
The term selection criterion for the best model was set by
choosing maximum 𝑞2 value, pred 𝑟2 value, and the opti-
mum number of descriptors. The steric (S), electrostatic (E),
and hydrophobic (H) descriptors specify the regions, where
variation in the structural features of different compounds
in the training set leads to increase or decrease in activities.
The numbers accompanied by the descriptors represent its
position in the 3D MFA grid.

In model A we have found the 𝑞2 value = 0.8330 and
pred 𝑟2 = 0.7456 along with three steric descriptors that
has indicated the internal predictive power of the model
83.3% and external prediction 74.5%. The 𝑞2 se = 1.8935 (𝑞2
standard error) was also found to be in a veryacceptable range
which further indicated its significance in the prediction
and development of new anthracenone derivatives as novel
anticancer compounds.

Plot of the 𝑘NN-MFA (Figure 3) shows the relative posi-
tion and ranges of the corresponding important electrostatic
and steric fields. The negative range of descriptor S 692
(−0.3789 to −0.3777) indicates that in this region negative
steric potential was favorable for increase in the activity
and hence less bulky substituent would be preferred to
enhance the activity. In the same way another descriptor S-
813 (−0.0707 to −0.0675) indicated that less bulky substituent
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Figure 3: 3D QSAR model (𝑘NN-MFA plot) indicating relative
position of descriptors by green solid sphere.

Figure 4: Pharmacophore model representing the essential feature
by large tessellated sphere.The coloring scheme for the various large
tessellated spheres is as follows: hydrogen bond donor: magenta
color; hydrogen bond acceptor: buff color; hydrophobic: orange
color; aliphatic: orange color.

would be suitable to attain the optimum activity as the
molecules had already bulky substitution in this region.
On the other hand, descriptor S 714 having positive steric
potential (30) was found canvassing for more bulky group
substitutions in that region to enhance the activity.

Model B was found to have the 𝑞2 value = 0.8008 and
pred 𝑟2 = 0.6923 along with one steric and three electronic
descriptors that indicated the internal predictive power of
the model 80% and for external prediction 69.23%. The
𝑞

2 se = 2.0682 (𝑞2 standard error) was also found to be
in acceptable range which further supports the model to
be statistically significant. Further, for 𝑘-Nearest Neighbor
parameters, maximum and minimum numbers of neighbor
were set as 5 and 2, respectively, along with “𝑘NN classifica-
tion” as the prediction method. The steric descriptor in the
model S 957 having negative potential (−0.3844 to −0.3073)
indicating that less bulky substituent will be preferred in that
region for the favorable activity.The rest of the two electronic
descriptors have electrostatic potential in the positive range

Figure 5: Redocked structure of colchicine, overlapped with the
cocrystallized one.

(E 1422: 0.1359 to 0.2768 and E 213: 0.0427 to 0.7289) and
the other one has range (E 448: −2.8750 to 0.5249). So this
model favored the less electronegative as well as less bulky
substituent at the above mentioned points.

Model C was found to have the 𝑞2 value = 0.7722 and
pred 𝑟2 = 0.8243 along with two electronic and two steric
descriptors that indicates the internal predictive power of
the model 72.22% and for external validation 82.43%. The
𝑞

2 se = 2.2119 (𝑞2 standard error) was also found to be in the
acceptable range which proves this model to be significant
for the prediction purposes of novel anticancer compounds.
The steric descriptor S 1121 has negative electrostatic potential
range from −0.7512 to −0.6729 indicating the presence of
less bulky substituent favorable for the activity. Another
descriptor S 953 (2.3057 to 15.4769) indicated the need
of more bulky group substituents for the better activity.
The electronic descriptor E 1113 having potential (−3.7570
to −3.6936) indicated that less electronegative substituent
would be more favorable for the activity. Another electronic
descriptor E 583 having electrostatic potential 10.0 urged for
the less electronegative substituent for the optimum activity.
From Table 3 it is evident that the predicted activities of all
the compounds in the test set are in good agreement with
their corresponding experimental activities and optimal fit
has been obtained.

Among the 3 selected models, the best one was chosen by
the comparative study of Table 3. Model A has the highest 𝑞2
value (0.8330), least 𝑞2 se (1.8935), and appreciable pred 𝑟2
(0.7456); but model C has 𝑞2 value (0.7722), 𝑞2 se (2.2119),
and the best pred 𝑟2 (0.8243) that makes model A to be
considered the best with respect to the above parameters. So
model A can be chosen as well thought out for SAR studies,
pattern recognition, and prediction purposes.

4.1.1. Pharmacophore Mapping. The generated hypothetical
pharmacophore (Figure 4) showed five overlapping points
with similar chemical properties in the training set. The
mapping was based on these points; two aliphatic carbons,
two aromatic carbons, and one H acceptor. The larger tessel-
lated sphereswere indicative of the commonpharmacophoric
features identified in themolecules, and the smaller solid fea-
tures were for the individual molecules.The pharmacophoric
features shown by the tessellated spheres were indicative
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Table 3: Experimental and predicted activity by statistically significant 3D QSAR models.

Serial number CPD Experimental activity 3D QSAR
Model A Model B Model C

1 16a 0.61 0.954863 1.883334 0.557213
2 16b 10 11.499623 7.132195 9.999986
3 16c 0.25 0.269992 1.090947 0.673721
4 16d 5 3.800172 1.971551 4.94837
5 16e 5 3.150917 1.865987 5.00000
6 16f 0.5 0.35503 1.849256 0.552787
7 16g 2 1.050406 1.941135 1.385509
8 16h 0.1 1.049594 1.84818 0.160045
9 20c 1.4 0.955137 6.661933 1.623963
10 20e 18 15.152435 10.58147 17.299996
11 20i 0.21 1.40481 5.586993 1.042793
12 26a 2.3 2.150009 2.304161 2.173967
13 26b 2 1.750454 3.292628 1.167205
14 26c 2 1.015052 3.130678 2.307389
15 26d 2.6 3.799828 3.387593 2.553173
16 26e 2 2.149991 2.301159 2.126033
17 26f 2.6 2.300034 2.288864 2.420742
18 26h 1.5 1.460009 3.309645 0.987624
19 26i 1.7 1.700000 1.887163 1.700000
20 26j 1.7 1.700000 1.81553 1.700000
21 27 1.42 1.459991 1.87583 1.05444
22 28c 1.6 0.945001 1.686606 0.763163
23 29b 13 11.500377 10.46197 13.091177
24 29c 15 16.14408 7.330496 14.908823
25 29f 5.1 3.851212 4.275086 4.54596
26 31a 0.29 0.944996 5.508271 0.863511
27 31b 0.22 0.969919 1.652002 1.339498
28 31c 0.25 0.961289 0.397121 0.16449
29 31d 0.24 0.943851 0.394247 0.188792
30 31e 0.23 0.602966 0.95067 0.169955
31 31f 1.6 0.945004 5.805245 1.026488
32 31g 1.7 0.945002 5.826295 0.986579
33 31h 1.9 1.750006 5.900798 1.771209
34 31i 3.4 0.772665 1.069587 1.245819
35 32a 0.93 1.700000 1.900265 1.339195
36 32b 0.72 0.964958 1.363822 1.332919

of the necessary groups needed for the optimum activity.
Furthermore, it added the support for structural activity
relationship by giving the evidence that both aromatic rings
were necessary for activity along with one chorine group
and carbonyl group joining both phenyl rings. This fact was
also well supported by the reported activity that compounds
with chlorine substitution had better activity when replaced
with hydroxyl group. Moreover the model depicted that
the carbon atom joining the phenyl rings at the other end
was also a necessary part of pharmacophore. The coloring
scheme for the various large tessellated sphereswas as follows:
hydrogen bond donor: magenta color; hydrogen bond accep-
tor: buff color; hydrophobic: orange color; aliphatic: orange
color; negative ionizable: green color; positive ionizable:

violet color. From the model it is evident that the fitting
pattern of the antheracenone derivatives was supported by
the pharmacophore studies of the series.

4.1.2. Molecular Docking Studies

Molecular Docking Analysis for Representative Anthracenone
Derivatives. The docking studies provided us the insight
into structural relation of anthracenone derivatives with
the inhibition of tubulin polymerization (ITP) through the
binding domain of tubulin-colchicine complex. Docking
method was validated by redocking the colchicine with the
tubulin protein and the interactions obtained were consid-
ered as the standard to compare with the docking of selected
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Table 4: Docking summary for the selected eligible anthracenone derivatives.

CPD IPT IC50 (𝜇M) Binding energy (kcal/mol) Ki predicted activity Torsional energy (kcal/mol) H-bonding “residue”
16c 0.36 −8.26 882.37 nM 0.89 Ser-140

Gln-247
16f 1.60 −8.22 945.09 nM 0.89 Asp-251
16h 0.36 −8.07 1.22 uM 1.19 Asn-101
20c 0.69 −8.73 398.87 nM 0.6 Asn-258
20i 0.42 −8.80 351.79 nM 0.89 Val-181
31a 1.70 −8.62 482.67 nM 0.6 —

(only polar interactions)
31b 0.53 −8.91 293.25 nM 0.89 Val-238
31c 0.69 −8.98 259.6 nM 0.89 Val-181 NH
31d 0.69 −8.16 1.04 uM 1.19 Asn-101

Ser-178
31e 0.36 −7.91 1.6 uM 1.49 Asn-101

Ser-178
Colchicine 1.40 −9.47 114.73 nM 1.79 Val-181

Asn-101

compounds. Redocked structure of colchicine as shown in
Figure 5 revealed that hydrogen bonding interaction with
the residues Val-181 and Asn-101 was the key feature of
the successful molecules for ITP. The binding pattern of
colchicine was considered as the requisite for a molecule to
be active.

Though the anthracenone derivatives have different
structural scaffold but even the selected docked compounds
were found to have H-bond interactions either with Val-
181 or Asn-101. The docked compounds showed comparable
binding affinity, which was further in compliance with the
mode of action and bindingmode for colchicine.The binding
affinities were in the range of −8.98 to −7.91 kcal/mol as
shown in Table 4. Docked conformations of compounds 16h,
31d, and 31e showed interaction with the residue Asn-101
(Figures 6(c), 6(i), and 6(j), resp.). On analyzing the structure
of these 3 test compounds it gave us an idea that the methoxy
substitution of phenyl ring at meta position was responsible
for the H-bond interaction. Compounds 16f, 20c, and 31b
have methoxy substitution at para position but they were
showing H-bond interaction with different residues, further
conforming to the significance of methoxy group at meta
position.

Though 16f was bound to Asp-251 (Figure 6(b)) rather
than Val-181 or Asn-101 but even it exhibited good activity;
so the reason could be the polar interactions ofmolecule with
Ala-250 andAsn-249. Compounds 20i and 31c both exhibited
H-bond interactionwith the residueVal-181 (Figures 6(e) and
6(h)) with high potency, thereby establishing the importance
ofVal-181 residue for the activity.The close analysis concluded
that methoxy substitution at meta position in the phenyl
ring in compound 31c resulted in H-bond interaction with
residue Val-181. Compound 31c also has the significant polar
interactions with three residues, namely, Lys-254, Asn-258,
and Lys-352, further giving the explanation for its high-
est binding energy (−8.98 kcal/mol) and lowest inhibition

constant (259.6 nM), making it highly potent in the series.
Although compound 20i had methoxy substitution at para
position but interestingly it showed H-bond interaction with
residue Val-181 conferring it high potency, the credit for this
bonding went to the presence of adjacent hydroxyl group at
ortho position. Compound 16f also hadmethoxy substitution
at para position and hydroxyl group at ortho position but
it did not show H-bonding with Asn-101; the reason could
be the absence of electronegative carbonyl group and the
distance of hydroxyl group frommethoxy group. Compound
31a did not show any H-bond interaction (Figure 6(f)) which
indicated the reason that there was no methoxy group,
instead it had polar and van der Waals interactions which
led it to have good binding affinity (−8.62 kcal/mol) as well as
predicted inhibition constant (482.67 nM), thereby resulting
into good activity. One important reason for the binding of
themoleculeswithVal-181 orAsn-101was observed thatwhen
they had di or trimethoxy substitution (16h, 31d, and 31e) they
exhibited binding with Asn-101 (Figures 6(c), 6(i), and 6(j),
resp.) while only one methoxy substituted compound (20c)
exhibited binding with Asn-258 (Figure 6(d)). Compound
31b stands second after 31c with respect to the free binding
energy as well as for predicted inhibition. It showed no
hydrogen bonding but the polar interaction with Val-238
(Figure 6(g)). Furthermore, compounds 31a and 31b were
showing appreciable binding affinity with polar interactions
only butwithout anyH-bond interaction. By this comparative
analysis of binding mode of colchicine and the series of
compounds under the study we have attempted to identify
the important residues responsible for ITP.

Molecular Docking Analysis for the Novel Designed Com-
pounds. Based on the understanding of 3D QSAR results,
binding pattern of colchicine and selected docked com-
pounds, we have designed some novel compounds which
were further docked with the tubulin protein.
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Table 5: Docking summary for the designed compounds.

Compound Structure Binding energy
(kcal/mol)

Ki predicted
activity

Torsional energy
(kcal/mol) H-bonding “residue”

N1

Cl

Cl

HS
O

O

O

O

N
H

−9.69 78.32 nM 1.79

Asn-101
Asp-251
Asn-249
Leu-248

N2

Cl

Cl

HS
O

O

O

OH

O

N
H

−8.36 739.94 nM 2.09 Asn-101
Lys-254

N3

Cl

Cl

SH

O

O

O

N
H

−8.91 296.44 nM 1.49 Asn-101
Thr-197

N4

Cl

Cl

HS
O

S

O

O

N
H

−8.81 348.65 nM 1.79 Ser-178

N5

Cl

Cl

S

O

O

−8.26 881.59 nM 0.89 —
(only polar interactions)
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Table 5: Continued.

Compound Structure Binding energy
(kcal/mol)

Ki predicted
activity

Torsional energy
(kcal/mol) H-bonding “residue”

N6

Cl

Cl
HS

O

O

OH

O

N
H

−8.36 744.37 nM 1.79
Asn-101
Lys-254
Asn-249

N7

Cl

Cl
HS

O

S

OH

O

N
H

−8.23 928.62 nM 1.79 Asn-101

N8

Cl

Cl
HS

O

O

O

N
H

−8.48 611.75 nM 1.49 Asn-101

N9

Cl

Cl

SH

O

HO

NH

S

−7.03 7.0 𝜇M 2.68 Thr-179

N10

Cl

Cl

SH

O

HO

HO NH
−6.81 10.24 𝜇M 2.09 Val-181

The best binding affinity (−9.69 kcal/mol) and predicted
polymer inhibition constant (78.32 nM) were shown by com-
pound N1. The carbonyl group present in the side chain
of molecule had shown H-bond interaction with Leu-248

and polar interaction with Asn-249 residue belonging to
chain B. Moreover N1 also exhibited H-bonding with Asn-
101, Asp-251, and Lys-254 residues (Figure 7-N1). Compound
N2 exhibited moderate binding affinity −8.26 and predicted
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6: Visualization of docking mode of selected anthracenone derivatives. Yellow dashed lines are representing the hydrogen bonding
as well as polar interactions.

polymer inhibition constant 739.94 nM. It made H-bond
interaction with Asn-101 and LYS-254, imparting good bind-
ing affinity for the active domain. It also exhibited polar
interaction with Asn-249, Glu-183, and Asn-101 residues
(Figure 7-N2). Compounds N3 and N4 have shown bind-
ing affinity −8.91 kcal/mol and −8.81 kcal/mol with good
predicted activity 296.44 nM and 348.65 nM, respectively.
The H-bond interaction was observed with Asn-101 and
Thr-179 residues (Figure 7-N3). Compound N5 exhibited
an important polar interaction between carbonyl group of
anthracenone moiety and carbonyl group of Thr-179 residue
(Figure 7-N5); in contrast to other compounds it has not
shown any H-bond interaction. Compound N6 has shown
moderate binding affinity −8.36 kcal/mol and predicted poly-
mer inhibition constant 744.37 nM. N6 also had H-bond
interaction with Asn-101, Asn-249, and Lys-254, imparting
good binding affinity for the active domain. It also exhibited

polar interaction with Glu-71 andThr-179 residues (Figure 7-
N6). Compounds N7 and N8 have shown moderate binding
affinities −8.23 and −8.48 kcal/mol, respectively, and both
also exhibited H-bond interaction with Asn-101. Further
from compound 8, methoxy substitution has been proved
more beneficial for the activity (Figures 7-N7 and 7-N8).
Compounds N9 and N10 were also found to bind with poor
binding affinities showing poor binding free energy which
further supported our pharmacophore mapping model con-
forming that phenyl ring attached to anthracenone moiety
was essential for the activity (Figure 7, N9 and N10).

5. Conclusion

To establish a rational for SAR study, 3D QSAR studies were
carried out for the anthracenone derivatives taken into study.
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Figure 7: Visualization of docking mode of novel anthracenone compounds. Yellow dashed lines are representing the hydrogen bonding as
well as polar interactions.

Pharmacophore mapping studies were carried out for the
development of essential features required for the activity.
Further to understand the mechanism of binding of tubulin
heterodimerwith the ligands,molecular docking studieswere
carried out with the selected representative anthracenone
derivatives. The present work has led to the designing of
novel tubulin inhibitor molecules and some of which have
shown promising activities. The modern QSAR and phar-
macophoric studies have established the following points: (1)
both hydrophobic rings present in anthracenone moiety are
essential for the activity; (2) carbonyl group attached to the
anthracene moiety has been found as essential part of the
pharmacophore model; (3) chlorine atom at position one is
highly required for the activity; (4) less bulky substituents are
required at the carbon just linking with the anthracene and
optimum bulky groups at the phenyl moiety attached; and (5)
electronic descriptor E 583 having electrostatic potential 10.0
urges for the less electronegative substituent for the optimum
activity.

Docking studies with the representative anthracenone
derivatives explored that H-bonding of the ligand with Val-
181 and Asn-101 residues plays a very important role in
inhibition of tubulin polymerization. Docked conformations

of compounds 16h, 31d, and 31e explored that di- or tri-
methoxy substitution is favorable for the inhibition. In addi-
tion methoxy substitution atmeta position was favored more
for the activity. Residue Val-238 was explored in this study
as an important one because the compound (31b), having
interaction with Val-238, has shown good binding affinity.
On the basis of these insights obtained from the molecular
modeling studies, ten novel molecules were designed and
docked with the tubulin protein. One of our newly designed
molecules N1 has been found very promising as it exhibited
excellent free binding energy −9.69 (kcal/mol) and predicted
inhibition constant (Ki) 78.32 nMeven better than colchicine.
Compounds N3, N4, N6, and N8 have also exhibited compa-
rable binding affinity as well as predicted activity (Table 5).
From our studies we have found some residues such as Thr-
179, Ser-178, Lys-254, and Asn-249 important for the activity
as the molecules interacting with them have shown good
activity as well as binding affinity. So these residues need
to be explored more in future to find the better interacting
agents in the active domain of tubulin protein. The work on
anthracenone derivatives is ongoing in our lab for further
understanding the structure activity relationship and binding
mode with tubulin protein in order to obtain more ligands
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with better antitumor activity and less toxicity. In future these
promising novel compounds will be subjected for wet lab
synthesis after extensive in silico investigation.
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