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Macrophages play an important role in host defense, in addition to the powerful ability to phagocytose pathogens or foreign
matters. They fulfill a variety of roles in immune regulation, wound healing, and tissue homeostasis preservation. Macrophages
are characterized by high heterogeneity, which can polarize into at least two major extremes, M1-type macrophages (classical
activation) which are normally derived from monocytes and M2-type macrophages (alternative activation) which are mostly
those tissue-resident macrophages. Based on the wound healing process in skin, the previous studies have documented how
these different subtypes of macrophages participate in tissue repair and remodeling, while the mechanism of macrophages in
bowel anastomotic healing has not yet been established. This review summarizes the currently available evidence regarding the
different roles of polarized macrophages in the physiological course of anastomotic healing and their pathological roles in
anastomotic leakage, the most dangerous complication after gastrointestinal surgery.

1. Introduction

Macrophages are myeloid immune cells that play a central
role in inflammation and host defense [1, 2]. These cells are
characterized by the powerful ability of phagocytosis and
are credited with protecting the host from infection through
a process so-called “innate immunity” [3]. In recent years,
with the accumulation of evidence, macrophages have
emerged as one of the most versatile cells. Their roles have
shifted from immune effector cells which conduct host
defense just as “trashmen” to predominant “directors” and
“executors” for regulating inflammatory response, keeping
tissue homeostasis, participating in wound healing and tissue
remodeling [4].

Macrophages are actively involved in the wound healing
process, while their role in a special surgical wound, also
known as the anastomotic wound, has not yet been fully
established. Anastomosis is constructed after removal of
gastrointestinal tumor or bowel resection by surgeons to
reconstruct the continuation of the gastrointestinal tract.
Abnormal healing of anastomosis may develop into

anastomotic leakage (AL), defined as luminal contents
leaking from a surgical bowel connection [5]. It is the most
dangerous complication after colorectal surgery [6–8],
because it is responsible for up to 40% postoperative mortal-
ity rate, prolonged hospitalization, and an increase in the cost
of healthcare due to the treatment of sepsis and the need for
reoperation [9].

From a macroscopic point of view, the cause of AL
mainly includes communication, infection, and healing dis-
turbances [10]. However, a detailed mechanism on a cellular
level is yet to be established due to the limited evidence. In
this review, basing on heterogeneous populations of macro-
phages and their opposed tendencies of polarization, we tend
to discuss the roles of different types of macrophages in an
uneventful anastomotic healing and their pathological roles
in anastomotic leakage.

1.1. Subtypes of Macrophages. Macrophages or mononuclear
phagocytes had been long thought to originate from hemato-
poietic stem cells (HSCs). The prevailing dogma has stated
that all macrophages derived from and were also replenished
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by monocytes [11]. However, macrophage family cells (cells
of the mononuclear phagocyte system) manifest remarkable
heterogeneity, in both their morphology and biological
functions [12, 13]. These recent data have challenged the
long-held conception about “HSC-monocyte-macrophage.”
Evidence showed that tissue-resident macrophages like
Kupffer cells of the liver, epidermal Langerhans cells of the
skin, and microglia of the brain derived from a yolk sac and
could persist in adult mice independent of HSCs [14–21].
Those tissue-resident macrophages can renew in situ,
although they might also be replenished by blood monocytes
in certain situations. In contrast to monocyte-derived macro-
phages which participate in an antibacterial process during
acute inflammatory response, tissue-resident macrophages
express different functional properties and play a central role
in maintaining tissue architecture, function, and homeostasis
[22–25], and their role in anastomotic healing is further
discussed below.

The diversity and plasticity were recognized as hallmarks
of macrophages, which contribute to their significant hetero-
geneity. In general, polarization of macrophages can be
divided into two major extremes, that is, the classical activa-
tion which results in M1-type macrophages (M1) and the
alternative activation which results in M2-type macrophages
(M2). Those two types of macrophages perform diverse func-
tional phenotypes in response to microenvironmental sig-
nals, like microbial products, damaged cells, and cytokines
from activated lymphocytes. Specifically, ligands of Toll-like
receptors (TLRs) and interferon-γ (IFN-γ) can induce mac-
rophages to polarize into M1-type macrophages; on the
contrary, interleukin-4 (IL-4) and interleukin-13 (IL-13)
induce macrophages to polarize into M2-type macro-
phages [26–28]. However, such explanation may not fully
illustrate all different activation scenarios. Murray et al.
proposed that there should be some other subtypes
between M1 and M2 [29], including the M2a subgroup
induced by IL-4 and IL-13, the M2b subgroup activated
by immune complexes (TLRs), and the M2c subgroup
deactivated by glucocorticoids, transforming growth factor
(TGF), or interleukin-10 (IL-10) [30, 31]. Moreover, it is
also reported that there might be a supplementary sub-
type of M2 (M2d), which is elicited by TLR agonists
and adenosine [32, 33]. It seems that the polarization of
macrophages should be viewed as a continued spectrum,
on which, two types of macrophages (M1 and M2) occu-
pied the opposite ends. Another classification of polariza-
tion proposed by Mosser and Edwards suggested that
macrophages are activated to form three populations in
charge of host defense, wound healing, and immune reg-
ulation, respectively [34]. The authors classified macro-
phages on the basis of their fundamental functions
rather than of the stimuli. Matching with the previously
discussed conception of “M1-M2” paradigm, most of
monocyte-derived macrophages are classically activated
and express the M1 phenotype, which exerts host defense;
reversely, tissue-resident macrophages are mainly acti-
vated in the alternative pathway which expresses M2-
like characteristic and preserves tissue homeostasis and
resolution of inflammation [21–23].

1.2. The Role of Polarized Macrophages in Physiological
Anastomotic Healing. The wall of the alimentary tract
contains four layers (i.e., mucosa, submucosa, muscularis
propria, and serosa). For a classic end-to-end inverted bowel
anastomosis, apposition of the serosa vanishes the gap
between the two ends of the gastrointestinal tract, providing
a barrier that insulates the sterile abdominal cavity from
luminal contents and bacteria; moreover, this layer is impor-
tant in providing a matrix for fibroblasts [35]. The sub-
mucosa consists of blood vessels, lymphatics, and nerve
fibers; this layer is the source of fibroblasts that become
active after gastrointestinal surgery and start to deposit
collagen. The stapled or sutured collagen fibers in this
layer provide most of the tensile strength of anastomosis
[36]; hence, the submucosa is of great importance in anas-
tomotic healing. The mucosal layer also plays a role in
maintaining homeostasis to allow the healing process. A
pool of macrophages in the gastrointestinal mucosa is
the largest pool of tissue macrophages in the body, and
a long-lasting macrophage absence or dysfunction impairs
anastomotic healing [37, 38].

Tissue repair and healing after injury have been
studied for centuries but remain understood to a limited
object, that is, skin. Different from that, healing of the
gastrointestinal tract is anatomically obscured from inspec-
tion, only allowing the surgeon to judge the success of the
operation only on the patient’s parameters of general well-
being [36]. There are some differences between the skin
and anastomotic healing including anatomy (e.g., no
equivalent anatomic component of the serosa in cutaneous
tissues) and collagen and collagenase activity [39]. How-
ever, classical response to injury occurs in all organs and
tissues. The physiological course of anastomotic healing
can also be divided into three overlapping but distinct
stages, which include inflammation, new tissue formation,
and remodeling (Figure 1) [40, 41].

1.2.1. Inflammation. In addition to infection of diverse
microbial factors, injuries or traumas such as surgical strike
can also lead to a non-pathogen-associated inflammation,
which can be further divided into the early inflammatory
response and the late one [42]. In the early inflammatory
phase, neutrophils are recruited from circulating blood to
local wounding tissue (the anastomotic area) at first. Those
recruited polymorphonuclear cells remove the local foreign
particles or bacteria and then undergo apoptosis or necrosis.
After that, monocytes are recruited and differentiate into
macrophages which are highly phagocytic. They phagocytose
impaired neutrophils and other tissue debris to protect from
further tissue damage. During this phase, in response to
pathogen-associated modifying patterns (PAMPs) in a con-
taminative circumstance or damage-associated modifying
patterns (DAMPs) in a sterile circumstance, macrophages
are classically activated and express the M1 phenotype
[43–45]. M1 macrophages release high concentrations of
proinflammatory cytokines such as tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and
interleukin-12 (IL-12); protease; and reactive oxygen species
(ROS) [34], all of which are thought to be important for
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microbial killing and proinflammatory response [13]. M1
macrophages can also produce collagenase, a high-activity
enzyme that causes collagen degradation that results in
low anastomotic strength early after the formation of an
anastomosis [46]. In the late inflammation phase, with
excessive phagocytosis of apoptotic neutrophils, engage-
ment of β2 integrins on macrophages by apoptotic neutro-
phils activates macrophages to express anti-inflammatory
mediator transforming growth factor (TGF) [47]. In contrast,
the production of proinflammatory cytokines like TNF-α
and IL-1β was inhibited [48, 49]. Thus, the phenotype of
macrophages switches from proinflammatory M1-like to
anti-inflammatory M2-like. These macrophages produce
cytokines such as IL-10 and lay the foundation for new
tissue formation by secreting other growth factors such
as vascular endothelial growth factor (VEGF) [50, 51].
Because macrophages stimulated with IL-10, TGF, or glu-
cocorticoids in vitro polarize into the M2c subtype that
shares similarities with anti-inflammatory macrophages
[30, 52–58], it suggests that anti-inflammatory macrophages
belong to M2c-type macrophages and are able to amplify
their anti-inflammatory response by secreting IL-10 and
TGF in a feedforward loop. In addition, anti-inflammatory
and regenerative capacities of anti-inflammatory macro-
phages were shown to be entirely IL-10-dependent in sterile
environments, for example, in surgical wound [59].

1.2.2. New Tissue Formation. In this phase, macrophages res-
ident in tissue or recruited from peripheral blood, known as
profibrotic macrophages, generate various growth factors
such as TGF, platelet-derived growth factor (PDGF), fibro-
blast growth factor-2, or insulin-like growth factor-1 [60].
Among them, TGF is a profibrotic cytokine that exerts on
fibroblasts and activates them to differentiate into myofibro-
blasts in wound tissue. Myofibroblasts produce a mass of
extracellular matrix (ECM) components including collagen
and fibronectin to fill up the tissue defect. For the gastrointes-
tinal tract, collagen can also be produced by smooth muscle
cells [61]. Collagen subtypes in the gastrointestinal tract are
collagens I, III, and V, compared to solely collagen I and III
in the skin [62]. By efficient contractile forces frommyofibro-
blasts, fractured wound tissue can be bound together and
rebuild their integrity [63]. Meanwhile, profibrotic macro-
phages and activated fibroblasts release proangiogenic factors
like VEGF, which elicit endothelial progenitor cells crawling
towards wound tissue, to promote new vessel formation
(angiogenesis). Invasion of the capillary increases the blood
supply to local tissues and facilitates anastomotic healing.
Furthermore, studies of the healing colonic mucosa of rabbits
after experimental excision showed that an abundance of
mesenchymal cells in the healing intestinal muscle layers
accompanies capillary invasion; these cells can differentiate
into smooth muscle cells and histiocytes, which are thought
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Figure 1: Polarization of macrophages in normal healing of anastomosis. Inactivated macrophages can be stimulated by various stimuli (e.g.,
PAMP, DAMP/IL-4, and IL-13/apoptotic cell) and polarize into M1- orM2- (M2a, M2c) type macrophages during different phases of normal
anastomotic healing. Differentiated macrophages express a variety of cytokines (e.g., IL-1β, IL-6, IL-10, and TNF-α), growth factors (e.g.,
VEGF), and enzymes (MMPs). These biochemical substances acting upon tissues contribute to tissue repair and remodeling. PAMP:
pathogen-associated modifying patterns; DAMP: damage-associated modifying patterns; IL: interleukin; TNF-α: tumor necrosis factor-α;
VEGF: vascular endothelial growth factor; MMPs: matrix metalloproteinases.
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to be responsible for the reestablishment of smooth muscle
tissue [64, 65]. Profibrotic macrophages, myofibroblasts,
and neovessels all together constitute granulation tissue,
the most important fundamental compartment in the nor-
mal course of wound healing [40, 41]. These profibrotic
macrophages are functionally classified as M2a-like macro-
phages because they can be induced in vitro by IL-4 and
IL-13 [23, 30]. However, it is not clear whether anti-
inflammatory and profibrotic macrophages can be clearly
distinguished in vivo, and it appears that macrophage
plasticity creates a mixture or continuous variant shifts
during wound healing [50].

1.2.3. Remodeling. Remodeling of anastomosis is a dynamic
process of maturation within healed tissue that is based on
a balance between ECMdeposition and breakdown and tissue
remodeling [66, 67]. A part of tissue-resident macrophages
termed as fibrolytic macrophages is critical for maintaining
this dynamic balance. They produce matrix metalloprotein-
ases like matrix metalloproteinase-2 (MMP2), matrix
metalloproteinase-9 (MMP9), matrix metalloproteinase-12
(MMP12), and matrix metalloproteinase-19 (MMP19)
[42, 68], to degrade matrix macromolecules, that is, colla-
gen, one of the most important components of ECM. The
submucosa is a strength layer of the gastrointestinal tract
and made predominantly of collagen, and remodeling of
this layer predominates the strength of the anastomosis.
Depending on MMPs secreted by fibrolytic macrophages,
initially deposited collagen fibers are rearranged and
cross-linked, remodeled from type III collagen to type I
collagen; the latter one is much stronger. Besides, fibrolytic
macrophages also regulate the degradation by synthesizing
the tissue inhibitor of metalloproteinases (TIMPs), which
can inhibit the activities of MMPs. Furthermore, fibrolytic
macrophages are responsible for the induction of fibroblast
apoptosis, subsequent removal of apoptotic cells, and sup-
pression of further inflammation via IL-10 release [60].
Fibrolytic macrophages are proposed to be classified as
M2c-like macrophages which can be elicited in vitro by
apoptotic cells and IL-10 [69, 70].

Thus, macrophages participate in whole physiological
courses of anastomotic healing. Among the three main
phases of tissue repair, macrophages express different pheno-
types during different stages. There are at least four kinds of
macrophages in a condition of normal tissue repair: (1) pro-
inflammatory macrophages, (2) anti-inflammatory macro-
phages, (3) profibrotic macrophages, and (4) fibrolytic
macrophages. If we sort out those four kinds of macrophages
according to “M1-M2” paradigm, proinflammatory and
profibrotic macrophages may, respectively, correspond to
M1-type and M2a-type macrophages. Meanwhile, both
anti-inflammatory and fibrolytic macrophages probably
belong to M2c-type macrophages [42, 59].

1.3. Roles of Macrophages in Anastomotic Leakage.As we pre-
viously discussed in our review, occurrence of AL mainly
contains three factors: communication, infection, and
healing disturbances. Communication means defect of the
alimentary tract in the anastomotic region that connects the

gastrointestinal lumina and abdominal cavity. Infection indi-
cates anastomotic site bacterial infection. Healing distur-
bances include all substances that disturb a normal healing
process such as hypoxia or inflammation. These three factors
actively interact with each other: one factor takes place, and a
responsive chain that consists of all factors will be initiated,
eventually leading to AL. For example, infection provokes
inflammatory response at the anastomotic site, which
impairs collagen deposition [71, 72], then interferes with
the normal healing process, and leads to a communication
between the intra- and extraluminal gastrointestinal walls.
On the contrary, communication allows the bowel content
(including bacteria) to dislocate into the abdominal cavity,
causes intra-abdominal infection, and afterwards delays
anastomosis healing. Clinically, communication in some
extent is regarded as a macroscopic clinical outcome, while
infection and healing disturbances are durative biological
processes. For AL, macrophages are mainly involved in the
latter two mechanisms, which is also observed in other
poorly healed wounds [73–77].

Anastomotic infection may be caused by anastomotic
dehiscence (intestinal contents leak to the sterile abdominal
cavity) or pre-/intraoperative contamination. Regardless of
the cause of infection, in the contaminative infective environ-
ment, macrophages polarize into the M1 type as mentioned
above. However, instead of supporting resistance to intracel-
lular bacteria and controlling the acute phase of infection, an
excessive or prolonged M1 program is deleterious for
patients, as demonstrated in acute infections with Escherichia
coli [78]. E. coli as a resident flora of the gut can induce a
typical M1 profile through the recognition of lipopolysaccha-
rides (LPS) by TLR4 [79, 80]. Classical activated M1-type
macrophages upregulate the expression of inducible nitric
oxide synthase (iNOS), which is responsible for the genera-
tion of nitric oxide (NO). NO was first identified to mediate
arterial vasodilatation [81–83] and then was found to have
a role in host defense against pathogens [84, 85]. Moreover,
a prominent role has been described for NO in collagen
deposition, fibrosis, and scar formation [71, 72, 86, 87].
High levels of wound NO, as in infection or inflammation,
severely impair wound collagen synthesis [88]. Decreased
deposition of collagen seriously weakens the anastomotic
strength, which may lead to the failure of anastomotic heal-
ing. Therefore, improper M1 polarization of macrophages
in bacterial infection of the abdominal cavity contributes
to the occurrence of AL.

The role of macrophages in leakage with healing dis-
turbances is more complicated. During a normal condi-
tion, tissue repair initiates from clearance of tissue debris
and dead cells, efficiently phagocytosing those “tissue rub-
bish” by macrophages, and is critical for timely resolution
of inflammation and successful healing. Nevertheless, for
those patients complicated with diabetes mellitus, advancing
in years, or undergone chemotherapy, the ability of macro-
phages to phagocytose is severely influenced, which directly
leads to an accumulation of apoptotic or necrotic cells at
the anastomosis site. This accumulation of dead cells pro-
longs the inflammatory phase, disturbs the healing process,
and compromises the resolution of inflammation [73, 74].
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Other disturbances such as ischemia or anastomotic hypoxia
severely compromise the anastomotic healing [89, 90]. At a
cellular level, exposing macrophages to an anoxic environ-
ment leads to the expression of proinflammatory cytokines
like IL-1β and TNF-α and cytotoxic mediators like NO
[91–93], which indicates that hypoxia can promote macro-
phages to polarize into the M1 phenotype. Excessively acti-
vated M1 macrophages sustain proinflammatory response
and obstruct subsequent steps of the repair process that
influences proper healing and remodeling of anastomosis
[94–96], and the relevant mechanism is described above.

Based on the available evidence, it seems that classical
activated macrophages which express the M1 phenotype are
responsible for the pathological process of defective anasto-
motic healing, whereas alternative activated macrophages
which express theM2 phenotype play a critical role in inflam-
mation resolution and successful tissue repair (Figure 2).
Although M1-type macrophages participate in the early
phase of normal wound healing, the programmed transfor-
mation of their polarized orientation from M1 to M2 lays
the foundation of transient inflammatory response and the
following tissue regeneration.

2. Conclusion

Macrophages are the most versatile immune cells and possess
significant plasticity and heterogeneity. Macrophages can
polarize into two main extremes and express corresponding
phenotypes (M1 and M2). As polarization is the premise
for macrophages to exert their diverse biological functions,
different polarized macrophages play different roles in the
physiological process of anastomotic healing and patho-
genesis of AL. Reacquainting AL in the perspective of macro-
phages contributes to the exploration of new diagnostic tools
and therapeutic targets. For example, in different recovery
phases after anastomosis construction, the spectrum of cyto-
kines and inflammatory mediators such as IL-1β, IL-6, IL-10,
IL-12, TNF-α, ROS, and NO, which are secreted by

macrophages, may appear an alteration. Moreover, the
level of these substances could indirectly reflect the situa-
tion of an anastomosis. An abnormal fluctuation of these
substances probably indicates disorder and defection of
anastomosis healing, which can be regarded as premonition
of AL. Because M1-type macrophages show a stimulating
effect on AL and M2 macrophages are essential for anasto-
mosis healing, regulation of M1/M2 polarization may find
its therapeutic roles in the treatment of AL in the future.
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