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The number of all possible epidemics of a given infectious disease that could

occur on a given landscape is large for systems of real-world complexity.

Furthermore, there is no guarantee that the control actions that are optimal,

on average, over all possible epidemics are also best for each possible epi-

demic. Reinforcement learning (RL) and Monte Carlo control have been

used to develop machine-readable context-dependent solutions for complex

problems with many possible realizations ranging from video-games to the

game of Go. RL could be a valuable tool to generate context-dependent pol-

icies for outbreak response, though translating the resulting policies into

simple rules that can be read and interpreted by human decision-makers

remains a challenge. Here we illustrate the application of RL to the develop-

ment of context-dependent outbreak response policies to minimize

outbreaks of foot-and-mouth disease. We show that control based on the

resulting context-dependent policies, which adapt interventions to the

specific outbreak, result in smaller outbreaks than static policies. We further

illustrate two approaches for translating the complex machine-readable pol-

icies into simple heuristics that can be evaluated by human decision-makers.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important themes’.

1. Introduction
Computational models of disease spread and control have been widely used in

preparedness planning for outbreaks of infectious disease to both forecast out-

break severity [1–4] and decide among competing control interventions [5–10].

A conventional approach for determining optimal interventions has been to

evaluate the expected performance of different potential interventions across

a large number of stochastic simulations [5,11–13]; thus, interventions are

ranked according to expected performance over all possible outbreaks. In a

real outbreak, however, only one realization is of concern and there is no guar-

antee that the control action that performs best, on average, is also optimal for

any specific outbreak. The current state of an outbreak dramatically reduces the

set of all possible future trajectories. The decision-maker should therefore seek

to find the optimal action conditional on the current state of the outbreak
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Figure 1. Schematic of Monte Carlo control for solving RL problem (adapted from Sutton and Barto [26]). (Online version in colour.)
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[14,15]. Thus, we define a ‘state-dependent policy’ as a rule

set that defines an action to be taken, conditional on the cur-

rent state of the dynamical system (here an infectious disease

outbreak).

While it is intuitive that outbreak response should be

dependent on the specific realization of an outbreak, generat-

ing optimal policies a priori is computationally challenging. A

brute force solution to this problem requires enumerating all

possible states of the epidemic system—e.g. for all spatial dis-

tributions of susceptible, infected and controlled premises at

a given point in time—and for each state simulating all poss-

ible futures conditional on each action one could take. The

results of such an exercise could then be stored in a look-up

table that returned the action that performed best over all

future simulations for any given state. For even relatively

small problems, this approach is computationally intractable

and grossly inefficient, at least in part because a large amount

of computation would be expended evaluating states that are

only rarely observed (though function approximation

methods can help to overcome this; e.g. [16,17]).

In lieu of identifying optimal policies, other compu-

tational methods have been used to provide guidance for

management. Regression methods, for example, have been

used to model associations between predefined predictors

and the occurrence of a disease outbreak [18,19]. Similarly,

network-based approaches have been implemented in contact

tracing efforts to retrospectively learn about outbreak propa-

gation [20–22]. Formally, a decision-analytic framework with

a well-defined objective to be optimized is required to ensure

optimality. Methods such as dynamic programming offer an

exactly optimal solution, and heuristics such as simulated

annealing or genetic algorithms can provide a competitive

(though not guaranteed optimal) solution [23–25].

Reinforcement learning (RL), a class of machine learning

algorithms, and Monte Carlo (MC) control use feedback

from real or simulated systems to estimate optimal actions

for states that are likely to be visited, as governed by a

dynamic model [26]. RL algorithms involve the interaction

of some environment, which encapsulates a system that is

to be managed, with an agent that learns how to manage
the environment through direct experience (figure 1). The

state can be defined as a statistic of the environment, such

that it includes all the information that is relevant to model

the decision-making problem, which in an outbreak setting

might include attributes such as the number of infected indi-

viduals, the available store of vaccine, etc. The agent chooses

actions to take in order to achieve its objective, while

responses to the agent’s actions occur in the environment,

including rewards. The output from an RL control algorithm

is a policy, providing a rule set that maps states of the system

to actions to take when the system is in that state [26]. Under-

pinning a policy is a value function, Q(s,a), which returns the

expected total future value of following an estimated optimal

policy, across the space of all likely future states, conditional

on selecting action a from the current state s. RL methods

iteratively improve the estimate of Q(s,a) by repeated simu-

lation using feedback from the system, choosing actions

that balance the precise estimation of the current best policy

with the search for better policies. For instance, actions may

be chosen using an epsilon-greedy algorithm whereby the

current best action is chosen most of the time but a small

(epsilon) proportion of the time, an exploratory random

action is chosen to diversify and potentially enhance under-

standing of the outcomes [26]. A stochastic simulation

model ensures that likely future states are explored, and the

RL algorithm ensures that the range of actions is evaluated

for each state. This approach is especially advantageous in

larger decision spaces, where it may be infeasible to visit

each state–action pair many times. Computational runtime

can be improved by using function approximation in place

of a look-up table, allowing for generalization across neigh-

bouring states and actions, and the corresponding reward.

Thus, without sampling the full state-action space, RL may

reveal novel patterns learned over the course of training [27].

Although we are not aware of a formal proof of MC control

algorithms guaranteeing an optimal policy [26,28], MC control

and RL have an impressive track record, having been success-

fully applied to win games, such as backgammon [16], Atari

computer games [27] and Go [29], and in the control of

robots [30]. In these applications, the intended user of the
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Figure 2. Three preprocessing steps to construct the state (a – c). (a) We first plot the farms and identify farm-level infection statuses: black ¼ infected, white ¼
susceptible; then (b) overlay a grid to ‘pixelate’ the landscape so that no more than one farm occupies a pixel; then (c) construct a two-dimensional array of farm-
level infection status: 0 ¼ no farm, 1 ¼ infected farm, 2 ¼ susceptible farm. (d ) Schematic of utility table, with flattened states as rows and actions as columns.
Shaded cell represents the action with the highest utility for the state in each row. The RL methods in both case studies seek to approximate the value function
represented in this ‘look-up table’ representation of the state-action space.
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policy is a computer, rather than a human, and so, because of

the ease of storing and looking-up large multi-dimensional

policies on a computer, there is little or no constraint on the

number of state variables used to construct the policy. These

areas of application have thus been concerned with demon-

strating how RL methods can be used to replace human

decision-makers. Here, our aim is to generate policies that

will support human decision-making by presenting a low-

dimensional representation of a context-dependent policy

that can help to inform more nuanced decision-making in

outbreak situations.

We present two case studies that use RL and MC control

to develop state-dependent response policies in the context of

a livestock outbreak, based on the dynamics of the 2001 foot-

and-mouth disease (FMD) outbreak in the UK. In the first

case study, we consider the initial stages of an outbreak,

where the state space is relatively small, and generate state-

dependent RL policies using deep Q-learning. In the second

case study, we consider a spatially large-scale epidemic and

illustrate the development of a state-dependent policy using

a reduced two-dimensional summary of the full state space;

thus, the resulting policy is readable as a two-dimensional

mapping of summary states to control interventions. Finally,

we discuss the challenges and opportunities for the

application of RL to outbreak control policies.
2. Material and methods
(a) The foot-and-mouth disease system
FMD, a viral disease of livestock, is a pathogen for which epide-

miological models have been widely applied. For FMD-free

countries, such as the UK and USA, emergency preventative

measures aim to avoid the large economic ramifications of such
outbreaks that result from the cessation of trade [31,32]. We use

a stochastic, individual-based model of FMD spread, where the

modelling unit is a premises (farm), based on Keeling et al. [5]

and Tildesley et al. [33] (details are presented in the electronic

supplementary material). The probability of virus spread

between farms is modelled as both an increasing function of

farm size and a decreasing function of physical/geographical

separation [8]. Each premises can be in one of four epidemiologi-

cal states: susceptible, exposed, infectious or removed/immune.

A fixed period of time is assumed from virus exposure to

being infectious, from virus exposure to notification of FMD

infection (in case study 2), and between notification and the

time at which culling on a premises begins [5,33].
(b) Case study 1: deep Q-networks
We used deep Q-networks (DQN) to derive FMD outbreak

response policies on three different landscapes. DQN combine

RL with convolutional neural networks (CNN), which serve as

function approximators. DQN are particularly suited to image

data inputs owing to their use of CNN, which are able to extract

low-level feature information and combine it with other features

to represent abstract concepts [28,34], such as nonlinear value

functions. In this case study, the objective was to terminate the

outbreak as quickly as possible, with minimal costs, specified

by the immediate reward r in the action-value function. We

defined the state at time t using an image of the disease outbreak

to capture the spatial relationships between farm locations

(figure 2).

To better illustrate the motivation for DQN, we highlight

scenario 1, in which the landscape comprised 30 farms, ranging

in size from 25 to 500 animals (figure 2). We assumed that only

one farm could be culled per day, thus 30 possible culling actions

were available at the first time step (figure 2). Under this state–

action space, expected utility updates for each state–action pair

would be computationally intensive, both in terms of compu-

tational time and memory storage. Specifically, with three
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possible states for each farm, there are 330 possible states and 30

possible culling actions at the first time step. A look-up table

would therefore require 6.17 � 1015 cells to be updated (e.g.

rows in figure 2d ). DQN were used instead to approximate the

action-value function and are well suited to the image input.

The FMD simulation model was coded in Python 3.6 and the

DQN were implemented using TensorFlow and the Keras sub-

module (see electronic supplementary material for pseudo-code

and details).

The action–value function Q(s,a) allows us to evaluate how a

particular action, in the context of the state of the environment,

contributes to achieving the encoded objective. The immediate

reward (r) is a key component in calculating the expected utility

in DQN:

Q(s,a) ¼ Es0 [rþ gmaxa0Q(s0,a,)js,a],

where the prime superscript indicates the subsequent state, s,

(after taking action a). In our case study, r was defined as:

r ¼� 100(number of farms culled) þ
� 500(number of times out break resurges due to

neglecting the culling of exposed farms)

þ number of remaining cattle by the end of management:

Resurgence here refers to an outbreak going from 0 to 1 infected

farm due to the transition of an undetected exposed farm. Here,

the weights were manually chosen to penalize culling of farms

more severely than individual cattle and put a severe penalty

on stopping culling when farms that are exposed, but not yet

detected, are still present.

(c) Case study 2: applying reinforcement learning to a
summary state space

In the second case study, our objective is to minimize the dur-

ation of an FMD outbreak over a landscape of 4001 randomly

distributed farms of 500 cattle each. Parameters governing both

the seeding of the outbreak and of control interventions were simi-

lar to previous modelling studies (e.g. [8,35,36]). Each simulation

used the same four seeding premises.

We assume that managers can implement one of two control

interventions—ring culling or ring vaccination—after an initial

period of silent spread and obligatory culling of infected pre-

mises (IPs). Ring culling or ring vaccination designate premises

to be culled (or vaccinated) that are within a predefined radius

(here 3 km) of premises that are confirmed to be infected with

FMD. The rate of ring culling was limited to 200 animals

culled per day per premises. Disposal of culled carcasses was

assumed to occur at a rate of 200 animals per day per premises.

We assumed there was a global constraint on the number of ani-

mals culled per day because of the public health and public

perception concerns of a large build-up of undisposed carcasses

[37]. This assumption limits new culling when the number of car-

casses reaches a ‘carcass constraint’. For vaccination, we assumed

that immunity was conferred 7 days after vaccination date and

that vaccine efficacy was 100%. Premises exposed to FMD

before conferral of immunity were assumed to progress to an

infectious state. Vaccination was delivered at a rate of 200 ani-

mals per day for each premises and it was assumed there was

a global constraint on the number of vaccines administered per

day of 10 000 doses.

Here we assume that a single decision must be made to

implement ring culling or ring vaccination at 3 km after 12

days of silent spread and 7 days of IPs culling. Thus, while the

decision space is much smaller (two actions) than in case study

1, the number of premises (4001 farms) is much larger. We there-

fore generate a state-dependent policy that is human readable by

constraining the state space to a two-dimensional summary. Two
summary state variables were used to construct the policies: (1)

number of IPs at the decision time point, and (2) area of the out-

break at the decision time point. Area of the outbreak was

represented by the convex hull that included any culled, con-

firmed infected or exposed premises. We chose the number of

IPs as a state variable because (a) it is correlated with time

until the first detection, which has been cited elsewhere as impor-

tant for predicting the severity of outbreaks [38]; (b) it changes

throughout the course of an outbreak; and (c) ring culling and

ring vaccination strategies take place in areas surrounding IPs

so the application and outcome of these actions will vary

according to the number of infected premises. The area of the

outbreak was chosen as a state variable because it increases

monotonically as an outbreak progresses and it is therefore

possible, in combination with the number of IPs, to distinguish

between the start of an outbreak and the end of an outbreak

using these two states.

We used epsilon-soft MC control to construct control policies

using 100 000 outbreak simulations [26]. Epsilon, which deter-

mines how often to choose a currently non-optimal action, was

set at 0.1 (see electronic supplementary material for alternative

values of epsilon). Pseudo-code for this algorithm is provided

in the supplementary material. RL algorithms and epidemiologi-

cal simulation models were coded in Python 3.5.2 using the

packages numpy (1.14.1), pandas (0.22.0) and Cython (0.28.3).

The RL code for case study 2 is available at the following

repository: https://github.com/p-robot/context_matters.
3. Results
(a) Case study 1
We illustrate DQN using three scenarios, each reflecting a

different population spatial structure. The first was a small-

scale example with 30 farms distributed uniformly at

random on a 10 � 10 km grid with six farms initially infected

(figure 3a(i)). We trained the DQN for 10 000 episodes, and

the associated total reward trajectory illustrates a gradual

increase in total reward over the course of training

(figure 3a(ii)). This suggests that the DQN was able to

choose better farm culling sequences following 10 000 epi-

sodes of training. Though the final optimal policy is

difficult to illustrate due to the size of the state–action

space, we can summarize the behaviour of the optimal

policy by illustrating how often each farm was culled

under many simulations of management under the optimal

policy (figure 3a(iii)). The farms that were culled tended to

be both larger and closer to the initially infected farms than

the average, which is consistent with the underlying

transmission model. The reward trajectory does not

indicate convergence to an optimal policy, though over

only 10 000 episodes the policy performs, on average,

better than both a policy of either culling farms at

random (which may remove as yet undetected premises)

or a policy of culling only known IPs (which necessarily

implements culling only after farms can potentially trans-

mit, figure 3a(iv)), or a policy of ring culling. Due to the

one-farm-per-day culling constraint, ring culling was

implemented by ranking farms to be culled by the closest

distance to an infected premises [8].

The second scenario was a larger simulation with 120

farms distributed uniformly at random on a 15 � 15 km grid

with 10 farms initially infected (figure 3b(i)). Here we

assume that all of the cattle at any five farms per day could

be culled. As above, the DQN failed to converge on an

https://github.com/p-robot/context_matters
https://github.com/p-robot/context_matters
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approximately optimal policy (figure 3b(ii)), though, as in case

study 1, the best policy found consistently prioritized culling

of farms near infected premises that were larger than average

(figure 3b(iii)). The best DQN policy did not perform better

than a policy of culling only IPs (figure 3b(iv)) or ring culling.

The possible state–action space for this case study is much

larger, 2.16� 1059 possible state–action pairs, and would

likely require a considerably longer training period.

The third scenario also used 30 farms, with 6 farms initially

infected and a daily culling capacity of one farm, but assumes

a clustered spatial distribution of farms with the initial infec-

tions all in a single cluster, the farms in the lower left corner

(figure 3c(i)) and a strongly distance-dependent transmission

kernel; thus, infection must pass through the ‘bridge’ farms

to reach the second patch. Here, the reward for the DQN

policy appears to plateau over a 10 000 episode training

period (figure 3c(ii)). Here the optimal policy is simpler than

above and the DQN learned to cull the bridge farms. In 2000

simulations of testing, at least one of the two bridging farms

was culled 1744 times while it was still susceptible. Both brid-

ging farms were always culled (100% of simulations) before

they became infected, i.e. culled while susceptible or exposed,

preventing the outbreak from spreading to the second cluster

of farms. The pattern of susceptible farms culled was more cor-

related with location than farm size (figure 3c(iii)). The

resulting DQN policy here performs better than both

random culls, culling of IPs and ring culling because of the

benefit of culling bridging premises while they are still suscep-

tible (figure 3c(iv)). Additional challenges with DQN are

discussed in the electronic supplementary material, figure S2.
(b) Case study 2
Because we summarized the state space for this case study in

two dimensions, using the spatial extent of the outbreak and

the number of farms infected, we can plot a map of the result-

ing RL policy (figure 4a), indicating the best action to take for

each position in the summary state space. For stringent car-

cass constraints (less than or equal to 12 000), vaccination

was the optimal control intervention for almost all states

(figure 4a(i)). With ample resources (carcass constraint greater

than or equal to 18 000), culling was almost always optimal

regardless of the state of the outbreak (figure 4a(iv); see elec-

tronic supplementary material for additional carcass

constraints). Between these extremes in resources, the optimal

policy was composed of a mix of culling and vaccination

depending upon the number of infected premises and area

of the outbreak at the time point in question

(figure 4a(ii),(iii),b,d; see electronic supplementary material,

figure S6 for policies for all carcass constraints from 10 000

to 20 000). Over much of the summarized state space, the

expected difference in actions was small, but the difference

was large for extreme, though rare, outbreaks (figure 4c,d).

Notably, for intermediate culling constraints, culling is pre-

ferred for outbreaks that are small, in a number of

premises, relative to their areal extent (i.e. more densely clus-

tered), but vaccination is more likely favoured when

outbreaks are sparse (figure 4a(iii),(iv); electronic supplemen-

tary material, figure S6). On average, over all carcass

constraints (electronic supplementary material, figure S6),

the RL strategy resulted in shorter outbreaks (figure 4e;

mean difference (IQR): 2.6 (0,4) days); note that the small
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a(iii). (d ) Heatmap of the difference in outbreak duration when using ring culling at 3 km or ring vaccination at 3 km for each state for the carcass constraint
illustrated in a(iii). (e) Distribution of outbreak duration for simulations (using culling constraints ranging from 10 000 to 20 000; see electronic supplementary
material, figure S6 for all policies) managed using the RL policy compared with static policies of ring culling and ring vaccination; circles give mean, bars
give IQR. (Online version in colour.)
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average difference occurs because outbreaks, where switch-

ing of actions is recommended and may achieve large

differences in outcome, are relatively rare (figure 4d). Develop-

ing general rules using RL remains an active area of research

(e.g. [39]). The RL policies presented here are conditional

on the starting conditions used for these simulations. In the

electronic supplementary material, we show that these policies

perform on par with, but not better than, the static strategies

when outbreaks are seeded with random starting conditions

that the learner was not exposed to.

4. Discussion
Historically, management interventions have indeed chan-

ged as outbreaks have progressed [31]. Constructing

optimal policies that anticipate these changes, however, is

a non-trivial computational task. Here we have shown that

RL may be a useful tool for developing state-dependent pol-

icies that outperform static strategies and yet nevertheless

can easily be interpreted by human decision-makers. The

RL approach is a significant improvement over the conven-

tional comparison of static policies, as it allows the

discovery of optimal state-dependent control policies [26]

and the generation of non-intuitive control policies that
are not limited to consideration only of control policies

that can be defined a priori.
Through our first case study, we illustrated that RL can

efficiently estimate approximately optimal state-dependent

policies for outbreak response control problems where an

exhaustive search through the state space is computationally

infeasible. Though the resulting policy is itself too compli-

cated to illustrate simply, we showed that the state-

dependent RL policy produces intuitive control for simple

landscapes—prioritizing culling on farms that are at high

risk of infection because of proximity, or high potential for

onward spread because of large farm size. On the clustered

landscape (scenario 3), the RL policy also identified the

‘bridge nodes’ between clusters as optimal sites for culling

to prevent spread between clusters, highlighting the depen-

dence of the optimal policy on the landscape [40]. Thus, post
hoc analysis of RL policies can help to develop heuristics that

can inform policy decisions.

In our second case study, we presented an approach that

uses MC control to generate low-dimensional, human-read-

able state-dependent policies. We used simulation first to

illustrate the epidemic settings (here a constraint on culling

capacity) for which a state-dependent policy results in an

expected benefit, and second to show that a priori definition
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of a simple summary state representation can help to guaran-

tee a human-readable policy. A human-readable policy is not

as easily obtained with DQN (figure 2d ). Utilities can be

assigned to each state–action pair, thought of as a look-up

table; however, visualization of this table becomes difficult

when the state is large.

There are three key limitations in delivering practical

state-dependent policies: computational challenges, chal-

lenges in interpretation and communication of the output

policies, and challenges in implementation.

RL itself offers a solution to the computational challenge

of an exhaustive search through the state–action space; here

we illustrated the development of state-dependent policies

using simulations over only a small fraction of the state

space. However, as seen in our first case study, long train-

ing periods may be necessary to achieve approximately

optimal policies for large state spaces; two weeks of training

was required for scenario 2 of case study 1. Deploying such

methods in a real outbreak may require parallelization of

simulation models or highly efficient computational code,

and the RL algorithms themselves may require tuning of

hyperparameters (see further discussion in the electronic

supplementary material). Some of these details could be

tested in non-outbreak settings to improve reaction to real

outbreaks.

The interpretation of policies, particularly those that are

generated in settings with a high-dimensional state space,

and the communication of output policies to policymakers

remains a challenge. There are two pathways to producing

human-readable policies: (1) by generating a full policy,

then using statistical methods to reduce the policy itself to

a manageable dimension (as in case study 1); and (2) by

simplifying the state space prior to searching for the optimal

policy (as in case study 2). We note that there is no guarantee

that a summary state space (e.g. case study 2) will necessarily

result in an improved expected performance benefit or a tract-

able state-dependent policy. Thus, the choice of this summary

state representation requires careful thought and expert

input. An RL policy can itself be subjected to further analysis;

machine learning methods, such as classification and

regression trees, have been used to highlight variables that

have a large influence on the severity of outbreaks (e.g.

[38]) and to provide a starting point for the systematic

selection of state variables.

The translation of the theoretical gains from using

state-dependent control into real-world action requires

operational mechanisms that may not yet exist; e.g. pre-

existing data sharing agreements and transfer to allow

real-time state updating or logistical infrastructure for

switching response teams between control activities. Mod-

elling and optimization can be used in scenario-planning

exercises before any outbreak to investigate state-dependent

preparedness plans and communicate findings to policy-

makers. During emergencies, systems must already be in

place to allow rapid communication and dissemination of

data on the state of the outbreak, and resources must be

available to enable redeployment, or repurposing, of

personnel.

Several research questions are opened up by our

approach. It remains to be determined what is the limiting

complexity of a policy; for example, what is the best low-

dimensional representation of the state space, or what is the

upper limit of complexity of the state space, to ensure the
resultant policy is both interpretable and logistically feasible

in the field? Simple state-dependent policies already exist for

emergency response in the form of flow diagrams (e.g. [41]

figure E p. 72, or [42]) and previous research regarding like-

lihood of adoption of computer-based aids for clinical

decision-making identified the ability of a system to justify

the advice it was providing as most important [43]. The like-

lihood of adoption of state-dependent policies may depend

critically on the complexity and communication of the

policy, and recent interest in ‘explainable AI’ may be the

catalyst for initiating such investigations [39].

Here, we have assumed the model is known, but in a real

outbreak, parameter estimation and/or model selection may

occur simultaneously with the construction of RL policies. It

may be possible, however, to use state variables representing

a measure of model uncertainty, thereby allowing RL

methods to identify control actions that would reduce uncer-

tainty through time (e.g. using active adaptive management;

[44,45]).

Here, we have ignored the additional operational costs of

measuring the state space (e.g. surveillance) and of switching

among management actions (e.g. overhead costs or costs such

as travelling between premises). Additional work to account

for these costs is critical to the full evaluation of these

methods. Finally, the choice of null strategies against which

to assess the performance of state-dependent policies is not

always easy. In case study 2, the comparison was against pre-

cedents in the modelling literature, but for our case study 1,

the choice of null strategy does not have a precedent, and

some potential baseline strategies, such as no management,

are unrealistic comparisons in an outbreak scenario given

there are minimum legal intervention requirements under

EU law [46].

RL, coupled with epidemiological models, presents an

exciting new avenue to develop optimal control policies.

Rather than replacing human decision-makers, we propose

applications that augment human decision-making by

either using a computer-readable policy to develop practical

policy heuristics or directly generating a human-readable

policy. Thus, RL has the potential to provide well-supported

yet tractable state-dependent policy summaries to facilitate

decision-making in times of crisis.
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