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Abstract
Evidence suggests that motor experience plays a role in shaping development of the corti-

cospinal system and voluntary motor control, which is a key motor function of the system.

Here we used a mouse model with conditional forebrain deletion of the gene for EphA4

(Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal

tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb con-

straint during development to expand our understanding of experience-dependent CST

development from both basic and translational perspectives. This mouse develops dense

ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral

motor phenotypes. Together these phenotypes can be used as readouts of corticospinal

system organization and function and the changes brought about by experience. The

Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder

cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-

Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilat-

eral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor

representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experi-

enced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more con-

tralateral motor cortex motor representation in each hemisphere; more lateralized CST

projections; and substantially more lateralized/independent reaching movements. Changes

in CST organization and function in this model can be explained by reduced synaptic com-

petition of the CST from the side without developmental forelimb motor experiences. Using

this model we show that unilateral constraint largely abrogated the effects of the genetic

mutation on CST projections and thus demonstrates how robust and persistent experience-

dependent development can be for the establishment of corticospinal system connections

and voluntary control. Further, our findings inform the mechanisms of and strategies for

developing behavioral therapies to treat bilateral movement impairments and CST miswir-

ing in cerebral palsy.
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Introduction

Expression of skilled voluntary movements during development depends on the establishment
of functional connections between the motor cortex and spinal motor circuits and, in particu-
lar, those of the corticospinal tract (CST). Development of this motor pathway reflects an inter-
play between genetics and neural activity. Geneticmechanisms initially guide formation of the
CST and its connections, in part, through specification of neuronal subtypes and the regional
expression of guidance molecules [1–3]. The activity of the corticospinal system helps steer
postnatal development of the topography of spinal connections and the efficacy of the CST in
producing motor responses [4, 5].

Closely related to activity-dependent development, the role of early limb motor experience
in CST development is poorly understood. Experience-dependentdevelopment comprises
feed-forward signaling of spinal motor circuits, somatic sensory feedback produced during
movement, and possibly the particular association of the two. It is known that development of
the corticospinal system is affected by the loss of motor experiences during the early postnatal
period [6, 7]. And that preventing limb use late during postnatal CST developmental reduces
CST axon branching and presynaptic sites, reduces axon density in the dorsal horn, and
impairs forearm supination control [6, 7]. However, our knowledge is limited because there
have been few studies and the influence of experience on many important aspects of CST orga-
nization and function have yet to be examined.

In this report we use unilateral limb use restriction in a mouse model (Emx1-Cre:
EphA4tm2Kldr) with conditional elimination of EphA4 in the forebrain [8] to expand our
understanding of experience-dependentCST development from both a basic and a transla-
tional perspective.We chose this mouse model for three reasons. First, this mouse has a bilat-
eral CST due to the loss of the CST response to spinal midline axon repulsion induced by
forward EphrinB3 signaling [9, 10]. The bilateral CST offers a unique advantage for the study
of experience-dependent CST development because we can determine if experience affects the
laterality of the CST, a characteristic that determines independent upper limb use in humans
and forelimb use in rodents. Wild-type animals have too few ipsilateral CST projections to
inform effectively the role of experience. Second, in this model bilateral, or “mirror,” reaching
depends on the bilateral CST phenotype [8]. As this mirror movement is a behavioral outcome
of the altered CST projections in this model, it is strongly predicted that if there is a change in
the laterality of the CST brought about by altered motor experience, the expression of mirror
reaching will concomitantly change. Mirror movements are a characteristic feature of cerebral
palsy, a common developmental movement disorder [11, 12]. Importantly, people with the
hemiplegic form of cerebral palsy, typically produced by unilateral perinatal stroke, frequently
have a bilateral corticospinal system that helps explain the mirror movements [13]. This
mutant mouse thus models a key CST circuit change and motor impairment in cerebral palsy.
Third, apart from genetic models, the presence of a dominant bilateral CST is only associated
with the concurrent loss of the CST from the other hemisphere, such as after a large unilateral
perinatal motor cortex lesion. This genetic model thus affords the unique opportunity to exam-
ine potential adaptive and maladaptive contributions of the ipsilateral and contralateral com-
ponents of the CST to impairments in motor skills.

We addressed the question of whether restricting forelimb use unilaterally during early
development alters the laterality of the CST, its terminal and preterminal axon morphology,
the forelimb motor representation, and forelimb motor skills in maturity. We show that unilat-
eral limb constraint during development produced a more lateralized CST and motor cortex
motor map, as well as more independent/lateralizedvoluntary motor functions of the corti-
cospinal system. Changes in CST organization and function in this model can be explained by
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reduced synaptic competition of the CST from the side without motor experiences. Further,
our findings inform the mechanisms of, and strategies for developing behavioral therapies to
treat, movement impairments in cerebral palsy.

Materials and Methods

Animals

All procedures were approved by the Institutional Animal Care and Use Committees of City
College of the City University of New York. Experiments were conducted on neonates and
adult mice. Two animal groups were used: one based on mice carrying a conditional allele of
EphA4 (Emx1-Cre;EphA4tm2Kldr, hereafter referred to as EphA4 conditional knockout) pro-
vided as a heterozygous line by Dr. Klas Kullander [8, 14, 15] (MGI id: 4398683), and one
group of wild type (WT) mice purchased from Jackson laboratory. In each group, control unre-
strained animals were compared to animals in which one forelimb was restrained between P1
and P30. Heterozygous and homozygous offspring were identified through tail DNA PCR pro-
tocols, similar to our previous study [8]. S1 File presents a summary of body weights for the
restrained and unrestrained wild type and EphA4 conditional knockout mice. The surgeries
conducted in adult mice (axon tracing, cortical electrophysiology) were performed under gen-
eral anesthesia with a mixture of Ketamine/Xylazine (100mg/10mg/kg, i.p). The animals were
placed in a stereotaxic frame (Kopf Instruments) and body temperature maintained at 37°C by
a warming plate (Physitemp, TCAT-2LV, Kopf Instruments). For tracing studies, mice were
administrated an analgesic (Rimadyl1, 5mg/kg, s.c).

Forelimb constraint in neonate

Neonatal mice underwent unilateral forelimb constraint for a month beginning on P1; the con-
straint was removed on P30 (Fig 1A). The right forelimb was bandaged to the chest using surgi-
cal tape (3M Micropore). The neonates were returned to their mothers and checked twice
daily; reapplication of the bandage was carried out as needed. As the mice grew we reinforced
the surgical tape with tissue adhesive (3M™ Vetbond™). The constraint was removed at one
month of age and animals recovered for 2 weeks or longer before their performance was tested
on a battery of motor tasks. At the age of behavioral testing and euthanasia there were no dif-
ferences in body weight between constrained wild type and EphA4 mice (see S1 File).

Anatomical tracing

We used two different tracers for each hemisphere to identify the corticospinal tract axon label-
ing within the cervical enlargement gray matter. Biotinylated dextran amine (BDA 10.000MW,
Molecular probes, 10% in 0.1M PB; 200nl/injection site) was microinjected (UMP3, World
Precision Instruments) into one MCX and Dextran alexa fluor 488 (DAF 10.000MW, Molecu-
lar probes, 10% in 0.1M PB; 200nl/injection site) in the contralateral MCX. S1 File lists tracers
used for labeling CST axons in the two hemispheres and groups. For each tracer we made 3
injections, spaced by ~400μm (from bregma at AP = 0.4mm; ML = 1.2, 1.6, 2; DV = 0.8).

Tissue preparation and staining

Two weeks later, mice were given an anesthetic overdose and perfusedwith heparinized saline
followed by 4% paraformaldehyde in 0.1M PB. The brain and spinal cord were remove and
post-fixed in the same fixative at room temperature for 2h then transferred to 20% sucrose in
0.1M PB overnight at 4°C. Frozen coronal sections through the cervical enlargement (C7/8)
were cut at 40 μm for tracers histochemistry processing. To visualize BDA-labeled CST fibers,
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Fig 1. Unilateral forelimb restraint. A. Schematic showing a neonate mouse (P1) with unilateral constraint

of the right forelimb against the chest using a surgical bandage tape. B. Experimental timeline. C.

Experimental design. We traced separately the motor cortex (MCX) contralateral to the constrained right

forelimb (termed constrained MCX; blue) and the MCX contralateral to the unconstrained left forelimb

(termed unconstrained MCX; red).

doi:10.1371/journal.pone.0163775.g001
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free-floating sections were incubated at room temperature for 1 h in 3% donkey serum with
conjugated ExtrAvidin Cy3 (1:3000; Sigma). To visualize DAF 488-labeled fibers, sections were
incubated with the primary antibody (1:400 rabbit anti-alexa Fluor 488; Molecular probes)
overnight at 4°C. After washing with PBS 0.1M, sections were incubated in the secondary anti-
body at room temperature for 2h (1:500 donkey anti rabbit conjugated to FITC, Jackson
ImmunoResearch). Sections were washed, mounted on gelatin-coated slides, air dried over-
night, and cover slipped with Vectashield (Vector Laboratories).

Anatomical data acquisition and analysis

Topographic analysis. For anterograde tracing, images at C7/8 were acquired on a Nikon
inverted microscope under identical conditions of magnification, illumination and exposure to
minimize variability. Images were converted to 8-bit black and white file format (S1 Fig; Photo-
shop; Adobe) and underwent a blinded digital analysis using a selective threshold adjustment
to highlight only BDA/AF488-labeled axons. This process was the same as the one we have
used previously ([16]; See Fig 1 in [17]. These images were then used to create topographical
density maps (heat maps) to determine changes in ipsilateral and contralateral CST fiber pro-
jections. Axon distributions within the gray matter were analyzed in four transverse sections
for each mouse. For construction of heat maps, digital analysis of individual sections were cor-
rected for orientation and alignedwith one another according to fiduciarymarks (intersection
between the gray matter above the central canal and the dorsal median septum). Photoshop
TIFF files of individual sections of the spinal gray matter were skeletonized using ImageJ soft-
ware so that each axon corresponded to a line one pixel thick. This important step is imple-
mented in this this analysis so that the number and local density of pixels represent axon
length, not axon width. Next, files were exported and analyzed using a custom program written
in the Matlab (MathWorks), as previously describedby [18]. S2 File presents the Matlab analy-
sis script that was used. Briefly, Photoshop output files of individual sections of the spinal cord
were divided into 80x80μm2 regions of interest (ROIs). For each ROI, we computed the mean
density of BDA/AF488-labeled axons. A matrix of mean axon density was generated in Matlab
that preserved the mediolateral and dorsoventral dimensions of the distribution of CST fibers
labeled in the gray matter. Density is represented according to a color scale, from the lowest
density (blue) to the highest (red). Regional distribution maps were generated for individual
animals (e.g., see S2 Fig) and then averaged for all animals within each group.

Our anatomical data were corrected for variability in tracing efficacy between animals.
Using the program Neurolucida (MBF, Bioscience) we counted the number of BDA/AF488-la-
beled axons into a 25x25μm2 ROI at the middle of the dorsal funiculus contralateral to the cor-
tical injections.We divided individual section data (number of BDA/AF488-labeled axons of
contralateral and ipsilateral gray matter) by the average of the estimated number of dorsal col-
umn axons per animal. The average of each animal was then divided by the average of the
group to generate the correction factor for the animal’s data, as was done in our previous study
[19]. The analysis script included a term for the user to enter the correction factor for each ani-
mal. In this way “heat maps” were corrected for tracer efficacy. Importantly, there were no dif-
ferences in tracer efficacy for the two tracers (see S1 File). To analyze CST laterality, we
quantified the total length of the CST labeled axons within the gray matter by measuring the
total number of pixels on skeletonized images to single-pixel wide axons, using the program
ImageJ. We divided the number of CST labeled axons measured in the ipsilateral by the total
number of CST labeled axons in the gray matter to obtain a measure of system laterality.
Morphometric analysis of axon branching. We traced all labeled CS axon terminals

within a square ROI (95μm x95μm) in the medial portion of the intermediate zone of the gray
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matter bilaterally, on four transverse sections through the cervical enlargement in each animal
using Neurolucida (Microbrightfield, Inc). We chose this region because it consistently receives
CST projections from each hemisphere, albeit denser ipsilateral projections in conditional
knockout mice. A series of 30 optical slices, each 1 μm thick, comprising a z-stack image was
collected through regions of interest and a projection image was constructed.Axons were
reconstructed and the number of branch points and the length of each axon segment were
measured. Limb disuse has been shown to reduce CST axon branching in the spinal cord [7,
20]. Further, in somatic sensory cortex axon branching decreases with reduced input (whisker
trimming; peripheral nerve resection) and increases for spared inputs (e.g., [21]).

Intracortical stimulation of motor cortex (M1)

For M1 stimulation experiments, we used similar parameters as we did for previous stimulation
studies in mice [8, 14, 17, 22]. Briefly, we stimulated using tungsten microelectrodes (Micro-
probe, Inc.; 0.1 MO impedance; 81 μm shaft diameter, 1–2 μm tip diameter). Electrodepenetra-
tions were made perpendicular to the pial surface at the depths 0.8–0.9 mm. In all animals, the
stimulated region was the same, between 0.0 to 2.4 mm lateral to bregma and up to 2 mm ros-
tral to bregma. At each site, a 45ms train of 14 separate 200μs biphasic pulses was delivered at
330Hz from an isolated, constant current stimulator (model 2100, A-M Systems) at a rate of
0.5 Hz. The threshold was defined as the lowest current that produced a contralateral motor
effect. A maximal current of 100 μA was used. If no response was evoked at or below 100 μA,
the site was considered nonresponsive. For analysis, we computed the number of sites evoking
motor responses. Sites were referenced to its stereotaxic coordinate. The probability of evoking
a particular response at a particular site was computed for animals in each group.

Training and motor behavioral testing

Motor performance during the behavioral tests were videotaped at 60 fields/s, using a Canon
digital video camcorder (ZR 960, 41X zoom) at a shutter speed 1/500s with 280W illumination.
For each animal, the video file was imported into a video-editingprogram (iMovie, Apple Mac-
intosh computer) and viewed as single video frames at 30 Hz. Experimenters blinded to the
group genotyping analyzed the recordings of testing sessions.
Exploratory reaching behavior. To assess reaching, animals were placed in a clear glass

cylinder as we studied previously [8]. We videotaped and scored 30 reaching movements
toward the cylinderwall.
Grasping test. We assessed the ability to grasp a thin horizontal steel bar (diameter: 2mm)

for each paw separately by alternately constraining the right or left forepaw with surgical tape
reinforced with tissue adhesive. To avoid incorrect positioning, the mouse was assisted until
grasping firmly the bar. The test was performed on a single day with 15 trials and an inter-trial
interval of 1 min. The latency to falling was scored for each trial.
Grid walking. We assessed each animal’s ability to coordinate forepaw placement during

spontaneous locomotion on a wire grid floor (19x19 cm2, 0.8x0.8cm2 grid squares) placed
above a glass surface, raised 70cm from the floor. Prior to video recording, each mouse was
allowed to traverse the grid runway freely for 2mn. The mouse was filmed from below for
15min. A placement error was scored when the paw slipped through the grid opening. Thirty
steps were scored for each forelimb for each recording session.
Locomotor behavior. Treadmill walking was chosen to gain insights into the CST/ MCX

control during locomotion over obstacles placed on the treadmill belt (adaptive locomotion;
[22, 23]). The mice were given 2 min to acclimate to the treadmill environment, while the
treadmill remained stationary. During adaptive locomotion mice stepped over obstacles (1 cm
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height) equally mounted and spaced on the treadmill belt. Video recordings were analyzed for
assessment of responses. We described stepping as an alternate movement between the right
and the left limb, and hopping as bilateral limb movements when they lift and contact the
treadmill belt. We scored a set of 30-cleared sequence over the obstacle.

Statistical analysis

All statistical tests were carried out with GraphPad Prism software 5.0. Parametric tests were
used when possible. Intergroup comparisons were tested either with a one way-ANOVA, with
group as the independent factor and Bonferroni’s post- hoc analysis, or with Kruskal-Wallis
test. Comparison between two groups was evaluated by either a t-test or the Mann-Whitney
analysis. Intergroup comparisons were tested with a two-way ANOVA. All data are presented
as the mean ± s.e.m. P values<0.05 were considered statistically significant. Supporting data
files are available containing values used for plotting graphs in all figures (S3 File).

Results

In this study, we addressed the question of whether restricting forelimb use unilaterally during
early development, to reduce patterned motor system activity on the constrained side, alters
development of the laterality of the CST, its terminal and preterminal axon morphology, and
forelimb motor skills in maturity. This study was carried out in conditional EphA4 knockout
mice (Emx1-Cre;EphA4tm2Kldr; [8] that have extensive ipsilateral CST projections and bilateral
motor phenotypes, as well as wild-typemice. We prevented forelimb use unilaterally in neona-
tal EphA4 conditional knockout and wild-typemice between postnatal day P1 and P30 (Fig 1A
and 1B). Two types of controls were used in this study: 1) EphA4 conditional knockout mice
that received no constraint (typically termed EphA4 conditional knockout controls); and 2)
wild-typemice that received no constraint. In mature mice subjected to unilateral forelimb
constraint, we traced CST projections from the forelimb area of motor cortex (MCX) contralat-
eral to the constrained forelimb (termed constrained MCX) and contralateral to the uncon-
strained forelimb (termed unconstrained MCX, Fig 1C). We determined changes in the MCX
motor maps in each hemisphere due to unilateral limb constraint. We tested performance in a
battery of motor tasks to assay the laterality and efficacy of motor skills. In wild-type and
EphA4 conditional knockout mice that did not receive unilateral constraint only one hemi-
sphere was traced. We focus initially on changes in the conditional knockout mice, with a
description of changes in wild type mice at the end of the Results section.

Early postnatal limb constraint abrogates the ipsilateral CST

misprojections in conditional EphA4 knockout mice

To evaluate whether motor experience altered the patterns of CST projections, we first con-
structed color-coded topographic “heat” maps of the average local density of CST labeling in
the cervical enlargement (C7-C8; Fig 2A–2D). All heat maps are normalized for tracing efficacy
in each animal and plotted with the same color scale. Whereas unconstrained wild type con-
trols (Fig 2A) and unconstrained EphA4 conditional knockout control mice (2B) have similar
contralateral CST projections, EphA4 unconstrained controls have extensive ipsilateral projec-
tions. This is consistent with the loss of the CST response to spinal midline axon repulsion sig-
naling [9, 10]. The CST from the constrained MCX in EphA4 conditional knockout mice
(serving the constrained right forelimb) had a reduced contralateral projection and the ipsilat-
eral CST was nearly eliminated (Fig 2C). By contrast, CST projections from the unconstrained
MCX (serving the unconstrained left forelimb) were increased bilaterally (Fig 2D). Montage
images of labeling from one hemisphere of single representative animals are shown in S1 Fig
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Fig 2. Topographic distribution of labeled CST axon terminals at C7/8. Averaged heat maps for mice (n = 5) in each

group and condition (A-D). EphA4 conditional knockout controls (B) show extensive ipsilateral misprojections. Constraint

of one forelimb caused a significant decrease in the density of CST projections from constrained MCX (C) shifting the

distribution toward a pattern similar to WT group (A). CST projections from unconstrained MCX show a bilateral increase

(D). Contours enclosing the region of highest density of labeling (the border between yellow and green on the heat maps)

are shown for each condition. E. Mediolateral distributions of mean axon density from unconstrained MCX (red) and

constrained MCX (blue) within gray matter. The y-axis plots the regional density of CST projections. Note the substantial

ipsilateral projection from the unconstrained MCX that is as dense as the contralateral projection from the constrained

MCX. Light shading plots ±SEM. The arrow indicates the midline. Inset compares unconstrained distribution (red line) with

Experience-Dependent Corticospinal Development
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These results were consistent across animals; tracing from each of the constrained hemispheres
were strongly contralateral, whereas tracing from each unconstrained hemisphere expanded
contralaterally and ipsilaterally (S2 Fig).

The mediolateral distribution of CST labeling (Fig 2E; red, projections from unconstrained
MCX; blue, constrained MCX) in the conditional knockout mice reveals the enhanced projec-
tions bilaterally from the unconstrained MCX and near total loss of the ipsilateral projection
from the constrained MCX. An important question is if the changes in CST projections—
increases, as well as decreases, in ipsilateral and contralateral projections—were in proportion
with one another or if some changes were disproportionately greater. To address this question
we first compared the form of the medio-lateral CST gray matter axon distributions between
groups, by scaling the heights of the EphA4 conditional knockout control distributions to
reveal similarities in their shapes (Fig 2E, inset). The expanded bilateral termination field of the
unconstrained cortex (inset; thin red line) has the same distribution as that of the EphA4 con-
ditional knockout control with experiencewhen the amplitude of the EphA4 control distribu-
tion is scaled up to match the peak of the EphA4 unconstrained contralateral distribution (ie.,
the black and red lines match). By contrast, when the EphA4 conditional knockout control dis-
tribution is now scaled down to match the peak contralateral value of the constrained side, we
see that there are fewer ipsilateral projections than predicted by the scaled distribution. Impor-
tantly, the WT distribution (gray) matches the constrained contralateral distribution (i.e., gray
and blue distributions match). We next compared changes in axon distributions due to limb
constraint as a percent of the control CST projections in EphA4 conditional knockouts with
experience. The percent increases in the contralateral (87±25.2%) and ipsilateral (106±24.9%)
projections from the unconstrained MCX over control EphA4 values were not different
(p = 0.66 paired t-test). In contrast, the percent reduction in the ipsilateral (68.6±7.1%) projec-
tion from the constrained cortex was significantly greater than the reduction in the contralat-
eral (45.6±11.4) projection (p = 0.0094 paired t-test). This finding suggests that the
contralateral and ipsilateral expansions of the unconstrained MCX/CST were in proportion
with one another, but that the reduction in the ipsilateral CST from the constrained hemi-
sphere was disproportionately greater than the reduction in contralateral CST from the con-
strained hemisphere.

Do these modifications in CST projections produced by unilateral constraint result in a CST
that has a more contralateral anatomical organization? To answer this question we computed a
laterality index for the CST from the constrained and unconstrained MCX (ipsilateral gray
matter labeling divided by contralateral labeling for the MCX in each hemisphere; Fig 2F).
Wild type mice have a small laterality index, owing to the paucity of ipsilateral CST projections
(Fig 2F). EphA4 conditional knockout mice controls (black bar) have a significantly larger
index relative to the wild type mice (one-way ANOVA, p<0.0001, F3, 71 = 30.18; Bonferroni
post-test: p<0.05) due to the abundant ipsilateral CST misprojections. The CST from the

EphA4 conditional knockout control (black), scaled in amplitude to match that of the unconstrained distribution.

Constrained distribution (blue line) with EphA4 conditional knockout control, scaled in amplitude to match that of the

constrained distribution. The gray line is the distribution of WT controls. Control data replotted from [8]. F. Bar graphs plot

the average laterality index (measured as ratio of ipsilateral gray matter labeling divided by contralateral labeling for MCX

on each side). Data show a robust bilateral projection in EphA4 conditional knockout control mice with experience (black)

due to the abundant ipsilateral CST misprojections (one-way ANOVA, p<0.0001, F3, 71 = 30.18; Bonferroni post-test:

p<0.05). The unconstrained MCX reveals no significant changes (red), the constrained MCX shows a robust decrease in

the aberrant ipsilateral terminations leading to a more contralateral organization (blue) similar to WT group (gray)

(Bonferroni post-test: p>0.05). Constr. MCX.: Constrained motor cortex, unconstr. MCX: unconstrained motor cortex, Ctrl.:

control. The color bar represents the axon length in micrometers within in each region of interest. Calibration (A) for

heatmaps: 250 μm.

doi:10.1371/journal.pone.0163775.g002
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constrained MCX showed a significant reduction in the laterality index compared with control
EphA4 conditional knockout mice, and was not significantly different from the WT mice (Fig
2F; Bonferroni post-test: p>0.05). By contrast, the unconstrained MCX, despite the expanded
CST projection, did not show a significant change in its laterality index (Bonferroni post-test:
p>0.05). Our findings show a significantly more contralateral CST projection from the con-
strained MCX due to the preferential loss of ipsilateral projections. The CST from the uncon-
strained MCX did not becomemore bilateral, reflecting proportional increases in both
ipsilateral and contralateral projections.

Limb constraint changed CS Axon terminations morphology

We next determined if limb constraint also affected CST axon morphology in the spinal cord.
We conducted a morphometric analysis of CST axons within a 95 μm X 95 μm ROI in the
medial portion of the intermediate zone of the gray matter bilaterally (Fig 3D, inset). Thirty
micrometer thick Z-stacks were collected, followed by reconstruction of individual axons, and
identifying branch points. We chose this region because it consistently receives projections
from each hemisphere in both the knockout (dense ipsilateral) and control (sparse ipsilateral).
Representative photomicrographs within the ROI (A-C) show that, in relation to EphA4 condi-
tional knockout controls, the CST from the constrained MCX lost axon branches whereas the
CST from the unconstrained MCX gained axon branches. We quantified these changes by
counting the number of CST axon branch points for each group. Contralateral CST axon mor-
phology on the constrained side of the spinal cord (right) revealed an overall significant differ-
ence between the groups (Fig 3D; one-way ANOVA, p<0.0001, F2,51 = 37.70). Bonferroni
posthoc testing revealed a significant reduction in the mean number of contralateral CST axon
branch points per μm axon length from the constrained MCX and controls (p<0.05). Ipsilat-
eral branching from the constrained MCX was significantly less that either in controls (p<0.05,
Bonferoni posthoc) or from the unconstrained side (p<0.05, Bonferoni posthoc). By contrast,
the contralateral projections of the unconstrained MCX showed a significant increase in the
mean axonal branch points relative to EphA4 conditional knockout control mice (Fig 3D).
Interestingly, there was no difference in the ipsilateral branches for the unconstrained MCX
relative to EphA4 conditional knockout control mice (one-Way ANOVA, p<0.0001, F2,51 =
11.71; p>0.05, Bonferroni posthoc test). Our results show parallel changes in CST axon
branching and topography for the constrained MCX. For the unconstrained MCX, the absence
of increased ipsilateral branching may help to make this side somewhat more contralateral in
its function.

Limb constraint reduces motor cortex mirror sites in conditional EphA4

knockout mice

Our findings show a robust reorganization of the CSTs from each hemisphere when one fore-
limb is constrained during postnatal development. The disproportionate reduction in aberrant
ipsilateral termination density from the constrained MCX and loss of axon branching show
that the CST from the constrained hemisphere shifts to a more contralateral organization. The
increase in contralateral axon branching from the unconstrainedMCX, without either a signifi-
cant topographic laterality change or increased ipsilateral branching, suggest a shift to a more
contralateral organization from that hemisphere as well. To determine whether these changes
are physiologically important, we used intracorticalmicrostimulation (ICMS) of the cortical
forelimb motor representation. We determined if the MCX motor map in each hemisphere
became more contralateral, similar to what we found for the topographic and morphological
changes in CST projections. In each animal we stimulated 25 sites within the forelimb MCX
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area, and we distinguished those sites where the ipsilateral and contralateral evoked forelimb
responses were at the same joint and were obtained at the same current threshold (termed ‘mir-
ror movement’ sites) from sites in which there was only a contralateral forelimb movement at
threshold. Ensemble motor maps (Fig 4A and 4B) plot the probability of evoking a mirror
movement at each MCX site in relation to all evoked responses at that coordinate in all ani-
mals, according to a color scale. As we have previously shown for animals with normal limb

Fig 3. Forelimb constraint causes dual changes in CS axon terminals morphology. A-C confocal projection stacked image (30

optical slices). CST axon morphology in EphA4 conditional KO control (A), constrained MCX (B), and unconstrained MCX (C); ipsilateral

(left) and contralateral (right) CST. D. Bar graphs plot CST axon branching within ROIs (inset; average of 4–5 mice/group, 4 sections/

animal). Contralateral CST axon morphology on the constrained side (blue) of the spinal cord (right) revealed an overall significant

difference between the groups (one-way ANOVA, p<0.0001, F2,51 = 37.70). Bonferroni posthoc testing revealed a significant 50%

reduction in the mean number of contralateral CST axon branch points per μm originating from constrained MCX (blue) and controls

(dark gray, p<0.05). Importantly, the contralateral projections of the unconstrained MCX (red) showed a significant 1.8 times increase in

the mean axonal branch points relative to EphA4 control conditional knockout mice (dark gray). There was no difference in the ipsilateral

branches for the unconstrained M1 (light red) relative to EphA4 control conditional knockout mice (light gray) (one-Way ANOVA,

p<0.0001, F2,51 = 11.71; p>0.05, Bonferroni posthoc) but ipsilateral branching from the constrained MCX (light blue) was significantly

less that either in controls (p<0.05, Bonferoni posthoc) or from the unconstrained side (p<0.05, Bonferoni posthoc). The inset shows the

ROIs (95μm x95μm) we analyzed CS axon terminals morphology. Calibration: scale bar: 50μm.

doi:10.1371/journal.pone.0163775.g003
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experiences during development, wild type mice have no sites in which mirror movements are
evoked (see inset Fig 4A; all “blue” sites; [8]) and EphA4 control conditional knockout mice
have 80% of sites where mirror movements are evoked (inset Fig 4A; mostly “red” sites; [8]).
Unilateral limb constraint significantly reduced aberrant mirror movements evoked by M1
stimulation in both hemispheres. The constrained MCX (Fig 4A) showed a majority of sites
where mirror movements were not evoked (blue) and no sites were mirror movements were
evoked most frequently (red). The unconstrained MCX (B) also showed a substantial reduction
in mirror sites and a paucity of mirror movement sites, predicted on the basis of the strong
increase in contralateral CST axon branching (Fig 3D). Both the constrained and uncon-
strained MCX showed remarkable reductions in mirror movement sites compared with EphA4
conditional knockout controls (Fig 4C; constrained: 79% reduction; unconstrained: 55% reduc-
tion; p = 0.0004 Mann-Whitney test). This robust reduction in the representation of mirror
movements after unilateral limb constraint was not associated with a generalized change in the
current threshold to evoke a contralateral movement from the constrained or unconstrained
MCX compared with EphA4 conditional knockouts with limb experience (One way ANOVA,
p = 0.59). Interestingly, there was an increase in the threshold for evoking ipsilateral move-
ments from the constrained MCX (One way ANOVA, p = 0.003; Bonferoni post-test p<0.05).
This result also stresses that the ipsilateral projections from the constrained MCX were particu-
larly vulnerable to loss, whereas the contralateral projections were maintained within normal
limits. Our findings demonstrate that unilateral constraint produced a robust shift from
strongly bilateral MCX motor maps in each hemisphere to significantly more contralateral
maps.

Fig 4. Forelimb constraint reduces mirror sites in EphA4 conditional knockout mice. A, B. Color maps plot the occurrence of

evoked mirror movements at each MCX site. The percent of mirror sites is represented according to a color scale, from the lowest (blue)

to the highest (red). The constrained MCX (A) shows a propensity of sites where mirror movements were not evoked (blue) and no sites

were mirror movements were evoked most frequently (red). The unconstrained MCX (B) also showed a substantial reduction in mirror

sites and a paucity of mirror movement sites. C. Bar graphs plot the average (n = 8 mice; 25 MCX sites within each of 16 hemispheres) of

the percentage of sites from which the microstimulation evoked a mirror response. There was a 79% decrease in mirror sites from the

constrained MCX (blue) and a 55% reduction in the unconstrained MCX (red) compared with EphA4 conditional knockout controls

(p = 0.0004 Mann-Whitney test). The inset shows no mirror sites found in the WT at the threshold (all ‘‘blue” sites), whereas nearly all

sites in EphA4 conditional knockout controls evoked mirror movements (mostly “red” sites); reanalyzed from data in [8].

doi:10.1371/journal.pone.0163775.g004
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Unilateral limb constraint reduces bilateral exploratory reaching

movements in conditional EphA4 knockout mice

The motor map in MCX is regarded to represent the capacity for voluntary motor skills [18,
24]. The strongly bilateral motor map in EphA4 control conditional knockout mice likely
underlies the expression of mirror movements in voluntary control tasks [8]. We hypothesized
that with a reduction in the number of sites evoking bilateral limb (mirror) movements, there
would be a concomitant increase in independent forelimb use during voluntary control tasks.
We tested the laterality of motor performance in mature mice (see Fig 1, timeline) by assessing
forelimb exploratory reaching. This test allows the mouse to use either one or both forelimbs to
reach the walls of a cylindrical testing chamber. Wild type mice show a small incidence of
simultaneous use of both forelimbs in this task (black; 13.4±3.6) (Fig 5A). In contrast, EphA4
conditional knockout control mice use mirror reaching movements nearly 80% of the time [8].
Unilateral limb constraint caused approximately a 50% reduction in mirror movements while
reaching the cylinderwall, (from 73.21±3.9% in EphA4 conditional knockout controls to 39.2

Fig 5. Forelimb constraint reduces bilateral reaching movements in EphA4 conditional knockout mice. A. Stacked bar graphs

plot the average forelimb use (n = 10–13 mice/group) during exploratory reaching behavior. Wild type mice show a small incidence of

simultaneous use of both forelimbs in this task (black, left bar) In contrast, EphA4 conditional knockout control mice use mirror reaching

movements nearly 80% of the time (black, middle bar). Unilateral forelimb constraint caused approximately a 50% reduction in mirror

movements while reaching the cylinder wall (black right bar). The overall difference between the groups was highly significant (one-Way

ANOVA, p<0.0001, F2.31 = 57.70). Bonferroni post-hoc testing revealed a significant difference between EphA4 constrained and

conditional knockout control mice (p<0.05), indicating significantly more independent forelimb use during reaching. However, there still

was increased mirroring compared with wild type mice (Bonferroni posthoc: p<0.05,). B. Bar graphs plot the normalized mean value of

independent forelimb use. We found no significant change in right-left forelimb use in the EphA4 constrained mice (Fig 5B) (p = 0.44

paired t-test) and EphA4 conditional knockout control mice (p = 0.37 paired t-test). Thus, the reduction in mirror reaching movements is

due to improved independent limb use not a failure to use one limb.

doi:10.1371/journal.pone.0163775.g005
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±3.8% in EphA4 constrained mice). The overall difference between the groups was highly sig-
nificant (one-Way ANOVA, p<0.0001, F2.31 = 57.70). Bonferroni post-hoc testing revealed a
significant difference between EphA4 constrained and unconstrained control mice (p<0.05),
indicating significantly more independent forelimb use during reaching. However, there still
was increasedmirroring compared with wild type mice (p<0.05, Bonferroni posthoc test). We
wanted to ensure that the improvement in forelimb reaching movement was due to improved
independent limb use and not due to favoring use of one limb at the expense of the other. For
each mouse, we normalized the value of independent forelimb use to 100% and we computed
the score for each limb. We found no significant change in right-left forelimb use in the EphA4
constrained mice (Fig 5B) (p = 0.44 paired t-test) and EphA4 conditional knockout control
mice (p = 0.37 paired t-test). Thus, the reduction in mirror reaching movements is due to
improved independent limb use not a failure to use one limb. This behavioral change can be
explained by greater contralateral MCX motor maps in each hemisphere and a more effective
contralateral projections from each MCX because of disproportionate loss of ipsilateral projec-
tions or gain of contralateral axon branching.

Another motor behavior that receives significant MCX/CST control is stepping over obsta-
cles during treadmill locomotion (obstructed locomotion; Drew, 1991; Asante et al., 2010). We
previously found that the conditional EphA4 knockout mice hop (i.e., simultaneous use of both
forelimbs and/or hind limbs) over the obstacles, rather than use alternate stepping like WT mice
(47.2±5.9% in EphA4 knockout and 1.5±0.7 in WT mice; [8]. Although we also expected greater
independent limb use in this task (i.e., reduced hopping) after limb constraint, we were sur-
prised that there was no significant change (S3 Fig). This difference between reaching and loco-
motion likely reflects differential spinal circuitry for the two behaviors, in which the
performance in the obstructed locomotor task recruits spinal central pattern generator circuits
that normally have robust bilateral connections whereas reaching does not (see Discussion).

Limb constraint caused minor impairments in motor skill

We suspected that the loss of contralateral CST projections form the constrained MCX might
impair motor skill. In rodents, grid walking has been shown to be a sensitive assay for limb
MCX and corticospinal system function [25, 26]. We analyzed the capability to place the fore-
limbs accurately during spontaneous walking on a grid by measuring the percent of forelimb
slips (Fig 6A). It is important to note that for this task, EphA4 conditional knockout mice do
not differ from WT mice in error rate.

The error rate of the constrained limb was significantly higher than for the unconstrained
limb (p = 0.003, paired t-test). We found no difference between the two sides in the EphA4 con-
ditional knockout control group (p> 0.05, paired t-test). We also assessed maintenance of
gripping/grasping capability (Fig 6B), which may assay distal limb strength. Like forepaw
placement accuracy, we noted an impairment on the constrained side. Grasping time was sig-
nificantly shorter for the constrained than the unconstrained limb (p = 0.004, paired t-test).
Although we found no inter-limb difference in EphA4 conditional knockout control mice
(p = 0.78, paired t-test), we did observe that these animals showed significantly longer grip
times compared with wild type mice (2553±207.4 ms versus 1341±141.7 ms; P<0.0001, t-test).
Our finding show a small, albeit significant, loss of motor skills for the constrained limb. The
presence of a bilateral CST may confer improved strength control or relief from fatigue.

Effect of unilateral limb constraint in wild type mice

Similar to the EphA4 conditional knockout mice, we observed a reduction in CST projections
from the constrained MCX (Fig 7A). Contours mark the distribution of densest CST label in
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the wild type constrained (gray line) and wild type control mice (black line; from Fig 2A).
There was a sparse ipsilateral projection in control wild type mice (outside contour) and even
sparser in the limb constrained group. There was a 49% reduction in contralateral label and a
64% reduction in ipsilateral label (contralateral: 1846±440 pixels/axon in control group versus
947±145 pixels/axon in constrained group; ipsilateral: 264±55 pixels/axon versus 95±26 pixels/
axon; one-way ANOVA; Bonferroni post-test: p<0.05).

Whereas the CST projection from the unconstrained MCX (Fig 7B) was expanded com-
pared with the constrained MCX in wild type mice, this difference was not significant (Bonfer-
roni posttest; p>0.05). The overall distributions also were similar, although we did notice that
the sparse fringe of CST labeling had expanded. The lack of a substantial response from the
CST from the unconstrained MCX may be due to the lack of substantial ipsilateral CST projec-
tions in wild type mice.

We also examined CST axon branching from the constrained and unconstrained MCX (see
S4 Fig). Whereas we found an overall difference for the contralateral ((one-way ANOVA,
p = 0.04, F2,45 = 3.4) and ipsilateral projections (one-way ANOVA, p = 0.005, F2,45 = 5.9), only

Fig 6. Forelimb constraint causes changes in motor skill. A. Adult mice make more errors while walking on a grid floor, with the limb

bandaged during their infancy (right forelimb in this study). The bar graph shows the percent of forelimb slips was significantly higher in

the constrained limb than in the unconstrained limb (p = 0.003, paired t-test). No difference was found between the two sides in the

control EphA4 conditional knockout group (p > 0.05, paired t-test). Like foot placement accuracy impairment, the grasping time as shown

in B was significantly shorter for the constrained than the unconstrained limb (p = 0.004, paired t-test). We found no inter-limb difference

in the control EphA4 conditional knockout mice (p = 0.78, paired t-test).

doi:10.1371/journal.pone.0163775.g006
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the reduction in sparse ipsilateral CST projections from the constrained side showed post hoc
significance (p<0.05, Bonferroni posttest). This suggests that, like in the EphA4 conditional
knockout mice, the ipsilateral CST projections are more vulnerable than the contralateral pro-
jections. Consistent with the loss of CST projections from the constrained MCX, limb place-
ment (p = 0.0078, paired t-test) and grip strength (p<0.0001 paired t-test) were both
significantly impaired (Fig 7C and 7D).

As expected, unilateral limb constraint did not produce a significant difference in MCX mir-
ror sites in wild type mice (Kruskal-Wallis test, p = 0.59), since there were none under control
conditions. Also as expected,we found no significant difference between constrained and con-
trol wild type mice in simultaneous use of both forelimbs when reaching the wall of the cylin-
der, since they are so few under control conditions (p = 0.09, t-test). Importantly, and like the
EphA4 conditional knockout mice, there was no significant preference for using the con-
strained or unconstrained limb when reaching the wall was observed in wild type controls
(p = 0.38 paired t-test) or WT limb constrained mice (p = 0.14 paired t-test). The lack of any
limb use preference after postnatal constraint in these mice indicates that there were no resid-
ual muscle/limb effects in maturity when we tested motor performance and assessed the motor
map.

Discussion

Using a genetic model, we showed robust and persistent motor experience-dependentdevelop-
ment of the laterality of the CST and the function of the corticospinal system. A change in the
pattern of early postnatal motor experience ameliorated the bilateral motor phenotype pro-
duced by the ipsilateral CST misprojections, brought about by conditionally deleting EphA4 in
MCX [8]. Testing the animals in maturity shows that, even in the face of the conditional
genetic mutation, the more lateralized CST, MCX representation, and reaching are stable. A

Fig 7. Effect of unilateral forelimb constraint in wild type mice. A, B, Heat maps for WT mice (average of 5 mice) show a significant

decrease in density of CST labeling from constrained MCX (A), one-way ANOVA, p<0.0009, F2, 49 = 8.20; Bonferroni post-test: p<0.05).

Although the CST projections from unconstrained MCX (B) show a slight expansion, there were no significant changes relative to WT

controls (Bonferroni post-hoc: p>0.05). Lines mark contours at the yellow-green boundary. Black line is WT control contour (from Fig 2A)

for comparison with the wild type constrained/unconstrained MCX (gray lines). Constrained WT show both a forelimb placement (C) and

grasp capability (D) impairments (p = 0.0078, paired t-test, p<0.0001 paired t-test, respectively). Calibration (A) for heat maps: 250 μm.

doi:10.1371/journal.pone.0163775.g007
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spinal locus for the bilateral motor phenotype was demonstrated previously for this model on
the basis of conditional forebrain deletion of EphA4 [8]. This resulted in a change to the devel-
oping CST and not the corticorubral projections, where we reported that contralateral projec-
tions were observed that were similar to wild-type animals [8]. This is consistent with the
finding that midline expression of Ephrin-B3, a ligand for EphA4, is highest in the spinal cord,
where it regulates midline axon growth, and much less so in the brain stem [27]. In our earlier
study we examined quantitatively the laterality of rubrospinal and reticulospinal projections,
which were shown to not be different in conditional knockout and wild type animals [8]. Simi-
larly, in the present study the changes in spinal termination topography produced by the expe-
rience change can explain the more contralateral M1 motor map and more independent/
lateralized reaching. Our findings have translational significance.Mirror movements and aber-
rant ipsilateral CST projections (i.e., bilateral CST) from the less impaired hemisphere are char-
acteristic features of cerebral palsy [11, 28], a common developmental movement disorder that
afflicts 2 out of 1000 live births, especially after unilateral perinatal stroke. In this way the con-
ditional EphA4 knockout models circuit changes in cerebral palsy. The substantial normaliza-
tion of the laterality of the corticospinal system by unilateral limb movement restriction
reinforces the possible therapeutic benefit of constraint therapy for cerebral palsy [29, 30] on
the theoretical grounds that constraint repairs CST miswiring. Further, our findings show that
an important locus anatomical for the functional changes—M1 motor map and reaching later-
ality—is the cervical spinal cord. This also informs the pathophysiological mechanisms under-
lying cerebral palsy.

Anatomical and functional development of the corticospinal system occurs surprisingly late
during the postnatal period in many different species, at a time when adaptive voluntary behav-
iors are beginning to be expressed [31–34]. Similarly, the CST connection that is thought to be
the most critical for skilled movements—the monosynaptic connectionwith motoneurons—
develops as monkeys acquire hand skills [35]; from about 3 months to 3 years [36, 37]. By con-
trast, systems thought to be engaged in more stereotypic control, including spinal interneuron
and brain stem circuits, undergo substantial development prenatally [38–40] or before the CST
[41, 42] and may be sufficiently well-specifiedby genetic mechanisms, needingminimal
restructuring by motor experience.

Spinal motor circuits are a locus for bilateral CST interactions

The capacity for unilateral behavioral manipulations to rewire bilaterally the corticospinal sys-
tem in the conditional knockout mouse can be understood by interrelated use-dependent and
activity-dependent competition for synaptic space in the spinal cord. The loss of connections
can be explained by a reduction in activity-dependent synaptic competitiveness [18, 43–46].
The constrained MCX was not actively driving movements of the constrained limb between P1
and P30, and there would also be a substantial loss of phasic somatic sensory input by the
reduction in limb movement. Together this amounts to a substantial reduction in feed-forward
and feedback activation of the constrained motor systems. CST connections were lost bilater-
ally from the constrained MCX—but more so ipsilaterally, because of the reduction in the later-
ality index—implying differential vulnerability (discussed further below). This was
corroborated by showing a substantial reduction in ipsilateral axon branching. Blocking MCX
activity pharmacologically during development results in substantial loss of contralateral CST
spinal projections and nearly complete elimination of ipsilateral projections [47], which is sim-
ilar to the effects of constraint in the present model.

The CST from the constrained MCX showed a disproportionate loss of ipsilateral projec-
tions that resulted in a significant decrease in the CST laterality index, making the tract as
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contralateral as in wild type mice. The finding that the WT CST distribution, when scaled to
the peak contralateral CST density (Fig 2E, inset), matched the distribution of the constrained
MCX strongly suggests that the ipsilateral projection is more vulnerable than the contralateral
projection. This is significant for designing therapies to abrogate the effects of ipsilateral mis-
projections in cerebral palsy and adult stroke [48].

Unilateral constraint produced an increase in contralateral axonal branching from the
unconstrained MCX, likely driven by increased unconstrained limb use. This gain of connec-
tion is similar to the response of sensory neurons to sensory deprivation during critical periods,
where thalamic neurons receiving the spared sensory inputs increase intracortical axon length
and branching [21]. Strong contralateral outgrowth occurred only in the conditional knockout,
where there was a concomitant loss of ipsilateral projections from the constrained MCX, result-
ing in opening synaptic space. In maturity, there is more substantial activity-dependent ipsilat-
eral CST outgrowth after contralateral CST loss form the opposite hemisphere after pyramidal
tract lesion [49], also implying a need to open up synaptic space. However, in maturity synaptic
space would be made available by axon degeneration and the present case, by a use-dependent
regression during development (competition).

We were surprised that the effect on lateralizing motor behavior was selective for reaching;
bilateral “hopping” during obstructed locomotion remained unchanged. This unexpectedly
distinguishes development of corticospinal circuits for reaching control from that of adaptive
locomotion, which also depends on corticospinal control [8, 17, 23]. Strongly lateralized spinal
circuits may be recruited during reaching, where independent limb use is required. By contrast,
spinal circuits regulating right-left limb coordination during locomotion (e.g., commissural
interneurons; Pitx2 interneurons [50]) are inherently bilateral, and are apt to transduce more
lateralized CST signals after limb disuse into bilateral responses.

Do ipsilateral CST misprojections contribute to impaired distal limb

control?

After complete unilateral CST injury in development and maturity, corticospinal control of
the affected side is from the ipsilateral CST projection [51]. Importantly, when injury occurs
during development the spared ipsilateral projection achieves a substantial gain in function
[52, 53]. These changes in CST circuitry are associated with contralateral impairment. We
have shown in animals [54, 55] and Eyre and colleagues in humans [53] that ipsilateral CST
projections from the intact hemisphere outcompete spared contralateral CST projections
from the damaged hemisphere. In the human, this is associated with the progressive loss of
contralateral-evoked muscle responses from M1 stimulation after injury [53]. These findings,
together with the general observation that large unilateral injuries are associated with strong
ipsilateral motor evoked responses, weak contralateral motor responses, and serious motor
impairments on the hemiparetic side have led to view that ipsilateral CST projections spared
after injury are maladaptive ([53] [56]). However, this is misleading because the gain of ipsi-
lateral projections from the spared part of cortex is enabled by the damage of the contralateral
projections from the damaged cortex. The enhancement of ipsilateral and reduction in contra-
lateral responses occur before corticospinalmotor functions are expressed [57]. These recip-
rocal changes are not dissociable clinically or experimentally. Thus, the question of whether
the reactive increase in ipsilateral CST projections is maladaptive has not been answered by
prior studies.

On each side of the spinal cord gray matter in the conditional EphA4 knockout mouse there
is an abundance of ipsilateral CST projections from one hemisphere and contralateral projec-
tions from the other. The ipsilateral CST projections are functional, as shown by the bilateral
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motor map and bilateral forelimb muscle activation [14, 56]. However, compared with wild
type mice, conditional EphA4 knockout mice have normal paw control tested in the grid task
and actually have improved performance in the grip maintenance task, showing that ipsilateral
CST projections are not necessarily maladaptive for some aspects of distal control. The
improvement in grip maintenance performance suggests that control of a single limb by both
hemispheres protects the limb from central motor systems fatigue [58]. Wild type mice after
limb constraint show increases in grid walking errors and shorter grasp maintenance times.
This impairment occurs with the loss of contralateral CST projections, since ipsilateral projects
are negligible in these animals. After limb constraint in conditional knockout mice, grip main-
tenance returns to that of wild type mice showing that having more ipsilateral CST projections,
when contralateral projections are maintained, is adaptive. The impairment in grid walking
after constraint in conditional knockout mice was not different from the impairment seen in
the wild type, again pointing to the need for contralateral projections (e.g., axon branching) for
distal control and not that ipsilateral projections are maladaptive. Our findings show that it is
not the gain of ipsilateral but rather the loss of contralateral projections that is maladaptive for
distal control after perinatal injury. In further agreement with this result, promoting ipsilateral
CST projections support behavioral improvement after complete unilateral lesion in mature
animals is an effective strategy for restoring motor function [20, 59, 60].

Harnessing use-dependent CST developmental plasticity to treat

movement impairments after developmental injury

We propose that mirror movements and hand control impairments in humans after unilateral
perinatal stroke [11, 48, 61] depend on circuit changes driven by spinal synaptic competition
mechanisms that have gone awry. Spared projections of the damaged system are less able to
drive their spinal targets, as demonstrated electrophysiologically in humans [62–64]. This leads
to progressive loss of spared contralateral CST projections and a reactive increase in ipsilateral
projections of the undamaged side enabled by the reciprocal processes we described above.
Humans, examined using TMS [52], normally have a strongly bilateral CST before 6 months of
age, with maintenance of significant ipsilateral connections. The presence of early ipsilateral
CST projections to spinal motor circuits could mediate reciprocal interactions with contralat-
eral projections, similar to the conditional knockouts we studied.

Behavioral manipulations have been used in human babies to rewire sensory and motor cir-
cuits to treat developmental disorders. Amblyopia has been treated by reducing visual experi-
ence in the eye with normal acuity to benefit the eye with reduced acuity. Although a similar
approach, constraint-induced movement therapy, is used to treat developmental motor disor-
ders, it is not fully embraced because of concerns that it could adversely affect the unimpaired/
less impaired side. Using behavioral reprogramming of genetic miswiring, we show that the
loss of ipsilateral misprojections is balanced by increased contralateral CST branching and out-
growth. This suggests that the ipsilateral loss is permissive for a reciprocal use-dependent
increase in contralateral branching from the unconstrained MCX, and associated strengthen-
ing. These reciprocal interactions speak to the potential efficacy of behavioral modulation of
CST connections after injury. In our model, unilateral limb constraint leads to more lateralized
CSTs, but at a small, but significant, expense of distal skill impairments due to contralateral
CST loss. Even though the disused ipsilateral CST projections may be preferentially vulnerable
to elimination, how do we protect the contralateral projections? Freeing up constraint for sev-
eral hours each day could be protective for limb control, similar to how providing a short
period of binocular experience can protect against the loss of visual acuity produced by monoc-
ular deprivation [65, 66].
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Supporting Information

S1 Fig. Representative examples if anterograde transport of CST to cervicalenlargement.
A-C. Each image shows an unprocessed montage of a section from one animal from each group.
A. EphA4 conditional knockout control (with experience). B. EphA4 conditional knockout con-
strained MCX projections. C. EphA4 conditional knockout unconstrainedMCX projections.
(TIF)

S2 Fig. Heat maps from animals in each group. A. EphA4 conditional knockout control
(with experience). B. EphA4 conditional knockout constrained MCX projections. C. EphA4
conditional knockout unconstrained MCX projections. Calibration (A) for heat maps: 250 μm.
(TIF)

S3 Fig. Effect of unilateral constraint on stepping over an obstacle. Effect of limb constraint
on hopping over obstacles. Histograms of forelimb locomotor behavior showed data for tread-
mill speed 17cm/s and obstacle height 1cm. There was a significant increase in hopping between
EphA4 conditional knockout mice (n = 13–15) and WT (n = 10; one-way ANOVA, p<0.0001,
F2, 35 = 15.9; Bonferroni post-hoc: p<0.05). However, there were no differences between the two
conditional knockout groups (with experience (Ctrl.) and without experience (Constr.). Thus,
limb constraint did not decrease the incidence of forelimb hopping over obstacles.
(TIF)

S4 Fig. Effect of constraint on CST axon morphology in wild-typemice.A-C. CST axon
morphology in controls (A), constrained MCX (B), and unconstrained MCX (C); ipsilateral
(left) and contralateral (right) CST. D. Bar graphs plot CST axon branching within ROIs (inset;
average of 4–5 mice/group, 4 sections/animal). Ipsilateral branching on the constrained side
was significantly less than the unconstrained side and control mice (one-way ANOVA,
p = 0.005, F2,45 = 5.9, Bonferroni post-hoc: p<0.05). No post hoc significancewas obtained in
the contralateral branches. (Bonferroni post-hoc: p>0.05).
(TIF)

S1 File. Tracers, tracer efficacycorrection factors, and body weight changes in wild type
and EphA4 conditional knockout animals experiencing forelimb restraint.
(PDF)

S2 File. Matlab script for generating heat maps.
(PDF)

S3 File. Excel file showing data values used for plotting. Each tab contains data for the num-
bered figure. For Fig 2E, raw data are provided (±SEM) as this is what is plotted in the figure.
For all other figures/tabs, we present mean values ± SEM values.
(XLS)
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