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Abstract: Melatonin (MLT) is a neurohormone that regulates many physiological functions
including sleep, pain, thermoregulation, and circadian rhythms. MLT acts mainly through two
G-protein-coupled receptors named MT1 and MT2, but also through an MLT type-3 receptor (MT3).
However, the role of MLT receptor subtypes in thermoregulation is still unknown. We have thus
investigated the effects of selective and non-selective MLT receptor agonists/antagonists on body
temperature (Tb) in rats across the 12/12-h light–dark cycle. Rectal temperature was measured every
15 min from 4:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 9:30 p.m., following subcutaneous injection
of each compound at either 5:00 a.m. or 5:00 p.m. MLT (40 mg/kg) had no effect when injected at
5 a.m., whereas it decreased Tb during the light phase only when injected at 5:00 p.m. This effect
was blocked by the selective MT2 receptor antagonist 4P-PDOT and the non-selective MT1/MT2

receptor antagonist, luzindole, but not by the α1/MT3 receptors antagonist prazosin. However, unlike
MLT, neither the selective MT1 receptor partial agonist UCM871 (14 mg/kg) nor the selective MT2

partial agonist UCM924 (40 mg/kg) altered Tb during the light phase. In contrast, UCM871 injected
at 5:00 p.m. increased Tb at the beginning of the dark phase, whereas UCM924 injected at 5:00 a.m.
decreased Tb at the end of the dark phase. These effects were blocked by luzindole and 4P-PDOT,
respectively. The MT3 receptor agonist GR135531 (10 mg/kg) did not affect Tb. These data suggest
that the simultaneous activation of both MT1 and MT2 receptors is necessary to regulate Tb during
the light phase, whereas in a complex but yet unknown manner, they regulate Tb differently during
the dark phase. Overall, MT1 and MT2 receptors display complementary but also distinct roles in
modulating circadian fluctuations of Tb.
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1. Introduction

The maintenance of body temperature (Tb) in mammalians is critical for survival and internal
homeostasis. The main brain structure involved in controlling Tb is the hypothalamus, which receives
inputs from the thermoreceptors located in both the brain and the periphery. Depending on these
inputs, homeostatic changes are subsequently induced, causing sweating or shivering [1]. In particular,
the preoptic area (POA) and dorsomedial hypothalamus (DMH) are critical hypothalamic areas for
thermoregulation. In these areas, based on the firing rate responses to changes in local brain temperature,
electrophysiological recordings have shown three different neuronal populations: warm-sensitive
neurons (~30%), cold-sensitive neurons (~6%), and insensitive neurons (~60%), [2,3]. Activation of the
thermally-responsive GABAergic and glutamatergic neurons in the ventral part of the lateral preoptic
nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD), respectively, decreases
temperature, physical activity, and metabolic rate. On the contrary, GABAergic neurons in the DMD
promote the increase of Tb, energy expenditure, and physical activity [4].

Recently, it has also been found that Tb can be internally regulated in a circadian manner by
endogenous signals from other parts of the hypothalamus [4,5], specifically in the suprachiasmatic
nucleus (SCN) [1,6,7]. The SCN regulates the circadian rhythmicity of several physiological responses [1],
including the oscillatory decrease of the thermoregulatory threshold of heat production during day
time and heat loss during night time in diurnal species [1,8,9]. However, the mechanisms underlying
this circadian modulation of Tb remain unclear. Interestingly, the hypothalamus, including the SCN,
DMH, and POA, are rich in melatonin (MLT) MT1 and MT2 receptors [7,10–13], and the activation of
these MLT receptors modulates numerous physiological effects including the control of Tb [14].

MLT is produced in the pineal gland, mostly during the dark phase in both diurnal and nocturnal
species [12,15]. The circadian production and release of MLT are controlled by the SCN [16]. Most
of the physiological effects of MLT result from the activation of two high-affinity G-protein coupled
receptors (GPCRs), MT1 (pKi = 10.09) and MT2 (pKi = 9.42), both of which are widely expressed
in the mammalian brain [7,10,17]. The specific localization of the two MLT receptor subtypes in
different regions of the brain and/or neuronal populations [11,18–20] partially explains the selective
and differential functional activity of the two MLT receptor subtypes, such as in sleep [18,21–23],
anxiety [24], pain [25,26], circadian rhythms [27], and depression [28]. In addition to these high-affinity
MLT receptors, another low-affinity MLT binding site, termed MT3 (pKi = 6.0), has been reported [29,30].
Given its both hydrophilic and lipophilic nature, MLT can easily pass through the cell membrane and
bind nuclear receptors, including retinoic acid receptor-related orphan receptors (RORs) [31].

It is known that MLT decreases Tb during the night in diurnal species [1]. Clinical studies have
shown that exogenous administration of MLT suppresses the physiological increase in Tb observed
during daytime [32,33] and has hypothermic properties at the dose of 5 mg/kg [34–38]. Similar results
have been demonstrated in preclinical studies in diurnal animals in which administration of MLT acted
as a hypothermic agent in the active/light phase in fat sand rats and Marshall broiler chickens [39,40].
However, the neurobiological mechanism through which MLT exerts this hypothermic effect, as well
as the selective contribution of the three MLT receptor subtypes, are yet to be investigated.

Therefore, we investigated modifications in Tb produced by selectively activating the three
MLT receptor subtypes across the light–dark cycle in rats. To achieve this aim, we tested the
effects of the selective MT2 receptor partial agonist N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]
ethyl}acetamide (UCM924) (pKiMT1 = 6.76; pKiMT2 = 9.27) [41], the selective MT1 receptor partial
agonist N-(2-{Methyl-[3-(4-phenylbutoxy)phenyl]amino}ethyl) acetamide (UCM871) (pKiMT1 = 8.93;
pKiMT2 = 7.04) [42], and the MT3 receptor agonist 5-Methoxycarbonylamino-N-acetyltryptamine
(GR135531) (pKiMT3 = 29.5) on Tb. The effects of UCM924, UCM871, and GR135531 were compared
to those of MLT. In addition, selective and non-selective MLT receptor antagonists were also tested
together with MLT and the other MLT receptor agonists/partial agonists to further dissect the MLT
receptor subtypes involved in their thermoregulatory effects.
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2. Results

In physiological conditions, as already known [1,9], there are changes in Tb between the light and
the dark phase; in particular, Tb oscillations mostly occur during the phase shift (Figure 1). During the
shift from the dark to the light phase, the Tb drops from an average of 38.45 to 37.5 ◦C after the light
turns on (Figure 1A). The opposite occurs during the shift from the light to the dark phase when the
light is turned off (Figure 1B).
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Figure 1. Body temperature (Tb) changes during the light–dark cycle in rats exposed to a 12/12-h
light–dark cycle. (A) Tb decreases during the transition from the dark phase to the light phase. (B) Tb

increases during the transition from the light phase to the dark phase. Lights on at 7:30 a.m. and off at
7:30 p.m. Data represent mean value ± SEM. Veh: s.c. injection of vehicle.

2.1. Effects of MLT Injected at the End of the Dark and of the Light Phases on Tb

As indicated in Figure 2A, the injection of MLT (40 mg/kg) at the end of the dark phase (5:00 a.m.)
did not affect Tb during the end of the dark phase, the dark–light transition or the beginning of the
light phase (two-way repeated measures ANOVA; interaction: F17,323 = 0.85, p = 0.635; treatment:
F1,323 = 0.867, p = 0.363; time of the day: F17,323 = 31.835, p < 0.001).

In contrast, when MLT (40 mg/kg) was injected at the end of the light phase (5:00 p.m.), it induced
a significant decrease (p < 0.05) in Tb from 5:45 p.m. to 6:45 p.m. that was close to the transition from
the light to the dark phase (Figure 2B; interaction: F17,408 = 1.908, p = 0.016; treatment: F1,408 = 1.996,
p = 0.171; time of the day: F17,408 = 10.658, p < 0.001). Importantly, we observed no further effects of
MLT on Tb after the light–dark transition or during the beginning of the dark phase. The selective MT2

receptor antagonist 4P-PDOT at a dose not affecting Tb (Figure 2D; interaction: F17,340 = 0.62, p = 0.876;
treatment: F1,340 = 2.07, p = 0.166; time of the day: F17,340 = 4.86, p < 0.001) blocked the effects of MLT
(Figure 2C; interaction: F17,391 = 1.448, p = 0.111; treatment: F1,391 = 0.22, p = 0.643; time of the day:
F17,391 = 11.486, p < 0.001). Similarly, the pre-treatment with the selective MT1/MT2 receptor antagonist
luzindole at the dose not affecting Tb (Figure 2F; interaction: F17,408 = 1.144, p = 0.309; treatment: F1,408

= 0.012, p = 0.912; time of the day: F17,408 = 9.289, p < 0.001) also blocked the effects of MLT (Figure 2E;
interaction: F17,289 = 0.989, p = 0.47; treatment: F1,289 = 0.11, p = 0.745; time of the day: F17,289 = 3.745,
p < 0.001).
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MLT does not produce changes in Tb when administrated at 5:00 a.m. (B) MLT administrated during 
the dark phase (5:00 p.m.) decreases the Tb immediately after the administration compared with 
vehicle treated rats. (C) 4P-PDOT (10 mg/kg) pre-treatment blocks the effect of MLT on Tb during the 

Figure 2. Changes in Tb after MLT administration (40 mg/kg) during the light and the dark phase.
(A) MLT does not produce changes in Tb when administrated at 5:00 a.m. (B) MLT administrated
during the dark phase (5:00 p.m.) decreases the Tb immediately after the administration compared
with vehicle treated rats. (C) 4P-PDOT (10 mg/kg) pre-treatment blocks the effect of MLT on Tb

during the light phase. (D) 4P-PDOT (10 mg/kg) injected during the light phase does not affect Tb.
(E) Pre-treatment with luzindole (10 mg/kg) blocks the effect of MLT on Tb during the light phase.
(F) luzindole (10 mg/kg) injected during the light phase does not affect Tb. Data are expressed as mean
± SEM (graded shades). Lights on at 7:30 a.m. and off at 7:30 p.m. * p < 0.05 vs. vehicle; two-way
ANOVA for repeated measures followed by Bonferroni post hoc test. Inj: s.c. injection of either vehicle,
MLT, MLT + 4P-PDOT, 4P-PDOT, MLT + luzindole, or luzindole.
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2.2. Effects of the Selective MT2 Partial Agonist UCM924 Injected at the End of the Dark and of the Light
Phases on Tb

As indicated in Figure 3A, the injection of UCM924 (40 mg/kg) at the end of the dark phase
(5:00 a.m.) induced a significant decrease (p < 0.05) in Tb immediately before the dark–light transition
(from 6:45 a.m. to 7:30 a.m.), and did not affect Tb during the dark–light transition and at the beginning
of the light phase (two-way repeated measures ANOVA; interaction: F17,289 = 0.2.406, p = 0.002;
treatment: F1,289 = 2.286, p = 0.149; time of the day: F17,289 = 30.597, p < 0.001).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 13 
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Figure 3. Changes in Tb after UCM924 (40 mg/kg, s.c.) treatment during the light and the dark phase.
(A) UCM924 (40 mg/kg) administered at 5:00 a.m. (light phase) decreases Tb prior the light–dark shift
compared with vehicle. (B) UCM924 (40 mg/kg) administered at 5:00 p.m. does not produce any
change in the Tb compared with vehicle. (C) 4P-PDOT pre-treatment blocks the effect of UCM924 on
Tb during the dark phase. (D) 4P-PDOT (10 mg/kg) injected during the dark phase does not affect
Tb. Data are expressed as mean ± SEM (graded shades). Lights on at 7:30 a.m. and off at 7:30 p.m.
* p < 0.05 versus vehicle; two-way ANOVA for repeated measures followed by Bonferroni post hoc test.
Inj: s.c. injection of either vehicle, UCM924, UCM924 + 4P-PDOT, or 4P-PDOT.

In contrast, when UCM924 (40 mg/kg) was injected during the light phase (5:00 p.m.), it did not
affect Tb during the end of the light phase, the dark–light transition or the beginning of the dark phase
(Figure 3B; two-way repeated measures ANOVA; interaction: F17,425 = 0.785, p = 0.711; treatment:
F1,425 = 0.311, p = 0.582; time of the day: F17,425 = 9.618, p < 0.001).
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The effects of UCM924 on Tb when injected during the dark phase were mediated by MT2 receptors
since the pre-treatment with the selective MT2 receptor antagonist 4P-PDOT at a dose not affecting
Tb (Figure 3D; interaction: F17,272 = 0.875, p = 0.605; treatment: F1,272 = 1.223, p = 0.285; time of the
day: F17,272 = 22.848, p < 0.001) blocked the effects of UCM924 (Figure 3C; interaction: F17,272 = 1.922,
p = 0.016; treatment: F1,272 = 0.0.35, p = 0.821; time of the day: F17,272 = 30.468, p < 0.001).

2.3. Effects of the Selective MT1 Partial Agonist UCM871 Injected at the End of the Dark and of the Light
Phases on Tb

As indicated in Figure 4A, the injection of UCM871 (14 mg/kg) at the end of the dark phase
(5:00 a.m.) did not affect Tb during the end of dark phase, the dark–light transition or the beginning of
light phase (two-way repeated measures ANOVA; interaction: F17,340 = 0.842, p = 0.644; treatment:
F1,340 = 0.538, p = 0.472; time of the day: F17,340 = 44.622, p < 0.001).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 13 
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3. Discussion 
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Figure 4. Changes in Tb after UCM871 (14 mg/kg, s.c.) treatment during the light and the dark phase.
(A) UCM871 administered at 5:00 a.m. (dark phase) does not produce any change in the Tb compared
with vehicle. (B) UCM871 administered at 5:00 p.m. (light phase) increases Tb after the light–dark
transition compared with vehicle. (C) Luzindole pre-treatment blocks the effect of UCM871 on Tb. Data
are expressed as mean ± SEM (graded shades). Lights on at 7:30 a.m. and off at 7:30 p.m. * p < 0.05
versus vehicle; two-way ANOVA for repeated measures followed by Bonferroni post hoc test. Inj: s.c.
injection of either vehicle, UCM871, or UCM871 + luzindole.

In contrast, when UCM871 (14 mg/kg) was injected during the light phase (5:00 p.m.), it induced a
significant increase (p < 0.05) in Tb from 8:15 p.m. to 8:45 p.m. (dark phase) (Figure 4B; interaction:
F17,340 = 1.634, p = 0.05; treatment: F1,340 = 2.045, p = 0.168; time of the day: F17,340 = 10.42, p < 0.001).
The effects of UCM871 on Tb when injected during the light phase were blocked by the pre-treatment
with the MT1/MT2 receptor antagonist luzindole (Figure 4C; interaction: F17,340 = 0.67, p = 0.83;
treatment: F1,340 = 1.22, p = 0.28; time of the day: F17,340 = 4.88, p < 0.001) at a dose not affecting Tb (see
Figure 2F; interaction: F17,408 = 1.144, p = 0.309; treatment: F1,408 = 0.012, p = 0.912; time of the day:
F17,408 = 9.289, p < 0.001).

2.4. Effects of the Selective MT3 Agonist GR135531 and Prazosin Injected at the End of the Light Phase on Tb

As indicated in Figure 5A, the injection of GR135531 (10 mg/kg) at the end of the light phase
(5:00 p.m.) did not affect Tb during the end of the light phase, the dark–light transition or the beginning
of dark phase (two-way repeated measures ANOVA; interaction: F17,306 = 0.94, p = 0.527; treatment:
F1,306 = 0.342, p = 0.566; time of the day: F17,306 = 7.817, p < 0.001). The effects of MLT on Tb,

when injected during the light phase, were not mediated by MT3 receptors, since the pre-treatment
with the non-selective α1/MT3 antagonist prazosin at a dose not affecting Tb (Figure 5C, interaction:
F17,357 = 1.01, p = 0.446; treatment: F1,357 = 0.022, p = 0.882; time of the day: F17,357 = 7.588, p < 0.001) did
not block the effects of MLT (Figure 5B; interaction: F17,340 = 1.65, p = 0.050; treatment: F1,340 = 3.064,
p = 0.095; time of the day: F17,340 = 10.086, p < 0.001). Interestingly, the treatment with prazosin plus
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MLT induced a further decrease of Tb even during the dark phase at 8:00 p.m. (Figure 5B) that was not
observed with MLT (Figure 2B) or prazosin (Figure 5C) alone.
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Figure 5. (A) Changes in Tb after the administration of the MLT MT3 agonist GR135531 (10 mg/kg)
during the dark phase. (B) Prazosin (10 mg/kg) pre-treatment does not block the effects of MLT on
Tb during the light phase. (C) Prazosin (10 mg/kg) injected during the light phase does not affect Tb.
Data are expressed as mean ± SEM (graded shades). Lights off at 7:30 p.m. * p < 0.05 versus vehicle;
two-way ANOVA for repeated measures followed by Bonferroni post hoc test. Inj: s.c. injection of either
vehicle, GR135531, MLT + prazosin, or prazosin.

3. Discussion

In this study, we investigated the effects of MLT and its three receptors on Tb during the light and
the dark phase for the first time. To achieve this aim, we used a pharmacological approach employing
MLT, the selective MT1 receptor partial agonist UCM871, the selective MT2 receptor partial agonist
UCM924, the MT3 receptor agonist GR135531, and selective/non-selective MLT receptor antagonists,
including the MT2 selective antagonist 4P-PDOT, the MT1/MT2 non-selective antagonist luzindole,
and the MT3/α1 antagonist prazosin. The exogenous administration of MLT during the light phase
decreased Tb immediately after the administration and before the light–dark phase shift, an effect
blocked by both 4P-PDOT and luzindole. Interestingly, unlike MLT, neither UCM924 nor UCM871
produced a change in Tb during the light phase. In contrast, the selective MT2 partial agonist UCM924
administered at the end of the dark phase decreased Tb during the dark phase, just prior to the
dark–light switch, whereas the selective MT1 partial agonist UCM871 injected at the end of the light
phase increased Tb during the following dark phase. On the other hand, MT3 receptors did not seem
to be involved in the regulation of Tb, since the MT3 receptor agonist GR135531 and the MT3/α1

antagonist prazosin alone had not produced any effect on Tb.
The rat circadian body temperature displays a cosine wave [39], showing a temperature that

oscillates around the 35.6–36 ◦C during the light phase and around 37.8–38 ◦C during the dark
phase [43]. The daily change in Tb shows a characteristic deviation at two different times, consistent
with the switch between day (light phase) and night (dark phase) hours [44]. The present study
replicates the same physiological Tb deviation that was previously reported in nocturnal rodents [43,44],
with a daily Tb peak during the night, which is concomitant with the increase in the activity of the
animals [45].

In nocturnal rodents, Tb peaks during night time when MLT levels are high, and decreases during
the light phase when MLT levels are low. In contrast, in diurnal species, Tb regulation follows the
reverse direction in relation to MLT levels, showing a Tb peak during the light phase [45] when
circulating levels of MLT are very low (~10 pg/mL) [12,15,46]. However, the mechanism by which MLT
regulates Tb has not been established.

The neuronal circuit controlling the regulation of Tb involves several structures including the
SCN, SON, mPOA, and DMH [4,5]. Notably, the hypothalamus is an area rich in MLT receptors [11],
and their expression may vary according to the phase and the time of the day [47–51].
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Previous reports have shown that exogenous MLT administration during the light phase induced
a decrease in Tb in both humans and rodents [32,35–37,39,52], although the active doses in humans
are lower than those in rodents due to a significantly faster metabolism and very short half-life of
MLT in the latter [53]. Our findings confirm that exogenous MLT influences Tb, and its effects are
strictly dependent on the time of day: MLT reduces Tb only towards the end of the light phase and if
administered during the light phase. In regard to its possible mechanism of action during the light
phase, we found that both the selective MT2 antagonist 4P-PDOT and the non-selective MT1/MT2

antagonist luzindole blocked the Tb reduction due to MLT, yet neither the selective MT1 partial agonist
UCM871 nor the selective MT2 partial agonist UCM924 recapitulated the effects of MLT on Tb. These
findings suggest that during the light phase, MLT needs to simultaneously activate both MT1 and MT2

receptors to modulate Tb. Indeed, the selective activation/inhibition of only MT1 or MT2 receptors did
not affect Tb during the day. In contrast, UCM871 and UCM924 produced changes in Tb at different
times of the dark phase and of opposite magnitude: UCM871 enhanced Tb just after the light–dark
transition, whereas UCM924 decreased Tb just before the dark–light transition. Importantly, unlike
UCM871 and UCM924, MLT did not induce any change in Tb during the dark phase. We previously
observed a similar time-of-day-dependent effect of MLT on sleep [23]. However, it is interesting that
when α1 receptors/MT3 receptors were blocked by prazosin, MLT decreased Tb also during the dark
phase. These complex findings observed during the dark phase are likely dependent on the fact that
during the dark phase there is a significant increase in the endogenous levels of MLT, and thus the
expression of the two MLT receptors [19], as well as the involvement of other receptors implicated in
thermoregulation, such as α1 adrenoceptors [54], probably vary.

Interestingly, it is now well recognized that MLT receptors can form MT1/MT2 hetero-oligomers
and also heteromers with other receptors, and from a functional point of view, their properties
are different from those of the corresponding homomers [55,56]. Since MLT receptors as well as
other receptors including α1-adrenoceptors are highly expressed in brain regions/nuclei involved
in thermoregulation, we cannot exclude that some of the effects of MLT on Tb described here were
mediated by these oligomers/heteromers. Future studies are needed to investigate the possible circadian
variability in the formation and role of oligomers and/or heteromers of MLT receptors in hypothalamic
nuclei regulating Tb. Similarly, the potential contribution of nuclear receptors, among which RORs
that are also activated by MLT [31], is worth investigating.

The phase-dependent response of Tb to exogenous MLT may depend not only on the changes
in the density of MLT receptors across the light–dark cycle, but also on the relative distribution and
function of MT1 and MT2 receptors that control unique physiological responses in the brain, for example
in sleep [21–23], anxiety [18,24], pain [25,26,57], and depression [28,58,59], and in the periphery, for
example at the cardiovascular level [60,61].

In conclusion, we have investigated the role of MLT receptors in thermoregulation, and found that
during the light phase Tb is affected only if both MT1 and MT2 receptors are simultaneously activated.
Further, during the dark phase, a time-dependent effect was found in that the activation of MT1 and
MT2 produces an increase and decrease of Tb respectively. No effects on Tb of the MLT MT3 receptor
subtype were evidenced. However, MT1 and MT2 receptors control Tb in synergy with other receptors
including α1 adrenoceptors. These data further support the recent findings showing that the MT1 and
MT2 receptors modulate physio-pathological functions in different and sometimes opposing ways,
and in a time-of-day dependent manner. In particular, MT1 or MT2 agonists may be further tested for
hypothermia or hyperthermia, respectively.

4. Materials and Methods

4.1. Animals

Male Wistar rats (200–250 g, Charles River) were used for behavioral tests. All animals were
housed at constant room temperature (20 ◦C) and humidity under a 12/12-h light–dark cycle (lights
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on at 7:30 a.m. and off at 7:30 p.m.) with food and water ad libitum. All experimental procedures
were performed between 5:00 a.m. and 9:30 a.m. and between 5:00 p.m. to 9:30 p.m. The experimental
protocol was approved by the Animal Ethics Committee (AUP#5253, McGill University, QC, Canada)
and followed the ethical guidelines of the Canadian Institute of Health Research for animal care and
scientific use.

4.2. Drugs and Pharmacological Treatments

The N-(2-{Methyl-[3-(4-phenylbutoxy)phenyl]amino}ethyl)acetamide (UCM871, 14 mg/kg) [42]
and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino] ethyl}acetamide (UCM924, 40 mg/kg) [41]
were synthesized by the University of Urbino, Italy, and by BioQuadrant Inc. (Montreal,
Canada), respectively. Melatonin (40 mg/kg), luzindole (10 mg/kg), and prazosin hydrochloride
(1-(4-Amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine hydrochloride; 10 mg/kg)
were purchased from Sigma (St. Louis, MO, USA), and 4P-PDOT (4-phenyl-2-propionamidotetralin;
10 mg/kg) and GR135531 (5-Methoxycarbonylamino-N-acetyltryptamine, 10 mg/kg) from Tocris
Bioscience (Ellisville, MO, USA). All drugs were dissolved in a vehicle composed of 70% dimethyl
sulfoxide (MP Biochemicals, Solon, OH, USA) and 30% saline. The doses of UCM924, MLT, 4P-PDOT,
and luzindole [23,25,26], as well as UCM871 [62], were chosen based on our previous experiments
examining the potential pharmacological activity of these compounds. The doses of GR135531 and
prazosin were based on the literature [63,64]. Drugs were injected subcutaneously (s.c.; 0.5 mL)
15 min before the beginning of the experiment: 5:00 a.m. for dark–light or 5:00 p.m. for light–dark
testing. The selective MLT MT2 receptor antagonist 4P-PDOT, the non-selective MLT MT1/MT2 receptor
antagonist luzindole, and the MT3/α1 antagonist prazosin (pKi = 21.7) [65] were injected 15 min prior
the agonist/partial agonist. Figure 6 describes the experimental protocol.
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Figure 6. Schematic representation of the experimental design. Body temperature (Tb) has been
recorded every 15 min. For light–dark phase experiments, light was off at 7:30 p.m., whereas for
dark–light phase experiments, light was on at 7:30 a.m. s.c.: subcutaneous.

4.3. Assessment of Body Temperature

Body (rectal) temperature (Tb) in awake animals was measured by goosing the animal using a
Traceable Snap-in Module with probe (Fisher Science Education, S90862). The probe was inserted to a
depth of 2 cm for no more than 10 s, whereas the tested individual was kept in a cotton bag. Animals
were handled every day for five days before the experiments with the aim of habituating the animal to
the testing procedure and thus minimizing the associated stress.

4.4. Statistical Analysis

Data analysis was conducted using the SigmaPlot statistical software version 13 (Systat Software,
Inc.). After controlling for the normal distribution of the data, a two-way ANOVA for repeated
measures was used to analyze the data using treatments (between) and testing time (within) as factors.
Post hoc analyses were performed using the Bonferroni test for multiple comparisons. The effect of
vehicle was compared with that of the different agonists/partial agonists, the antagonists alone, or the
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agonist/partial agonist plus the antagonist. All data were expressed as mean ± SEM. p < 0.05 was
considered significant. All figures were made using MATLAB software.

Temperature values were normalized as follow: [Temperature at time X – Average of Temperature
(4:00 a.m./p.m. to 5:00 a.m./p.m.)]/[Average of Temperature (4:00 a.m./p.m. to 5:00 a.m./p.m.)]. “Time
X” indicates any time after the injection.
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