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Abstract

Purpose: To present the k-means clustering algorithm as a tool to address treatment plan-

ning considerations characteristic of stereotactic radiosurgery using a single isocenter for

multiple targets.

Methods: For 30 patients treated with stereotactic radiosurgery for multiple brain metas-

tases, the geometric centroids and radii of each met were determined from the treatment

planning system. In-house software used this as well as weighted and unweighted versions

of the k-means clustering algorithm to group the targets to be treated with a single isocen-

ter, and to position each isocenter. The algorithm results were evaluated using within-clus-

ter sum of squares as well as a minimum target coverage metric that considered the effect

of target size. Both versions of the algorithm were applied to an example patient to demon-

strate the prospective determination of the appropriate number and location of isocenters.

Results: Both weighted and unweighted versions of the k-means algorithm were applied

successfully to determine the number and position of isocenters. Comparing the two, both

the within-cluster sum of squares metric and the minimum target coverage metric resulting

from the unweighted version were less than those from the weighted version. The average

magnitudes of the differences were small (�0.2 cm2 and 0.1% for the within cluster sum of

squares and minimum target coverage, respectively) but statistically significant (Wilcoxon

signed-rank test, P < 0.01).

Conclusions: The differences between the versions of the k-means clustering algorithm

represented an advantage of the unweighted version for the within-cluster sum of squares

metric, and an advantage of the weighted version for the minimum target coverage metric.

While additional treatment planning considerations have a large influence on the final treat-

ment plan quality, both versions of the k-means algorithm provide automatic, consistent,

quantitative, and objective solutions to the tasks associated with SRS treatment planning

using a single isocenter for multiple targets.
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1 | INTRODUCTION

Since its introduction over 60 yr ago, stereotactic radiosurgery (SRS)

has been an effective method to treat both benign and malignant

intracranial lesions.1,2 Patients receiving SRS for the treatment of

multiple brain metastases (mets) may be treated using one of several

treatment machines or machine configurations. These include

Gamma Knife (Elekta, Crawley, UK), CyberKnife (Accuray Inc., Sunny-

vale, CA, USA), or a linear accelerator (linac) fit with a stereotactic

cone or with a multileaf collimator (MLC). In the case of treatments

using Gamma Knife, CyberKnife, or a linac with an SRS cone, multi-

ple mets must be targeted individually and in sequence. However,

linacs configured with MLCs provide an alternative. In this configura-

tion, several targets may be included within a larger jaw-defined field

utilizing a single isocenter.3 Additional blocking is provided by the

MLCs to achieve conformity around the targets. In this way, multiple

brain mets can be irradiated simultaneously, improving the efficiency

of treatment by reducing the amount of time the radiation beam is

on and the amount of time the patient is on the table. Reducing the

latter is also beneficial as the observed magnitude of intrafractional

motion of some techniques has been shown to increase with the

treatment duration.4,5

This single isocenter for multiple targets technique, however,

generates additional factors that must be considered, namely due to

the unconventional position of the isocenter relative to the targets.

For these treatments, the isocenter is typically not positioned in the

center of the target, as would be the case if the target was being

treated individually. Instead, it is positioned somewhere in the mid-

dle of the set of targets included within the field. With this unique

configuration, three characteristic tasks emerge and must be

addressed by the treatment planner. The first is the selection of the

appropriate number of treatment plans and isocenters used to treat

the full set of targets. The second is the identification of groups of

targets to be treated simultaneously using the same isocenter. The

third is the determination of the position of each isocenter. These

tasks as presented here do not necessarily represent explicit steps in

the treatment planning process, rather a conceptual framework of

the novel elements characteristic to this planning technique.

The approach taken by the treatment planner in response to

these tasks can have geometric and dosimetric consequences that

are nontrivial due to the position of the off-isocenter targets. One

contributing factor is that the configuration and parameters of the

linac are often described relative to the isocenter, and the machine’s

performance at the isocenter cannot necessarily be extrapolated to

off-isocenter positions. The isocenter also serves as the reference

point for rotations described by the linac and many image guidance

systems. A target not placed at the isocenter will be more sensitive

to a rotation of a particular magnitude due to its radial distance from

that point.6–8 Targets far from the isocenter may also be compro-

mised by needing to be treated with the wider, peripheral MLC

leaves rather than the narrower, central leaves. Furthermore,

because of the MLC motion along a single direction, the ability of

the MLCs to conform to the shape of each target is dependent on

the collimator angle, beam angles, and the isocenter position.9 All of

these factors can lead to detrimental dosimetric effects for off-iso-

center targets, necessitating consideration of the three emergent

tasks.

Current practice tends to consider the first two of the three

treatment planning tasks simultaneously. Clinicians are typically

inclined to group the targets into as few treatment plans as possible

in order to maximize the decrease in treatment time. However, this

tends to increase the distance of each target to the isocenter, exac-

erbating their sensitivity to the linac’s accuracy and precision as well

as to any patient setup rotations. This also increases the likelihood

that a target will exceed the range of the narrower, central MLC

leaves. Furthermore, grouping the targets into as few plans as possi-

ble will tend to increase the jaw-defined field size and the area

where the radiation is blocked exclusively by the MLCs, increasing

the contribution of leakage radiation. A reasonable approach to

addressing these competing objectives is to group targets in close

proximity into a single treatment field, while excluding faraway tar-

gets that might lead to a large increase in field size or might other-

wise compromise the ability of the MLCs to conform to the targets.

This strategy strives to balance the increased efficiency of the treat-

ment and, at the same time, indirectly mitigate the deleterious

effects of off-isocenter targets and large jaw-defined field sizes. In

doing so, both the number of isocenters and the grouping of targets

to be treated by each are decided.

After the first two tasks have been addressed, the third, the

determination of the position of the isocenter, is often considered

trivial. Each isocenter is simply placed near the center of the set of

targets to be treated by that plan as a compromise that minimizes

the distance between each target and the isocenter. This can be

based on the center of target centroids7,10 or the center of their

combined volume.6,10

These heuristic approaches seem reasonable and effective. How-

ever, they remain subjective with no guarantee of consistency

patient-to-patient or treatment planner-to-treatment planner. Con-

sidering the increasing prevalence of the single isocenter for multiple

targets technique and the potential dosimetric effects of inade-

quately addressing the technique-specific considerations, an objec-

tive, more robust, and automatic approach to the three emergent

tasks is necessary.

Fortunately, the simple and robust k-means clustering algorithm

naturally lends itself to providing a more consistent solution. A com-

mon, unsupervised learning algorithm, the k-means clustering algo-

rithm was described by MacQueen in 1967.11 It clusters data by

minimizing the within-cluster variance or within-cluster sum of

squares, equivalent to the sum of squared Euclidean distance

between each data point and the cluster centroid. A predetermined

number of classes is provided as input to the algorithm along with

the observed dataset. The results of the algorithm are the optimal

values of mean reference points and the classification of each data

point to one of these reference points. The appropriate number of

classes can be inferred from repeating the algorithm with varying

numbers of classes and considering the change in the within-cluster
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variance. In the context of SRS treatment planning using a single

isocenter for multiple targets, the number of classes is analogous to

the number of treatment plans and isocenters used to treat the full

set of targets. The results of the algorithm provide groupings of tar-

gets and the locations of isocenters that minimize the sum of

squared distance between each target and the isocenter. In addition,

it provides a quantitative metric (i.e., the within-cluster sum of

squares) that can be used to evaluate treatment approaches of vari-

ous numbers of isocenters. The application and advantages of this

algorithm to multitarget SRS treatment planning have yet to be

described in the literature.

The purpose of this work was to present the application of the

k-means clustering algorithm to SRS treatment plans featuring a sin-

gle isocenter for multiple targets. The algorithm is a tool that pro-

motes an objective and consistent treatment planning approach

while automatically addressing three emergent tasks characteristic of

this treatment technique.

2 | METHODS

2.A | Data acquisition

To demonstrate the application of the k-means clustering algorithm

to SRS treatment planning, we retrospectively selected 30 patients

that had been recently treated using the single isocenter for multiple

targets technique (Varian TrueBeam 2.0, Varian Medical Systems,

Palo Alto, CA, USA). Patient selection was otherwise random. For

each met, the 3D coordinates of the geometric centroid and the

radius of the sphere with equivalent volume were determined from

the treatment planning system (Eclipse v13.6, Varian Medical Sys-

tems, Palo Alto, CA, USA). These data served as the input to the

implementation of the k-means algorithm described below.

2.B | Using the k-means clustering algorithm to
group targets and select isocenter positions

For this work, the patient-specific sets of met centroids and radii

were fed into a software interface developed in-house that featured

the Matlab implementation of the k-means clustering algorithm

(kmeans, Mathworks, Natick, MA, USA). The software varied the

number of classes used by the algorithm between one and m, the

patient-specific number of mets. For each instance, the algorithm

determined the optimal classification of the m mets into groups to

be treated by k isocenters, as well as the position of the isocenters

that minimized the within-cluster variance. The within-cluster vari-

ance is equivalent to the sum of squared Euclidean distance between

each met and its isocenter (i.e., within cluster sum of squares). The

algorithm repeated this process 1009 to avoid local optimal classifi-

cation results.

In addition to this conventional application of the k-means algo-

rithm, we also implemented a weighted version of the algorithm. For

this version, the data point representing each met’s geometric cen-

troid was replicated so that the number of data points was inversely

proportional to the size (radius) of the met relative to the others.

This directed the algorithm to “favor” smaller mets which are more

sensitive to rotations by positioning the resulting isocenter closer to

them. As an additional result, any met that is far enough away from

the isocenter to be beyond the range of the narrower, central leaves,

will more likely be of a larger size where the use of the wider,

peripheral leaves is of less consequence.

The within-cluster sum of squares resulting from the weighted

and unweighted versions of the algorithm were compared using a

Wilcoxon signed-rank test as a paired, nonparametric statistical test.

The instances where the number of classes was equal to the num-

ber of mets were excluded because both versions of the algorithm

would yield the trivial solution where an isocenter was placed in

the center of each met and the within-cluster sum of squares is

zero.

2.C | Evaluating the target coverage resulting from
the k-means clustering algorithm

To better estimate the dosimetric effects of the algorithm’s results,

we converted the results from both the weighted and unweighted

versions of the algorithm into a target coverage metric derived from

that described previously.8 In the original description of the metric, a

sphere of volume equivalent to the target in consideration is dis-

placed by a geometric transformation relative to an origin represent-

ing the isocenter. The coverage metric value is the relative volume

of overlap between the displaced sphere and another, stationary

sphere that represented a particular isodose line. In this work, we

considered the relative volume of overlap between a displaced

sphere and a stationary sphere that both represented the volume of

the target in consideration. Furthermore, we focused on transforma-

tions comprised of a single rotation only. Because the rotations can

occur in any anatomic plane, the rotation for this metric was consid-

ered to occur around an axis that was perpendicular to a line

between the target centroid and the isocenter. This maximized the

displacement of the target, and therefore represented a worst-case

scenario regarding target coverage. Under these circumstances, cal-

culation of the coverage metric was simplified as represented in

eq. 1. In eq. 1, R is the distance from the center of the target to the

isocenter, h is the angle of rotation in degrees, and r is the radius of

the sphere of equivalent volume.

targetCoverage %ð Þ ¼ 100 � 1� 3
2

pRh
360r

� �
þ 1

2
pRh
360r

� �3
" #

(1)

In this work, we specifically considered rotations of 0.5° as an

example transformation. A rotation of this magnitude is typical of

those observed clinically. Because the algorithm considered each tar-

get and each class simultaneously, we represented the solution by

considering the minimally covered target.

As was the case with the within-cluster sum of squares described

above, the results of the weighted and unweighted versions of the

algorithm were compared in terms of minimum target coverage using

a Wilcoxon signed-rank test.
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2.D | Applying the k-means clustering algorithm
prospectively to an example patient

Lastly, to demonstrate how the k-means algorithm is used prospec-

tively on a patient-specific basis, the results of the unweighted ver-

sion of the algorithm are presented with both the within-cluster sum

of squares and the minimum target coverage as functions of the

number of isocenters for a representative example patient.

3 | RESULTS

The 30 patients selected for this work represented a total of 168

mets with a mean of 5.6 mets per patient (range: 2–17 mets/

patient). The radii of the spheres with volumes equivalent to the

mets ranged from 0.3 to 1.2 cm with a mean of 0.5 cm.

Table 1 provides the comparison of the results from the

weighted and unweighted versions of the k-means algorithm. The

within-cluster sum of squares resulting from the unweighted version

of the algorithm was, on average, less than that from the weighted

version. While small in magnitude, the difference was nonetheless

statistically significant according to a Wilcoxon signed-rank test. The

minimum target coverage resulting from the weighted version of the

algorithm was greater than that from the unweighted version by a

small magnitude that was also statistically significant.

The prospective analyses for the example patient are depicted in

Figs. 1 through 3. This patient was treated for five mets, each with

either a 0.4 cm or 0.5 cm equivalent sphere radius. Figure 1 repre-

sents the grouping of the mets for the scenarios where the five mets

are to be treated with one to five isocenters.

In Fig. 2, the within-cluster sum of squares from the unweighted

version of the algorithm is plotted as a function of the number of

isocenters. Also plotted are the squared Euclidean distances from

each target to its isocenter. These are the components that make up

the within-cluster sum of squares metric. It is apparent that the value

of this metric decreases with the addition of each isocenter; however,

the effect is of diminishing returns as successive isocenters are

added. The “elbow” at k = 3 represents the point where a user may

decide that the cost of adding subsequent isocenters is no longer

worth the decreasing benefit of minimizing the distance to the

isocenters. However, there are other clinical factors that must be con-

sidered in making this decision as presented in the Discussion.

Figure 3 presents the target coverage metric for each met along

with the minimum target coverage value from the unweighted ver-

sion of the algorithm plotted as a function of the number of isocen-

ters. The coverage is improved with the addition of isocenters;

however, like Fig. 2, the effect is of diminishing returns. An “elbow”

is also present in the curve at k = 3.

4 | DISCUSSION

This work demonstrates the application of the k-means clustering

algorithm as a practical tool for addressing the emergent considera-

tions characteristic of SRS treatment planning using a single isocen-

ter for multiple targets. The algorithm can automatically group the

targets to be treated with an individual isocenter as well as position

the isocenter in a consistent and objective manner. A weighted ver-

sion of the algorithm can be used to “favor” smaller targets that are

more sensitive to rotations. This is a direct result of the mathematics

behind the k-means clustering algorithm. Because the weighted ver-

sion replicates data points to a degree inversely related to their rela-

tive size, the isocenter that results will necessarily move toward

these smaller targets to minimize the sum of squared distances,

which will in turn increase the value of their target coverage metric.

Lastly, quantitative metrics from the algorithm can be used to evalu-

ate the effect of the number of isocenters.

Previously, we described the use of a coverage metric to con-

sider the effects of translations and rotations when determining

patient-specific SRS action limits.8 Besides that work, the most clo-

sely related analysis of the rotational sensitivity of this technique is

that conducted by Roper et al.7 In it, the authors simulated rotations

around all three orthogonal anatomic axes. They then generated

multivariate regression models relating rotational errors to target

size, position, and coverage. Our approach is different in that it

identifies the patient-specific sensitivity to rotations without consid-

ering any population-based statistics. We believe a patient-specific

approach is preferred as the results will depend on the details of

the anatomy, disease, and treatment goals. For this reason, we have

refrained from making generalized recommendations regarding a

maximum allowed distance between a target and its isocenter.

Instead, we have focused on providing clinicians with a technique

that can be employed on a patient-by-patient basis. To that end, we

implicitly assumed that the effect of rotations on target coverage is

reflected in the relative overlap of a spherical target before and

after a rotation. The models of Roper et al. have the advantage of

having considered the actual target contour in relation to the actual

dose distribution to determine the dosimetric effect of a rotation.

While our approach is limited to a geometric approximation, we

believe it suffices nonetheless. Brain mets tend to be spherical in

shape, and so using a spherical approximation of the target is not a

large departure from reality. We were also able to exploit this spher-

ical geometry to represent the composite transformations around

three orthogonal axes as a single rotation around another appropri-

ately oriented axis. In our target coverage metric, we focused on the

TAB L E 1 Results of the statistical comparison of the weighted and
unweighted versions of the k-means algorithm for the within-cluster
sum of squares metric (WCSS) and the minimum target coverage
metric (minTargetCov).

Metric comparison
Median difference

(Range)

WCSSunweighted �WCSSweighted �0.2 cm2

(�5.6 cm2 to 0.7 cm2)a

minTargetCovweighted �minTargetCovunweighted 0.1% (�0.5% to 2.1%)a

aStatistically significant (P < 0.01).
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worst-case scenario when evaluating the sensitivity of each met to

rotations. This recognizes that rotations are not limited to the con-

ventional anatomic dimensions, even if that is how they are repre-

sented by image guidance systems. In addition, our application of

the metric is a relative one for the sake of assessing the compara-

tive value of different target groupings and isocenter positions. It is

not intended to predict the absolute difference in any particular

dosimetric parameter. Lastly, the residual discrepancy between this

coverage metric and the actual dosimetric effects of rotations are

likely overshadowed by additional treatment planning considera-

tions.

While the k-means algorithm is an effective way to address the

emergent considerations regarding the technique of using a single

isocenter for multiple targets, it does not address all of the factors

that influence the sensitivity of a treatment plan to rotations. The

geometric distance of a target to the isocenter is only one of several

factors that influences how optimal the position of the isocenter is

from a clinical perspective. Additional factors include other charac-

teristics about the target (e.g., its shape), as well as details of the

dose distribution stemming from the treatment plan and machine

configuration (e.g., dose gradient, prescription, normalization, number

of beams or arcs, gantry angles, couch angles, and collimator angles).

In the treatment planning process, however, the isocenter is typically

determined before many of these other factors are decided. Short of

addressing all these factors simultaneously in order to determine the

truly optimal isocenter position, selecting the isocenter according to

F I G . 1 . Grouping of the example patient’s five mets. (a) The anatomic distribution of the five mets. (b) The grouping of the mets resulting
from the k-means algorithm when treated with one isocenter, (c) two isocenters, (d) three isocenters, (e) four isocenters, and (f) five isocenters.
Targets are depicted as spheres that are color-coded by group, and the isocenters are depicted as (+). All anatomic coordinates are in units of
centimeters.

F I G . 2 . The squared Euclidean distances
between each target and its isocenter and
the within-cluster sum of squares. These
values are the results of the unweighted
version of the k-means algorithm for the
example patient as a function of the
number of isocenters. An “elbow” in the
curve is observed with three isocenters.
The open markers at k = 1 denote the
values resulting from the isocenter used
for the patient’s actual treatment. The
within-cluster sum of squares is
represented by the dotted line.
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the geometric factors available at the beginning of the treatment

planning process is sensible.

Other authors have described placing the isocenter in the middle

of the target centroids7 or in the middle of a structure representing

the Boolean union of all targets.6 The former leads to the same

result as the unweighted version of our k-means algorithm; the latter

yields the opposite effect of the weighted version by drawing the

isocenter toward the larger targets which is undesirable for the sake

of minimizing sensitivity to rotations.6,7,9,10 Our k-means algorithm

approach, therefore, can place the isocenter in a manner comparable

to a common technique (using the unweighted version) or with the

recommended characteristic of being closer to small targets to a

degree inversely proportional to their size (using the weighted ver-

sion).

Our observed differences between the weighted and unweighted

versions of the algorithm were small but statistically significant. The

unweighted version was superior regarding the within-cluster sum of

squares while the weighted version was superior when considering

the minimum target coverage. That the results were ultimately very

similar between the two versions is in part due to the relatively simi-

lar sizes of most of the mets observed in the patients studied. Were

a patient to exhibit targets of considerably different sizes that were

to be treated using a single isocenter, the weighted version of the

algorithm may be more appropriate in order to ensure the smaller

targets maintain sufficient coverage. This is consistent with the

observations and recommendations of previous authors.7,10 If the

targets are of similar sizes, either version of the algorithm is likely

sufficient as the discrepancy is small, particularly when considering

the effects of the other subsequent components of the treatment

planning process as described above.

Kang and McNutt comment on the choice of grouping targets

into different treatment plans and the effect that it can have on the

resulting dosimetry.9 Their approach was to exhaustively search

through each combination of the six lesions of an example patient in

order to identify the most advantageous grouping. While this

approach is complete, with an increasing number of targets the task

soon becomes prohibited by the combinatorial explosion of the num-

ber of possible groupings. Our k-means algorithm approach effi-

ciently identifies the optimal grouping, at least in terms of

minimizing the within cluster sum of squares. It is interesting to note

that the work of Kang and McNutt is focused on optimizing the col-

limator and couch angle to avoid suboptimal MLC configurations. In

doing so, they observed the grouping of targets according to geo-

metric proximity alone was not optimal when considering the orien-

tation and motion of the MLCs. This illustrates the discussion above

regarding the additional factors that influence the final quality of the

treatment plan.

When using the k-means approach to compare treatments with

various numbers of isocenters, proper clinical context is necessary.

Adding an isocenter will certainly decrease the distance to the tar-

gets, and may lead to meaningful improvements regarding the sensi-

tivity of each target to rotations. However, there are costs incurred

that are not reflected in the distance alone. These include the

increase in treatment time, which in turn may compromise patient

comfort and localization. Morrison et al. manually added a second

and third isocenter to SRS patients previously treated with a single

isocenter.12 They observed that while the additional isocenters

reduced the distance from each target to the isocenter, the changes

in several dosimetric parameters were not large, leading them to

conclude that a single isocenter is sufficient. Our analysis suggests

that there could be considerable gains from adding a second or third

isocenter, and our approach provides a quantitative way to compare

these options, albeit not via clinical dosimetric parameters. There-

fore, clinicians must recognize that the additional treatment planning

and delivery considerations are not reflected in the figures present-

ing distance or coverage metrics, and must keep these factors in

mind when evaluating the results of an approach like ours.

Despite these limitations, our implementation of the k-means

clustering algorithm to group targets and position the isocenter has

numerous advantages. It is a natural application of a simple and

robust algorithm that is fast and objective. It generalizes to the

patient-specific number and configuration of targets and requires

F I G . 3 . Target coverage metric for each
met and the minimum target coverage
resulting from the unweighted version of
the k-means algorithm after a 0.5° rotation
for the example patient as a function of
the number of isocenters. The open
markers at k = 1 denote the values
resulting from the isocenter used for the
patient’s actual treatment.
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minimal effort on behalf of the treatment planner. It simultaneously

optimizes the grouping of targets to be treated concurrently, selects

the position of each isocenter, and elucidates the impact of the num-

ber of isocenters. As a result, our approach provides clinicians with a

simple yet effective tool to mitigate the deleterious effects of rota-

tions and excessive field sizes, thereby improving intracranial SRS

treatment plans using a single isocenter for multiple targets.

5 | CONCLUSION

Weighted and unweighted versions of the k-means clustering algo-

rithm can be used to address the additional SRS treatment planning

tasks when using a single isocenter for multiple targets. While fac-

tors such as the final dose distribution also heavily influence the sen-

sitivity of off-isocenter targets to rotations, the k-means clustering

algorithm provides an approach to the initial geometric considera-

tions of the planning process in a way that is automatic, consistent,

quantitative, and objective.
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