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Abstract: Crime is a negative phenomenon that affects the daily life of the population and its devel-
opment. When modeling crime data, assumptions on either the spatial or the temporal relationship
between observations are necessary if any statistical analysis is to be performed. In this paper, we
structure space–time dependency for count data by considering a stochastic difference equation for
the intensity of the space–time process rather than placing structure on a latent space–time process,
as Cox processes would do. We introduce a class of spatially correlated self-exciting spatio-temporal
models for count data that capture both dependence due to self-excitation, as well as dependence in
an underlying spatial process. We follow the principles in Clark and Dixon (2021) but considering
a generalized additive structure on spatio-temporal varying covariates. A Bayesian framework
is proposed for inference of model parameters. We analyze three distinct crime datasets in the
city of Riobamba (Ecuador). Our model fits the data well and provides better predictions than
other alternatives.

Keywords: autoregressive structure; Bayesian inference; B-splines; crimes; MCMC; self-exciting
models; spatio-temporal patterns

1. Introduction

Modeling time series of counts has received important and growing attention since the
1950s [1–5] and over recent decades (see [6–10]). It is known that some well-known discrete
distributions, such as Poisson and negative binomial (NB), can only deal with overdisper-
sion; however, generalized Poisson (GP) and double Poisson (DP) distributions can treat
both overdispersion and underdispersion. The latter two models have some shortcomings
or limitations. Alternatively, the class of observation-driven models called integer-valued
generalized autoregressive conditionally heteroskedastic (INGARCH) models [9,11] shows
flexibility in modeling a wide range of overdispersion and underdispersion cases, while
possessing properties that make it methodologically appealing and useful in practice.

Although a classical Poisson INGARCH model appears to provide an adequate frame-
work for modeling count time series data and has been applied to several fields, Ref. [12]
pointed out that it cannot be employed for modeling negative correlation amongst counts,
and it can exclusively include covariates which result in a positive regression term, since
otherwise the mean of the Poisson process becomes negative. In addition, the conditional
mean is equal to the conditional variance, and this restriction can lead to poor performance
of a Poisson INGARCH model with the existence of potential extreme observations.

To overcome these drawbacks, two INGARCH models have been proposed to repre-
sent overdispersion or underdispersion in the same framework. These are the DP model [13]
and the GP model [14]; see also [15] for a proposal of a Conway–Maxwell (COM) Pois-
son INGARCH distribution. The reader is referred to the very latest literature in this
field [8–10].
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In the spatial statistics literature, Ref. [16] made an early attempt at structuring spatial
relationships for count data by conditionally specifying the data model distribution given a
fixed spatial region. This, however, leads to a statistical model that only allows for negative
association. Refs. [17,18] demonstrated how the statistical model might be modified to
allow for both negative and positive correlation. The important assumption in these models
is that the observed count distribution may be conditionally determined from the observed
count distribution at spatial neighbors, which is a Markov assumption in space. A good
modern review on using spatial structure in econometric models is [19]. While count data
in the spatial statistics literature have predominately been addressed through structure in
a latent process, in the time series literature it has evolved quite differently. For example,
the INGARCH model of [13,20] is a time series model for counts where the data model
is Poisson with the expectation that is a function of both previous counts and previous
expectations. Ref. [20] demonstrated how the INGARCH(1,1) is analogous to an ARMA(1,1)
for counts.

Noting the link between the stationary distribution of the INGARCH(1,1) process and
a stochastic process given in [3], often called a self-exciting point process, we have a number
of possible point process models [21] that have been shown to be beneficial to representing
the dynamics of earthquakes, epidemics, forest fires, traffic accidents, or crimes, which is
the motivating problem in this paper. We can find a good number of papers in this latter
context, see, as nice examples, [22–25].

This paper is motivated by the analysis of crime data in the city of Riobamba (Ecuador)
provided by three different governmental agencies with the aim of understanding crime
behavior and its interaction with society to further help public institutions to enhance
proper actions. We note that there are some existing exploratory studies (see [26,27]) that
show relevant characteristics of this crime phenomenon. In any case, they do not go further
in proposing a spatio-temporal modeling framework.

Following the line of reasoning of [24], we take into account spatial variation by con-
sidering a spatial integer-valued generalized autoregressive conditionally heteroskedastic
(SPINGARCH) model. This model shares the INGARCH properties while allowing spatial
correlation by adding a latent spatially correlated log-Gaussian process [28]. In this frame-
work, and paralleling [24], we formulate a stochastic difference equation for the intensity
of the space–time process within a class of spatially correlated self-exciting spatio-temporal
models that captures both dependence due to self-excitation, as well as dependence on an
underlying spatial process. We indeed consider some extensions from [24] to adapt such
methodology to our particular data context. We note that the model in [24] considers a
linear regression structure in the covariates which are also constant in time. We structure
space–time dependency for our count data through a combination of distance-based co-
variates that vary naturally in both space and time. We thus consider a B-splines procedure
within a generalized additive model that permits it to handle space–time variation and
non-linear dependencies. This is indeed another aspect that makes our model different
from that of [24]. Our B-splines strategy also allows us to combine covariates that are only
varying in space with others (such as the climatological ones) that vary only in time, and
with those based on distances that are varying in both space and time. Altogether, our
strategy is more flexible and adapts better to the case of our data.

The plan of the paper is the following. Section 2 presents the motivating crime datasets
together with the corresponding spatial and temporal covariates. Section 3 introduces the
methodological approach and the Bayesian inferential framework. The related computa-
tional aspects and corresponding results are described in Section 4. The paper ends with a
discussion in Section 5 together with some open lines for future research.

2. Description

Citizen insecurity is one of the major problems that affects the development of the
population in any country. Riobamba, an Ecuadorian city, is the head of the Riobamba
canton and capital of the Chimborazo province (Figure 1). It is located in the inter-Andean
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region, surrounded by several volcanoes such as Chimborazo, Tungurahua, Altar, and
Carihuairazo. Located at 2754 m above sea level, it has a cold Andean climate with an
average temperature of 12 ◦C. According to the 2010 census, this city had 234,170 inhabitants
and a population growth of 1.06% until 2014.

Figure 1. Riobamba within the Chimborazo province in Ecuador.

Commerce is a typical feature of the city, considered a center of business and employ-
ment, and it is the third city with higher education institutes in the country. However, one
of the main problems that haunts the place is criminal acts such as assaults, robberies in
homes and commercial premises, and intimidation, among others, that cause confusion,
concern, and significant general losses to the population [29]. In the Ecuadorian national
survey conducted in 2011, the province of Chimborazo ranked seventh with 16.9% of
people having been victims of some crime, 73.4% of the population considering that the
city is unsafe, and 38.0% having experienced a crime increase in their neighborhood.

According to [30], the Ecuadorian government promoted a set of new policies to
reduce crime between 2010 and 2014. These policies involved organized civil society and
competent entities. At the end of 2014, the victimization rate, homicide, and robberies
decreased but with an increase in societal complaints, a sign of greater confidence in the
competent institutions.

We use data from three governmental agencies whose mission and vision are to
guarantee citizen security and social coexistence (Unidades Policiales Comunitarias (UPC),
Consejo de la Judicatura de Chimborazo (CJCH), and Ministerio del Interior (MI)). The ideal
registration of information dictates that MI saves all reports from the other two institutions,
as shown in Figure 2. However, this is far from being true and analyzing the three datasets
will prove this anomaly. Figure 3a shows the criminal acts reported from MI for 2010–2014.
Figure 3b depicts the flagrant criminal acts recorded by the CJCH for the period 2015–2019,
that is, crimes committed with the arrest of the aggressor within 24 h, and finally, Figure 3c
shows the crimes registered by the UPC for 2015–2017. The information used here was
provided under a confidentiality contract and is not directly available on any website;
however, one can consult the criminal data of the Ministerio del Interior from 2015 onwards
at http://cifras.ministeriodegobierno.gob.ec/comisioncifras/inicio.php.

Figure 2. Hierarchical structure for the registration of crimes in Riobamba city.

http://cifras.ministeriodegobierno.gob.ec/comisioncifras/inicio.php
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(a)

(b)

(c)

Figure 3. Reported crimes from the three governmental agencies in Riobamba. (a) Crimes recorded
by MI (2010–2014). (b) Flagrant crimes recorded by CJCH (2015–2019). (c) Crimes recorded by UPC
(2015–2017).

The city of Riobamba is divided into 141 administrative zones as can be seen in
Figure 4. The ECU911 (Servicio Integrado de Seguridad) provides the locations in space
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and time of the crimes, the location of community police units (upc), and the surveillance
cameras installed in strategic locations throughout the city (cam). We also consider some
important city landmarks describing areas with a higher pedestrian traffic, such as locations
of parks (par), hospitals (hos), and markets (cc), that include squares, shopping malls, and
supermarkets, and population density at the administrative zone level. In terms of temporal-
varying covariates, we consider monthly averages of temperature and precipitation in the
city of Riobamba (see Figure 5); these data are available at http://ceaa.espoch.edu.ec:
8080/redEma/. These climatological variables are taken into account because there are
previous studies (see [25]) that relate them with theft-based crimes.

Figure 4. Population density (blue scale), and locations of some landmarks, such as community
police units (upc), markets (cc), parks (par), and hospitals (hos).

(a) (b)

Figure 5. Monthly averages of some climatological variables in Riobamba. (a) Temperature. (b) Pre-
cipitation.

A first exploratory analysis by month highlights that the highest numbers of crimes
for general records are found in January, June, and October, flagrant crimes are highest
in February, September, and October, and crimes recorded by police increased in January,
April, and May (see Figure 6a). This is an indication both that the three types of crime
datasets behave differently, and that the month of year plays an important role.

When we look at the data by weekday (see Figure 6b), we find the highest numbers
of crimes on Fridays and Saturdays, and according to their spatial location (see Figure 3),
there is a high level of crime cases in the downtown area.

http://ceaa.espoch.edu.ec:8080/redEma/
http://ceaa.espoch.edu.ec:8080/redEma/
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(a) (b)

Figure 6. Crime average counts by months (a) and days (b) for crimes recorded from MI 2010–2014,
CJCH 2015–2019, and UPC 2015–2017.

The locations of the landmarks are taken into account as nearest-neighbor distances
between any crime event and the corresponding landmark location. These distances inform
about the link between a particular crime and how close one of these landmarks is, and
so they inform if landmarks act as attractors or repulsors of crimes. The distributions of
these distances are shown in Figure 7, noting how small distances between crime events
and landmarks are much more frequent than larger ones, indicating naively that these
landmarks could be sources or attractors of crimes.

Figure 7. Distance distributions: upc (community police units), cameras (surveillance cameras),
parks, and markets (squares, shopping malls, supermarkets).

3. Methodology

The overall methodological approach in this paper is to structure space–time depen-
dency for count data through a combination of spatial dependence in a latent process model
and temporal dependence in a data model, with exogenous factors that vary over space
and/or time. Following [24], we consider a stochastic difference equation for the intensity
of the space–time process within a class of spatially correlated self-exciting spatio-temporal
models for count data that capture both data model dependence as well as dependence in
a latent spatial process. In particular, we focus on a SPINGARCH(1,1) model that overall
allows the modeler to define the autocorrelation present in the data and the mean–variance
ratio with greater flexibility.

We use the following notation throughout this manuscript. We denote by (s1, s2, . . . , sn)
a vector of spatial (lattice) locations that remain fixed in time, and let t be a discrete time
period. We denote by N|si| the spatial neighborhood of lattice location si. Finally, Y(si, t) is
the observed process at spatial location si and time t, and X(si, t) is the unobserved latent
process. We use a conditional Poisson distribution and place spatio-temporal structure
on the covariance of the latent Gaussian process. The data model Y(si, t) can be defined
conditionally on the process model X(si, t). As a result, the process model is a function of
both observable spatial or temporal covariates and unobservable latent spatial errors.
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In our case, the spatio-temporal intensity λ(s, t) provides the process model, and our
full model is a stochastic difference equation operating directly on the intensity function.
Thus, crime counts in space and time, Y(si, t), are conditionally distributed Poisson random
variables for i = 1, . . . , n, i.e., Y(si, t)|λ(si, t) ∼ Pois(λ(si, t)), with λ(si, t) representing the
rate at location si in time t. Hence, E[Y(si, t)|λ(si, t)] = λ(si, t).

We can assume that a change in crime rate at a specific location and in a specific period
is a function of particular geographic features of the location given by
αt = (α(s1, t), α(s2, t), · · · , α(sn, t))T (also known as reference baseline tension and is sim-
ply a function of potentially variable exogenous factors), together with two other factors, a
natural deterioration χ, and repeated victimization η.

We propose a SPINGARCH(1,1) model, with Y(si, t) defined conditionally on the
intensity λ(si, t) which can be modeled using observable spatial and temporal covariates
α(si, t), as well as non-observable latent errors εt. Thus, the final model is defined through
the following hierarchical structure:

Y(si, t)|λ(si, t) ∼ Pois(λ(si, t)) (1)

with
λt = exp(Xt + εt) + ηYt−1 + κλt−1

Xt ∼ Gau
(

αt, (In,n − ζC)−1σ2
)

εt ∼ Gau
(

0, In,nσ2
ε

)
,

where κ = 1− χ represents stress in the absence of repeated victimization, η captures the
expected change due to repeated or nearly repeated actions [24], λt = (λ(s1, t), λ(s2, t), . . . ,
λ(sn, t))T is a Markov chain in (R+)n, and the same notation applies for Yt and Xt. Note that
In,n is the identity matrix, σ2 is the conditional variance, and ζ controls the amount of spatial
dependence in the model not captured by the covariates in αt. Large scale spatial structure
is accounted for in the latent process Xt by the spatial regression parameter αt, whereas
small scale spatial structure is accounted for by conditionally defining Xt. For the latter, a
conditionally autoregressive (CAR) model is used (through spatially adjacent neighbors):

X(si, t)|X(sj, t), sj ∈ N|si| ∼ N(µ(si, t), σ2) (2)

with
µ(si, t) = α(si, t) + ζ ∑

sj∈N|si |
[X(sj, t)− α(sj, t)].

If locations si and sj are neighbors, the entry (i, j) of C will be one. Note that by adding

space–time noise ε(si, t) iid∼ N(0, σ2
ε ), further variation in the spatio-temporal process is

allowed; see some alternative approaches to modeling spatial effects in count data in [19].

3.1. Bayesian Inference

The hierarchical model defined above depends on a set of parameters in the final level
of the hierarchy given by θ = (η, κ, σ, σε, αt, ζ), similarly to a classical Besag–York–Mollié
(BYM) model [31] which defines a fully Bayesian spatial model (see [32]).

Thus, following [24] we use a Bayesian inferential framework consisting in updat-
ing beliefs about θ according to the available data through an a priori density π(θ)
and a conditional density or likelihood π(data|θ) to obtain π(θ|data), a posterior den-
sity of θ given the data. The a priori joint distribution of the parameters in the model
can be expressed as π(θ) = π(η|κ)π(κ)π(σ)π(σε)π(αt)π(ζ), where independence is as-
sumed in the background except for η and κ due to the condition η + κ < 1. Letting
U(si, t) = X(si, t) + ε(si, t), the full conditional distribution for θ is given by
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π(θ|Y, U) ∝
T

∏
t=1

π(Yt|λt)π(λt|λt−1, Yt−1, θ, Ut)π(Ut, θ)π(λ0|θ)π(Y0|λ0)π(θ), (3)

and for U we have

π(U|Y, θ) ∝
T

∏
t=1

π(Yt|λt)π(λt|λt−1, Yt−1, θ, Ut)π(Ut|θ)π(λ0|θ)π(Y0|λ0). (4)

For any inference on the parameters, Markov chain Monte Carlo (MCMC) must take
samples of the full latent state density U, which requires evaluation of

log(U|αt, σ, σε, ζ) ∝
−T × n

2
log(2π) +

1
2

log |Σ−1
f (θ)| − 1

2
(Xt− αt)

TΣ−1
f (θ)(Xt− αt). (5)

Since we can assume that the neighborhood structure is constant for all periods, we can
interpret Σ f (θ) as the full space–time covariance matrix (IT,T ⊗ In,n − C)−1σ2 + In×Tσ2

ε .
The covariance structure’s sparsity means that the only computations of

1
2 (Xt − αt)T

t Σ−1
f (θ)(Xt − αt) that need to occur are for spatial neighbors. Thus, the com-

putation of the determinant log |Σ−1
f (θ)| is the most challenging element. The specific

structure of Σ−1(θ) = (In,n − C)(1/σ2) makes log |Σ−1(θ)| = n
2 log σ2 + log |In,n − ζN|,

where N is the neighborhood or adjacency matrix. This in turn can be rewritten as
log |Σ−1

f (θ)| = n×T
log σ2 + T log |Σ−1(θ)|, finally resulting in

log |Σ−1
f (θ)| = T log |Σ−1(θ)| ∝

n× T
log σ2 + T

n

∑
j=1

(1− ζχj), (6)

with χj being the eigenvalues of the neighborhood matrix which depend solely on its
structure and not on the parameters.

3.2. Generalized Additive Models with B-Splines

The action of the deterministic covariates depending on space or space–time is highly
non-linear on the responses. Thus, we have used a generalized additive model (GAM)
that supports integrated smoothness estimation addressing the lack of linearity [33]. The
GAM results in a more efficient analytical method than the more classical linear models.
The relationship between each predictor xi and the mean of the response variable, g(u),
is indirect because it is calculated using the smooth (usually splines with polynomial
bases [33]) function f (xi):

g(u) = β0 +
p

∑
i=1

fi(xi). (7)

We can also have multivariate versions of the smooth functions per temporal instant.
For example,

g(u) = β0 + ft(x1, x2), (8)

with ft being a smooth spatial surface in the t-th time. This smooth surface for each t
can be written as ft(x1, x2) = Bsψ(t), where Bs = B1 ⊗ B2 is a B-spline k-dimensional
basis of dimension I × k1k2 arising from the Kronecker product per row of the marginal

B-spline bases for B1, B2, and ψ(t) =
(

ψ
(t)
1 , ..., ψ

(t)
k1k2

)T
. Note that k1 and k2 are the number

of columns of the marginal bases B1 and B2, respectively, and depend on the number of
nodes and degree of polynomials used to generate these bases (see [34]). The generalized
cross-validation (GCV) criterion is used to estimate the smoothing parameters, which
provide the degree of smoothness. To define the version of smoothing that best fits the data,
we test the joint interactions of the spatial covariates with crime.
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4. Results

The city is divided into m = 141 administrative zones (see Figure 4), whose centroids
are denoted by {s1, s2, . . . , s141}. We compute the adjacency or neighborhood matrix needed
in determining the spatial latent process; this is a sparse matrix that permits optimizing
the computational costs [35]. Our temporal unit is month, so we consider the number of
crimes per zone per month. As the three datasets have different time periods (recall we
have for general records 2010–2014, for flagrant crimes 2015–2019, and for police records
2015–2017), we set the time instants (n) for the first two cases t ∈ {1, 2, . . . , 60}, and for the
latter case t ∈ {1, 2, . . . , 36}.

We refer to Section 2 for a number of covariates considered in our model. In particular,
we compute nearest-neighbor distances from each crime to community police units (upc),
to surveillance cameras (cam), to markets (cc), to parks (par), and to hospitals (hos). These
distances are averaged per administrative zone providing matrices of m×n. The population
density (pob) enters the model as a spatial-only covariate of dimension m× 1. Although we
initially considered two climatological variables (see Figure 5), in an exploratory analysis we
noted they were not significant in this particular city, with monthly average temperatures
ranging within 12–15 ◦C and precipitation ranging within 0.00–0.15 mm. Thus, although
they are considered in other studies, in our particular region they are not influential
on crime.

Although we tested all possible combinations of a multivariate GAM, we found that
univariate GAMs provide the best fits. Therefore, we use a univariate generalized additive

model with cubic B-splines (denoted by f̂i
[3]

) which allows the incorporation of non-linear
relationships between each covariate and the response variable. Our complete GAM model
is as follows:

αt =β̂0 + f̂1
[3]
(upc) + f̂2

[3]
(cam)+

+ f̂3
[3]
(cc) + f̂4

[3]
(par) + f̂5

[3]
(hos) + f̂6

[3]
(pob).

(9)

In particular, the final significant models for each of the three datasets are the following:

αMI
t = β̂0 + f̂2

[3]
(cam) + f̂4

[3]
(par),

αCJCH
t = β̂0 + f̂3

[3]
(cc) + f̂6

[3]
(pob),

and
αUPC

t = β̂0 + f̂1
[3]
(upc) + f̂2

[3]
(cam).

Figure 8 depicts for each dataset the corresponding fitted model with B-splines. We observe
how the model fits the real data delineating its behavior well.

Once the parameter αt is estimated depending on the covariates, and keeping ζ = 0.99
fixed near the edge of the parameter space [24], the remaining parameters θ = (η, κ, σ, σε, αt)
are estimated using a Bayesian framework as previously explained. We use informative beta
distributions as priors for η and κ, and Cauchy for σ and σε that minimize the impact on the
posterior densities (see also [24]). We run three Markov chains of 70,000 iterations each per
parameter, and for each of the three datasets. The first 10,000 iterations are discarded as a
burn-in period, and we take samples every 100 iterations to remove any possible sample
autocorrelation. Figures 9a–11a depict the MCMC chains for the four parameters and for
the three datasets. We can see visually the convergence and stability of these chains. The
posterior distributions of each of the parameters are shown in Figures 9b–11b. We also
show the autocorrelation of the parameters as sampled from the posterior distribution,
reconfirming the absence of autocorrelation (Figures 9c–11c).
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(a) (b) (c)

Figure 8. Real crime data and fitted model using B-splines over the exogenous covariates for the
three datasets. (a) Crimes recorded by the MI. (b) Flagrant crimes recorded by the CJCH. (c) Crimes
recorded by the UPC.

(a) (b) (c)

Figure 9. Bayesian inference for the MI data (2010–2014), where: η = eta, κ = etacross, 1/σ2 = tau,
σε = stds. (a) Markov chain convergence. (b) Parameter distributions. (c) Parameter autocorrelations.

(a) (b) (c)

Figure 10. Bayesian inference for the CJCH data (2015–2019), where: η = eta, κ = etacross,
1/σ2 = tau, σε = stds. (a) Markov chain convergence. (b) Parameter distributions. (c) Parame-
ter autocorrelations.
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(a) (b) (c)

Figure 11. Bayesian inference for the UPC data (2015–2017), where: η = eta, κ = etacross, 1/σ2 = tau,
σε = stds. (a) Markov chain convergence. (b) Parameter distributions. (c) Parameter autocorrelations.

Tables 1–3 show summary statistics of the estimates and diagnostic statistics for the
posterior distributions. Noting that κ (coefficient of deterioration) weights the expected
value (i.e., the intensity) while η (coefficient of victimization) weights the data or ob-
servations themselves, it is expected that η is larger for MI crimes as from 2015 police
interventions were increased in response to an increased number of complaints. In addition,
κ is larger for UPC indicating that the model weights the expected intensity more, giving
more importance to what is expected than to real data. Recall that the effective sample
size (n_eff) and a measure of chain equilibrium (Rhat) are the number of independent
draws in the sample and diagnostic statistics on chain convergence, respectively. Rhat
values equal or close to 1 are indicative of convergence [36]. For completeness, we also
calculate Shannon entropy for each of the parameters associated with each of the three
datasets. Taking advantage of the output of the MCMC for each parameter, for which we
have a posterior sample of size 1050, we discretize its range length into a number of bins
equal to the integer value closest to the square root of the sample size, and calculate the
entropy H based on these bins. The value of H is shown in Tables 1–3, and reflects the
uncertainty associated with each parameter. A small H indicates a small uncertainty in
the estimation of the parameter, and thus a larger confidence on its value. Indeed, the
estimated parameters with the lowest uncertainty are η and 1/σ2 for the period 2015–2019,
κ for 2010–2014, and σ2

ε for 2015–2017.

Table 1. Posterior distribution of the parameters for the MI crimes 2010–2014.

Posterior Parameters Mean Sd 2.5% 25.0% 50.0% 75.0% 97.5% n_eff Rhat H

η 0.35 0.03 0.29 0.33 0.35 0.37 0.40 685 1.00 2.99
κ 0.01 0.01 0.00 0.00 0.01 0.01 0.04 920 1.00 3.01

1/σ2 0.01 0.00 0.01 0.01 0.01 0.01 0.01 1028 1.00 2.69
σε 1.37 0.03 1.31 0.35 0.037 1.39 1.42 618 1.01 2.95

Table 2. Posterior distribution of the parameters for the CJCH crimes 2015–2019.

Posterior Parameters Mean Sd 2.5% 25.0% 50.0% 75.0% 97.5% n_eff Rhat H

η 0.01 0.01 0.00 0.00 0.01 0.02 0.50 530 1.00 2.98
κ 0.13 0.04 0.04 0.11 0.14 0.16 0.21 342 1.01 2.86

1/σ2 0.66 0.12 0.45 0.57 0.65 0.74 0.93 1057 1.00 3.07
σε 1.59 0.06 1.47 1.55 1.59 1.63 1.70 293 1.01 2.68
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Table 3. Posterior distribution of the parameters for the UPC crimes 2015–2017.

Posterior Parameters Mean Sd 2.5% 25.0% 50.0% 75.0% 97.5% n_eff Rhat H

η 0.01 0.01 0.00 0.00 0.01 0.01 0.03 635 1.00 2.89
κ 0.67 0.04 0.59 0.64 0.67 0.69 0.74 505 1.00 2.96

1/σ2 0.77 0.14 0.53 0.67 0.75 0.85 1.08 881 1.00 2.91
σε 0.83 0.07 0.68 0.79 0.83 0.88 0.96 79 1.02 2.70

As a goodness-of-fit tool, we compute temporal mean square prediction errors (MSPEs)
(see Table 4), which report a measure of differences between predicted and real values, not-
ing that the SPINGARCH with cubic B-splines shows the best MSPE values. Additionally,
we compute differences between predicted and real values in space–time (see Figure 12),
with the corresponding MSPEs being 0.45 (MI), 0.20 (CJCH), and 0.41 (UPC), keeping small
in general terms.

(a) (b) (c)

Figure 12. Differences between predicted and real values in space–time. (a) Crimes recorded by MI.
(b) Flagrant crimes recorded by CJCH. (c) Crimes recorded by UPC.

Table 4. Temporal mean square prediction errors (MSPEs).

DATA INGARCH SPINGARCH_Lineal SPINGARCH_B-Splines

MI 1990.97 891.33 364.66
CJCH 351.81 301.39 122.93
UPC 508.88 373.66 56.24

As a final illustration, we compare the temporal prediction of an INGARCH(1,1)
model in which there is no spatial effect, of a SPINGARCH(1,1) with exogenous factors
entering linearly in a regression fashion, and of our SPINGARCH(1,1) with exogenous
factors that vary on space and time and modeled with cubic B-splines. The comparative
results are depicted in Figure 13, noting that SPINGARCH(1,1) with smoothed covariates
with B-splines provides the best predicted results as they are closer to the real crime data.
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(a) (b) (c)

Figure 13. Real and predicted crimes using three competing models: INGARCH(1,1), SPIN-
GARCH(1,1) with exogenous factors being constant in t, and SPINGARCH(1,1) with exogenous
factors varying on t and modeled with cubic B-splines. (a) Crimes recorded by MI. (b) Flagrant crimes
recorded by CJCH. (c) Crimes recorded by UPC.

For our model, we also report the spatial predictions for the three crime datasets in the
city of Riobamba, illustrating that our spatio-temporal model is flexible enough to provide
accurate temporal predictions and also spatial predictions.

5. Discussion and Conclusions

This manuscript formulates a statistical model that contains both latent spatial and
temporal dependencies in the form of a stochastic difference equation for the spatio-
temporal intensity. This model is consistent with common beliefs about how violence and
crime evolve in space and time. Indeed, the proposed model is a spatially and temporally
correlated self-exciting spatio-temporal model that captures both data dependence and
dependence on a latent spatial process along the line INGARCH(1,1) models do. Another
aspect of our model is that the effect of exogenous covariates is added using non-linear
B-splines which improves previous models with only linear forms on the covariates.

We have followed a Bayesian inferential framework as it is flexible and can handle
estimation of a large number of parameters with complex structures, such as those consid-
ered here in space and time. We are able to estimate neighborhood structure in space and
temporal autoregression behavior in time.

In analyzing crime data in the city of Riobamba, we were able to detect, by an extensive
preliminary search and inspection, which distance-based covariates were most influential
and how they entered the prediction model. We highlighted some differences amongst the
three types of datasets. For the general registries (dataset for 2010–2014), the minimum dis-
tances to surveillance cameras and parks were important because through the monitoring
of these cameras, a criminal event was foreseen or taken for granted, and in places such
as parks, there is a greater police protection, especially on weekends. For flagrant crimes
(2015–2019), the relevant covariates were distances to squares, shopping malls, and super-
markets, and the population density, as having greater population movement contributed
to the immediate warning and denunciation of criminal events. Finally, for the police
records (2015–2017), distances to cameras and upc had a more representative influence
because most of the victims go to the police in the first instance requesting help, regardless
of whether the registered criminal event is legally reported or not. The estimation results
showed a higher number of crimes in area 65, called San Alfonso, because in the period
2010–2014 the largest market in the city was located there. However, for registered flagrant
crimes (2015–2019), we found more predicted cases in zones 37, 55, 76, and 141 (La Dolorosa,
La Merced, La Station, and Tubasec, respectively) while for the police files (2015–2017) nine
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other zones were highlighted (see Figure 14, 2015–2017). These results provide valuable
information to governmental entities in charge of citizen security to optimize resources by
improving planning, deployment of police units, or patrolling and random verification.

(a) (b) (c)

Figure 14. Spatial predictions of crimes from the posterior predictive distributions. (a) Crimes
recorded by MI. (b) Flagrant crimes recorded by CJCH. (c) Crimes recorded by UPC.

Our data, although in the form of spatio-temporal coordinates, have some limitations.
One is that the data provided by governmental entities do not have detailed information
on the crime and the characteristics of the events. If they had some additional information,
more complex models using mark information could have been used. Another aspect
is that INEC (a governmental institution providing and making the data available) has
as a minimum unit of study, the parishes, and does not keep statistics by district or by
administrative division of the cities. This forced us to randomly disaggregate the data,
causing crude approximations of the population.

Open ideas in the context of modeling crime data are many, but identifying crimes
happening only in the network of streets in a city enhances the modeling task. In such a
case, the Euclidean plane has to be substituted by the network support and this makes
things different (see, for example, [37]). We can also think of models for location predictions
of the following serial crime using the next hit predictor (NHP) method which adopts
the framework of specific self-exciting processes created to characterize the correlations
between crimes committed by the same criminal (see [38]).

We finally note that, in [39], the authors studied, by simulation and under different
scenarios, the information/complexity transfer from intensity realizations to generated
point patterns in spatial log-Gaussian Cox processes. As further research under the model
structure proposed in the present paper, we aim at investigating the use of information-
complexity measures for assessment of the influential significance of random covariates,
involved in the specification of the unobservable latent process, for the response observed
patterns. This represents an important challenge due to the intrinsically complex nature of
the self-excitation mechanism, and would be particularly useful for comparing different
scenarios (type of crimes, urban specificities, etc.), as well as for identification of the relevant
explanatory covariates.
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