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Abstract: Migraine is a neurological disorder characterized by severe headaches, visual aversions,
auditory, and olfactory disorders, accompanied by nausea and vomiting. Zolmitriptan (ZMT®) is a
potent 5HT1B/1D serotonin receptor agonist frequently used for the treatment of migraine. It has
erratic absorption from the gastrointestinal tract (GIT), but its oral bioavailability is low (40–45%)
due to the hepatic metabolism. This makes it an ideal candidate for oral fast dissolving formulations.
Hence, the current study was undertaken to design and develop oral fast-dissolving films (OFDFs)
containing ZMT for migraine treatment. The OFDFs were formulated by the solvent casting method
(SCM) using Pullulan (PU) and maltodextrin (MDX) as film-forming agents and propylene glycol
(PG) as a plasticizer. The strategy was designed using Box–Behnken experimental design considering
the proportion of PU:MDX and percentage of PG as independent variables. The effectiveness of the
OFDF’s was measured based on the following responses: drug release at five min, disintegration
time (D-time), and tensile strength (TS). The influence of formulation factors, including percent
elongation (%E), thickness, water content, moisture absorption, and folding endurance on ZMT-
OFDFs, were also studied. The results showed a successful fabrication of stable ZMT-OFDFs, with
surface uniformity and amorphous shape of ZMT in fabricated films. The optimized formulation
showed a remarkable rapid dissolution, over 90% within the first 5 min, a fast D-time of 18 s, and
excellent mechanical characteristics. Improved maximum plasma concentration (C max) and area
under the curve (AUC 0–t) in animals (rats) treated with ZMT-OFDFs compared to those treated
with an intra-gastric (i-g) suspension of ZMT were also observed. Copolymer OFDFs with ZMT
is an exciting proposition with great potential for the treatment of migraine headache. This study
offers a promising strategy for developing ZMT-OFDFs using SCM. ZMT-OFDFs showed remarkable
rapid dissolution and fast D-time, which might endeavor ZMT-OFDFs as an auspicious alternative
approach to improve patient compliance and shorten the onset time of ZMT in migraine treatment.

Keywords: oral fast-dissolving film; maltodextrin; pullulan; propylene glycol; Zolmitriptan;
drug delivery
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1. Introduction

Migraine is a long-lasting, agonizing and relapsing neurological disorder, affecting
10 out of every 100 individuals worldwide [1]. This impressive number enacts a substantial
socioeconomic burden in terms of high medical expenses, psychosocial disability, and
unemployment. Patients with migraine display an extensive array of visual, auditory,
olfactory disorders, nausea and vomiting [2]. In addition, migraine is associated with
neurosis, dementia, tetraplegia, and other devastating neurologic conditions. In relieving
migraine, patients strive for quick relief, and typical concerns include fast absorption and
rapid onset of drug action [3].

Zolmitriptan (ZMT) is a 5HT1B/1D serotonin receptor agonist of BCS class III with
high water solubility and poor biofilm permeability. It is a gold standard for treating
migraine and cluster headache [4]. It acts by constricting dilated blood vessels and curbing
vasoactive neuropeptide release, thereby relieving migraine pain [5]. It is commercially
available as fast-dissolving tablets (2.5 mg), conventional tablets (2.5 mg, 5 mg), and nasal
spray (5 mg). Despite its potency, ZMT oral dosage forms have some drawbacks, such as
fear of choking, large size, swallowing difficulty, low bioavailability (40%), slow onset of
action (45 min), as well as other significant individual differences [6]. Moreover, symptoms,
such as stomachache, nausea, and vomiting, are closely related to migraine and could affect
oral medications and ultimately absorption efficiency [2]. ZMT nasal sprays are similarly
problematic due to a short half-life; hence, repeated doses are needed which could lead to
patient incompliance or damage to the nasal mucosa and cilia [7]. Therefore, to overcome
the limitations concomitant with the available dosage form of ZMT, it is highly desirable to
optimize an alternative method, such as oral fast-dissolving films (OFDFs).

Oral fast-dissolving films (OFDFs) are relatively new dosage forms that deliver drug
moiety via the oral cavity or oromucosal route. They have recently been used in geriatrics,
pediatrics, and patients with either physiological or psychosomatic-induced dysphagia,
to a great effect [8]. This is because OFDFs can be used without solvent intake. OFDFs
attractiveness as drug delivery systems (DDS) is further emphasized by fast onset of ac-
tion, high patient compliance, ease of conveyance and handling, and circumvention of
the first-pass metabolism over other directly swallowed oral dosage forms [9]. Moreover,
OFDFs may enhance flexibility, portability, and ease of swallowing; offering little risk
of choking compared to most oral dissolving tablets (ODTs) [10,11]. However, OFDFs
also have some limitations due to the disparity in formulation, which can result in poor
mechanical properties, such as surface blistering, mold peeling difficulties, occasional
wrinkles, or cracks. In addition, the existence of solvent residues and prolonged or altered
rates of disintegration and dissolution impede the manufacturing and clinical application
of OFDFs [11,12]. Thus, it is necessary to carry out systematic research to optimize the
formulation of OFDFs. Numerous hydrophilic polymers are employed as film formers
for OFDFs, such as polyvinyl alcohol (PVA) [13], pullulan [14], maltodextrin [15], hydrox-
ypropyl methyl cellulose (HPMC) [16], and Kollicoat® IR [11], cyclodextrins [17], carbon
nanomaterials [18], mesoporous silica [19], and many others.

Moreover, pullulan (PU) is a water-soluble straight-chain polysaccharide in which
α-1,4, and α-1,6 glycosidic linkages connect the glucose units of maltotriose. Its molecular
weight is roughly 200,000 Dalton with 480 maltotrioses [20]. The aptness of PU for OFDFs
is being investigated because of its unique traits, such as film plasticity, viscosity, water
solubility, and biodegradability. Despite its noteworthy adaptability and inimitable features,
there are drawbacks to PU-based OFDFs. PU can cause films to become brittle and would
require further optimization before being incorporated into their design [21]. Moreover, this
PU is expensive due to its relatively limited sources. Although accomplishing consistent
polymer blends with desirable properties is relatively difficult, the blending of PU with
other low-cost compatible polymers offers a low-cost alternative to the development of
OFDFs system with improved physicochemical properties. In the recent past, other edible
polymers, such as HPMC [22], starch [23], and chitosan (CS) [24,25], have been considered
as a co-polymer with PU, to achieve OFDFs with desirable physicochemical and mechanical
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properties. Therefore, a compatible and cost-effective maltodextrin (MDX) is proposed in
this study.

MDX is known as water-soluble dextrin and can be produced from various starch
forms. The properties of MDX depend on their dextrose equivalent value (DE value < 20%).
With a molecular weight of around 684–6840 Daltons, it can quickly diffuse and dissolve
in water, making it an ideal choice for use in OFDFs. MDX has a particular film-forming
competence, but the mechanical characteristics of MDX-based OFDFs are inconsistent [26].
Therefore, improved physicochemical and mechanical properties are expected by com-
bining PU with MDX in the film to improve the therapeutic demands of ZMT-OFDFs
for migraine relief. However, the application of PU and MDX as the main film-forming
components has been sparsely explored. To the best of our knowledge, there is a lack of
information about the impacts of an individual polymer or polymer combination with
plasticizers on the physicochemical and mechanical properties of OFDF formulations.

The study was designed to develop patient-friendly ZMT-OFDFs with the ultimate
intent to improve the physicochemical and mechanical characteristics of films by inte-
grating ZMT, MDX, and PU into a single film. The Box–Behnken design was applied to
optimize OFDFs with a rapid dissolution rate, fast disintegration, and favorable mechanical
properties. In addition, the optimized formulation was used for in vivo assessment, in rats,
in comparison with i-g suspension.

2. Materials and Methods
2.1. Materials

ZMT was obtained from Energy Chemical Co., Ltd. (Shanghai, China). PU and MDX
were purchased from Freda Biotechnology Co., Ltd. (Linshu County, Linyi, China) and
COFCO biochemical energy Co., Ltd. (Longjiang County, Qigihaer, China), respectively.
Propylene glycol (PG) and polyethylene glycol 400 (PEG) were obtained from Yonghua
Chemical Technology Co., Ltd. (Zhitang District, Changshu, China) and Ling Feng Chemi-
cal Reagent (Shanghai, China), respectively. Trimethylamine, glycerin (GLY), anhydrous
sodium hydrogen phosphate, and potassium dihydrogen phosphate were received from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). HPLC grade acetonitrile and
methanol were bought from Fisher Scientific Worldwide (Shanghai, China). ZMT® tablets
were purchased from Xuhui Pharmaceutical Co., Ltd. (Chengdu, China).

2.2. Preparation of ZMT-OFDFs

The solvent casting method (SCM) was applied to prepare ZMT-OFDFs (Figure S1).
Briefly, the polymeric materials, used at different weight ratios (PU = 300–500 mg;
MDX = 0–100 mg), were dissolved in purified water (5 mL) and mixed for 2 h with a
magnetic stirrer (RT 10 P, IKA, Königswinter, Germany) at 2000 rpm to obtain a homog-
enized solution (S1). Separately, ZMT (50 mg) and citric acid (48 mg) were dissolved in
distilled water (5 mL) containing different plasticizer amount (15–25%) under continuous
stirring for an additional 1 h at room temperature (RT) (S2). This drug-containing solution
(S2) was added dropwise into the polymeric solution (S1) with continuous stirring and
made up to a final volume of 10 mL. At the end, when the dispersion was found clear, requi-
site amounts of aspartame (24.3 mg) and mannitol (24.3 mg) were added in the preparation
under mechanical stirring. The obtained transparent and homogenized solution was kept
aside for 6 h to remove the entrapped air or bubbles. Finally, the solution was decanted into
a 61 cm2 substrate, followed by drying at RT for 24 h. The resulting films were cautiously
cut into 3 × 2 cm2 size, packed in an aluminum sachet, and stored in a desiccator until
further assessment. The entire formulation process is schematically reported in Figure S2.

2.3. Optimization of ZMT-OFDFs

To achieve optimized ZMT-OFDFs (Figure S5), a Box–Behnken experimental design
with three factors and three levels was applied. The amount of PU (X1, 300–500 mg), MDX
(X2, 0–100 mg), and PG (X3, 15–25%) were selected as independent variables. Cumulative
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release of ZMT at 5 min (Y1, %), D-time (Y2, s), and TS (Y3, MPa) were measured as
responses (Table 1). The factors and variables were subjected to statistical analysis using
Design-Expert software (trial version 10.0.3, Stat-Ease Inc., Minneapolis, MN, USA), that
is specifically dedicated to performing design of experiments (DOE), to generate full-
order polynomial equations and correlate the responses measured with the variables.
ANOVA test was applied to evaluate the dependent variable’s influence on the studied
responses at a 95% level of significance. All other ingredients, including citric acid, drug,
aspartame, and mannitol, were kept constant to minimize experimental fluctuation. The
optimized formulation design space was established targeting the quick dissolution, rapid
disintegration, and favorable mechanical characteristics.

Table 1. Box–Behnken DOE of independent variables (X1, X2, and X3) and their influences on
responses (Y1, Y2, and Y3). All values are expressed as mean ± S.D (n = 3).

Film Code Pullulan
(mg, X1)

Maltodextrin
(mg, X2)

Propylene Glycol
(%, X3)

Release at 5 min
(Y1, %)

D-Time
(Y2, s)

Tensile Strength
(Y3, MPa)

F1 300 50 25 94.3 ± 1.7 20.5 ± 1.9 4.1 ± 2.6
F2 400 50 20 90.3 ± 1.5 28.2 ± 3.7 10.4 ± 2.0
F3 400 0 25 85.2 ± 4.2 31.7 ± 2.7 8.6 ± 8.1
F4 500 50 25 82.9 ± 1.3 40.2 ± 3.2 7.6 ± 3.5
F5 300 50 15 92.0 ± 5.2 22.2 ± 2.3 11.8 ± 7.4
F6 300 0 20 87.2 ± 2.5 24.7 ± 1.4 10.6 ± 4.6
F7 400 100 25 94.8 ± 4.8 25.2 ± 3.5 5.0 ± 4.0
F8 500 0 20 80.6 ± 2.4 44.5 ± 3.5 14.6 ± 2.1
F9 300 100 20 99.8 ± 0.5 18.3 ± 1.9 6.7 ± 5.4

F10 400 100 15 92.0 ± 5.2 27.2 ± 3.1 15.7 ± 0.4
F11 500 100 20 87.9 ± 3.0 36.2 ± 3.7 9.9 ± 6.5
F12 500 50 15 82.2 ± 1.0 42.2 ± 5.9 16.4 ± 1.1
F13 400 0 15 84.0 ± 1.2 33.8 ± 3.1 17.1 ± 2.0

Amounts of other ingredients, such as aspartame, mannitol, drug, and distilled water (10 mL) were kept constant.

2.4. Thickness, Weight Uniformity, and Folding Endurance

The thickness of the film was measured by using a screw gauge (Q15A222169, Tresna
Measuring Instrument Co., Ltd., Guilin, China) with a range of 0–25 mm and 0.001 mm
resolution. The film (3 × 2 cm2) was kept between the spindles of the screw gauge and
thickness measured at 5 different strategic points (the center and the four corners). The
average ± SD was measured, and the mean value was calculated.

The sample size of 3 × 2 cm2 was randomly selected from each batch and weighed on
a digital analytical balance. The average weight was noted.

The folding endurance was examined by repetitively folding each OFDFs at the same
place until it broke, or once their integrity was lost. The result was obtained as the mean of
three determinations.

2.5. Water Content, Moisture Absorption, and Surface pH

Three films from each batch were weighed on a digital analytical balance and kept in a
hot air oven at 105 ◦C for 2 h. The dried films were weighted again, and the water content
was calculated according to Equation (1):

Water content (%) = (initial weight − final weight)/(final weight) × 100 (1)

Moisture content was assessed through the films-weight gain upon exposure to
79.5 ± 4% relative humidity in a desiccator at 25 ± 2 ◦C for 72 h, calculated by Equation (2):

Moisture content (%) = (final weight − initial weight)/(initial weight) × 100 (2)
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The film was dissolved in 5 mL of deionized water, and the pH was recorded with
a digital pH meter (model: Vision Plus pH 6175, JENCO, San Diego, CA, USA) [27]. This
study was repeated in triplicate.

2.6. Disintegration Time and Drug Content

Disintegration time was determined by placing a sample of dimension 3 × 2 cm2

in a petri dish containing about 25 mL of pH 6.8-simulated saliva. The dish was kept
in a digital thermostatic oscillator (model: SHZ-82, Runhua Electric Co., Ltd., Suzhou,
China) at 37 ± 0.5 ◦C, which was shaken continuously at 50 rpm. The time required for the
disintegration of the film was noted. The test was triplicated.

Further, the drug content was measured by dissolving each film (of size 3 × 2 cm2) in
100 mL of pH 6.8-simulated saliva fluid through proper sonication. The solution was cen-
trifuged at 10,000 rpm for 10 min, and subsequently analyzed by the given HPLC method.

2.7. Drug Dissolution

Films were examined for drug dissolution using a USP basket dissolution apparatus
(RCZ-8-B, Shanghai, China) at a rotating speed of 100 rpm. The dissolution medium was
300 mL of pH 6.8-simulated saliva fluid maintained at 37.0 ± 0.5 ◦C. The specified aliquots
were withdrawn at preset time intervals [28]. The supernatant was obtained by centrifuga-
tion of the sample at 10,000 rpm for 10 min. The Shimadzu HPLC system was then analyzed
(model SPD-15c, Shimadzu Corporation, Kyoto, Japan) equipped with a UV-detector. A
CST column (4.6 × 250 mm2, 5 µm) was applied as a stationary phase. The mobile phase
was composed of 0.5% (v/v) triethylamine and acetonitrile (85:15, v/v, respectively). The
mobile phase’s flow rate was set to 1.5 mL·min−1 with a column temperature set to 40 ◦C
and a detection wavelength of 260 nm.

2.8. Mechanical Characterization

Mechanical testing was conducted using a universal testing apparatus (model: Instron
3365 Dual Column Universal Testing System, Grass Valley, CA, USA) equipped with a
50 kg loaded cell. Each film with a dimension of 2 × 1 cm2 was fixed in tensile grips.
The top grip stretched the sample at a rate of 100 mm·min−1 [29]. The TS and %E were
calculated as the film broke according to Equations (3) and (4).

TS = (force at break)/(initial cross-sectional area of film) (3)

% E = (increase in length)/(original length) × 100 (4)

2.9. Compatibility Study of Optimized Formulation

The differential scanning calorimetry (DSC) analysis was performed using the DSC
instrument (model: TA 2010, TA Instruments, Inc, New Castle, DE, USA). Samples (approx.
3 mg) were heated in a hermetically sealed standard aluminum pan over a temperature
range of 40–250 ◦C at a heating cycle of 20 ◦C·min−1 under a nitrogen atmosphere [30].

The X-ray diffractometry (XRD) study was carried out by XRD apparatus (model:
Rigaku Mercury CCD, Tokyo, Japan) using Ni-filtered Cu K-alpha radiation (40 mA, 45 kV)
at a range of 5–50◦. The scanning temperature and time were set to 25 ◦C and 5 ◦C min−1,
respectively [31].

2.10. Surface Morphology

The surface characteristics of ZMT powder and ZMT-OFDFs were examined by a field
emission-scanning electron microscope (FE-SEM) (model: S-4700, Hitachi, Tokyo, Japan).
Each sample was fixed on a metal stub using double-sided adhesive tape and was made
electrically conductive by a colloidal gold at 10 mA in a vacuum prior to analysis. The SEM
micrograph was recorded at an accelerated voltage of 10–15 kV under 1.5 K magnification.
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2.11. Pharmacokinetics Study

Pharmacokinetic (PK) studies were carried under the animal care and use committee’s
approval (Permit Number: SUDA20220407A02), Soochow University, China. Twelve
male Sprague–Dawley rats (180–220 g, Shanghai, China) were randomly divided into two
groups. Before the administration of ZMT OFDFs, 50 µL of deionized water was dropped
into the oral cavity. The ZMT-OFDFs, at a dose of 10 mg·kg−1, were then cut into two
pieces and placed upon the tongue of rats. An equivalent amount of ZMT was intra-
gastrically administered as a control group. About 0.4 mL blood samples were collected
in heparinized tubes via the retro-orbital plexus at 10, 30, 60, 120, 240, 480, and 720 min
after drug administration. Samples were immediately centrifuged at 5000× g for 20 min.
Plasma was collected and stored at −20 ◦C until further analysis. Up to 180 µL plasma
was deproteinized with 1.8 mL dichloromethane by vortex mixing for 3 min [32]. After
centrifugation at 10,000× g for 10 min at 4 ◦C, the supernatant organic layer was carefully
transferred to a clean tube and dried using a light stream of nitrogen at 40 ◦C. The obtained
residue was reconstituted with a 120 µL mobile phase and 10 µL rizatriptan (10 µg·mL−1)
as an internal standard under vortex mixing for 3 min. The suspension was centrifuged at
10,000× g for 10 min, and 20 µL supernatant was injected into HPLC (Figures S6 and S7).
The HPLC system and chromatographic column were similar as defined above. The
slightly different wavelength and flow rate from the in vitro analysis was employed. The
pharmacokinetic parameters were calculated using a non-compartmental assay (NCA) of
the WinNonlin® 6.1 pharmacokinetic software package (Certara, Princeton, NJ, USA).

2.12. Statistical Data Analysis

All experiments were conducted thrice, and the data are presented as a mean ± stan-
dard deviation (mean ± SD). The statistical differences between groups were performed by
ANOVA using OriginPro 2019 (OriginLab Corporation, Northampton, MA, USA). Values
of the in vivo parameters were statistically analyzed and compared amongst two groups by
student t-test. The difference between mean of groups were reflected statistically significant
and non-significant when p value < 0.05 and p > 0.05, respectively.

3. Results and Discussion
3.1. Formulation Optimization

An SCM was employed for the development of ZMT-loaded OFDFs as it is the tech-
nique of choice for the formulation of OFDFs, as claimed by Cilurzo et al. [15]. MDX-based
OFDs were prepared using both SCM and hot melt extrusion (HME) methods [15]. The
results showed that OFDFs prepared with SCM had shorter in vitro and in vivo D-time
compared to those prepared by the HME method.

The Box–Behnken experimental model, designed by George E.P. and D. Behnken
Box in the 1960s [33], is generally used because it is the most widely experimental design
to construct higher-order surface prospects. A 13-run Box–Behnken design with three
factors and three levels was preferred to prepare and optimize ZMT-OFDFs (Table 1). This
compensates for fewer experiments (13 runs) compared to a full factorial design (27 runs)
to maintain the higher-order surface response [34]. Such experimental design embroils the
study of the effects of two or more independent factors and helps in studying the joint effect
of the independent factors on an individual response. A three-factor, three-level design
favored the construction of polynomial linear models and quadratic equations using the
Design-Expert software (trial version 10.0.3, Stat-Ease Inc., Minneapolis, MN, USA). The
different amounts of three independent variables, such as PU (X1), MDX (X2), and PG (X3),
were designated based on the preliminary trials done before the experimental design is
being applied. Accordingly, a mixture of PU:MDX with different weight ratios (3:0 to 5:1)
was chosen for OFDFs to combine the advantages of the film-forming ability of PU and the
high solubility property of the higher dextrose equivalent (DE) value of MDX. The values of
all responses including cumulative release of ZMT at 5 min (Y1, %), D-time (Y2, s), and TS
(Y3, MPa) were measured as responses which were fitted to the polynomial linear model.
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The effect of polymers and plasticizers concentration on the physicochemical proper-
ties (i.e., thickness, elongation, folding endurance, water content, moisture uptake) was
assessed for ZMT-loaded OFDFs (Table 2).

Correlation coefficients (R2), lack of fit tests, and ANOVA tests were performed to
validate the models (Tables 3–8). ANOVA test was applied to describe the statistical signifi-
cance of the model. The models showed a significant linear model for all responses, and
their significance was confirmed via p-values < 0.05. F directed the regression equation’s
resulting data and could clarify most of the variation in the responses. Each model was
considered significant if p < 0.05, whereas p > 0.05 described a lack of fit for the correspond-
ing responses. Moreover, the selected factors (X1 = PU, X2 = MDX, and X3 = PG) and their
levels significantly (p < 0.05) impacted the designated responses (Y1 = release in 5 min,
Y2 = D-time, and Y3 = TS) as presented in Table 1. It was concluded that X1 showed the
most dominant antagonistic effect on response Y1, followed by the synergistic effect on
response Y2 and Y3. The factors X2 and X3 showed a strong positive effect on Y1 and Y2
and a dominant-negative effect on Y3.

Table 2. Results of physical evaluation parameters of ZMT-OFDFs. All values are expressed as
mean ± S.D (n = 3).

Film Code Thickness
(µm)

Elongation
(%)

Folding
Endurance

(Folds)

Water
Content

(%)

Moisture
Uptake

(%)

F1 33.9 ± 5.1 47.3 ± 7.0 129.0 ± 11 5.0 ± 1.1 6.7 ± 1.6
F2 56.8 ± 6.8 26.2 ± 0.8 100.3 ± 9.5 5.5 ± 1.9 6.0 ± 1.5
F3 40.1 ± 5.2 27.7 ± 1.5 142.3 ± 16.5 5.0 ± 1.4 5.6 ± 1.3
F4 75.1 ± 6.3 39.2 ± 8.4 193.7 ± 12.6 6.3 ± 2.8 5.1 ± 2.1
F5 36.7 ± 4.9 16.1 ± 1.0 76.0 ± 12.5 4.7 ± 1.5 6.1 ± 1.5
F6 25.5 ± 4.3 25.8 ± 11.3 121.7 ± 8.5 4.0 ± 0.6 5.5 ± 0.8
F7 64.6 ± 6.3 53.2 ± 12.4 108.3 ± 8.0 6.0 ± 2.4 6.8 ± 2.6
F8 66.4 ± 5.5 18.0 ± 0.3 178.7 ± 11 5.5 ± 2.4 6.5 ± 3.0
F9 44.1 ± 5.8 30.9 ± 4.4 109.3 ± 9.5 5.3 ± 1.5 7.7 ± 2.2
F10 62.0 ± 7.4 13.9 ± 0.2 88.7 ± 12.9 6.4 ± 2.6 6.4 ± 2.6
F11 85.3 ± 6.5 24.0 ± 1.1 146.3 ± 7.4 6.9 ± 3.6 5.5 ± 3.0
F12 73.2 ± 8.7 10.5 ± 3.9 103.3 ± 7.8 6.0 ± 2.9 4.8 ± 2.4
F13 44.9 ± 6.1 11.8 ± 0.9 96.3 ± 9.6 4.9 ± 1.4 4.6 ± 1.4

Table 3. Model summary and statistics of drug release at 5 min Y1 response.

Responses Model Std. Dev. R2 Adjusted R2 Predicted R2 Press Statistical
Analysis

Drug release at
5 min (Y1)

Linear 1.33 0.960 0.946 0.918 32.55 *

2FI 1.13 0.981 0.961 0.920 31.43

Quadratic 0.75 0.996 0.983 +

Cubic + #

* p < 0.05 and # p > 0.05 indicated indicated statistical significance and insignificance, respectively.
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Table 4. Summary of ANOVA for drug release at 5 min Y1 response.

Responses Source Sum of
Squares d.f. Mean

Square F Value p-Value Prob > F Statistical
Analysis

Drug release at
5 min (Y1)

Model 378.9 3 126.3 71.4 <0.0001 **

X1 197.0 1 197.0 111.3 <0.0001 **

X2 175.8 1 175.8 99.3 <0.0001 **

X3 6.1 1 6.1 3.5 0.0958 #

** p < 0.0001 and # p > 0.05 indicated statistical significance and insignificance, respectively.

Table 5. Model summary and statistics of D-Time (Y2) response.

Responses Model Std. Dev. R2 Adjusted R2 Predicted R2 Press Statistical
Analysis

Disintegration
(Y2)

Linear 1.26 0.984 0.9782 0.9695 26.42 *

2FI 1.49 0.985 0.9694 0.9387 53.17

Quadratic 0.53 0.999 0.9961 + *

Cubic + #

* p < 0.05 and # p > 0.05 indicated statistical significance and insignificance, respectively.

Table 6. Summary of ANOVA for D-time (Y2) response.

Responses Source Sum of
Squares d.f. Mean

Square F Value p-Value Prob > F Significant/
Non-Significant

Disintegration
(Y2)

Model 853.1 3 284.4 180.4 <0.0001 **

X1 748.8 1 748.8 475.0 <0.0001

X2 96.6 1 96.6 61.3 <0.0001

X3 7.6 1 7.6 4.8 <0.0557

** p < 0.0001 indicated statistical significance.

Table 7. Model summary and statistics of tensile strength (Y3) response.

Responses Model Std. Dev. R2 Adjusted R2 Predicted R2 Press Statistical
Analysis

Tensile
strength (Y3)

Linear 1.05 0.955 0.9401 0.90 21.92 **

2FI 1.18 0.963 0.9252 0.79 46.01

Quadratic 0.94 0.988 0.9525 +

Cubic + #

** p < 0.0001 and # p > 0.05 indicated statistical significance and insignificance, respectively.

Table 8. Model summary and statistics of tensile strength (Y3) response.

Responses Source Sum of
Squares d.f. Mean

Square F Value p-Value Prob > F Significant/
Non-Significant

Tensile strength
(Y3)

Model 211.7 3 70.6 63.8 <0.0001 **

X1 29.3 1 29.3 26.4 <0.0006

X2 23.1 1 23.1 20.9 <0.0013

X3 159.3 1 159.3 144.0 <0.0001

** p < 0.0001 indicated statistically significance.
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3.2. Feasibility and Appearance of OFDFs

In a preliminary study, preference was given to select the nature and concentration
of the film-forming polymer and plasticizer. Initially, single PU was observed to develop
OFDFs as a single polymer with optimal low concentration up to 300 mg (w/w). The
resulting films were fragile with prolonged D-time. Sharma et al. and Kim et al. reported
similar results and suggested that a composite polymer should be used instead [23,35].
Accordingly, MDX of higher DE value was incorporated into the PU film, which remarkably
reduced the D-time, improved flexibility, and retained equilibrium moisture. These findings
agree with the previous work of Elmeshad and Hagrasy [36]. In addition, ZMT-OFDFs
composed of PEG were sticky and non-homogenized due to the immiscibility of PEG with
MDX, that is consistent with Cilurzo et al. [15]. Films prepared with glycerol displayed a
poor mechanical strength, which is attributed to their hygroscopic nature and tendency
to retain moisture [14]. Hence, PG was chosen as a plasticizer for PU-MDX-based films
as it produced easily detached and homogenous films and showed compatibility with
all ingredients.

3.3. Thickness and Weight Uniformity

Table 2 displayed the effect of polymers and plasticizers concentration on the physico-
chemical properties of ZMT-loaded OFDFs. The mean thickness and weight of films were
25.5 ± 4.3 to 85.3 ± 6.5 µm and 22.2 ± 3.4 to 77.0 ± 4.2 mg, respectively. These parameters
increased significantly (p < 0.05) with an increase in polymer amount irrespectively of
polymer type (Figure S3). This is explained by the inclusion of solid ingredients that en-
hanced the total molecular volume of the films [23]. All formulations were non-sticky and
were clear with uniform surface (Table S1). The drug content uniformity test demonstrated
consistent dispersion of ZMT in all formulations following USP specifications. The surface
pH of films was found in the pH range of 6 to 7, which suggests less potential to irritate oral
mucosa and, hence, more tolerability to patients. The folding endurance of ZMT-OFDFs
was significantly (p < 0.05) influenced by the plasticizer amount and varied from 76.0 ± 12.5
to 193.7 ± 12.6 folds. Films plasticized with 15% of PG had significantly (p < 0.05) lower
folding endurance than 20% PG or 25% PG, when an equivalent proportion of polymer
was used (Figure S4). The lower PG concentration produced an attraction force between
the polymer-plasticizer, which was insufficient to overcome the hydrogen bonding forces
between the polymer-plasticizer molecules.

3.4. Water Content (%) and Moisture Uptake (%)

The presence of water contents in films delayed drying due to the plasticizing effect of
water. Less moisture content caused brittleness, whereas higher water residue in OFDFs
facilitated the adhesion. In our study, water content data (%) varied from 4.0 ± 0.6 to
6.9 ± 3.6% (Table 2). The water content (%) in the film tended to increase with increasing
polymer and PG concentrations and vice versa. Figure 1A shows the effect of polymer
ratio and plasticizer amount on water content (%) of ZMT-OFDFs. When the films were
exposed to a relatively higher temperature (105 ◦C), then F6, comprising a low polymer
concentration (300 mg), exhibited lower values of water content than F9, composed of
PU:MDX (300:100 mg). This might be due to the hydrophilic nature of polymers. Moreover,
an increase in PG content in the composite films resulted in a proportional increase in water
content. ZMT-OFDFs with 15% plasticizer (F5) showed remarkably lower water content
values than plasticized with 25% (F1), as shown in Figure 1. These results are similar to
those achieved by Jantrawut et al. [37]. This response might be due to the hydrophilic
nature of PG and might produce a sizeable hydrodynamic complex of polymer-plasticizer
and water.
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Figure 1. Effect of polymeric materials and plasticizer concentrations on (A) water content (%) of
different ZMT-OFDFs and (B) moisture uptake (%) of different ZMT-OFDFs.

On the other hand, moisture uptake (%) provides basic information about OFDFs’
stability. The increase in water permeability with increasing hydrophilic polymers and
plasticizer concentration is expected in OFDFs [38]. In this study, the moisture uptake (%)
of ZMT-OFDFs was found in the range of 4.6 ± 1.4 to 7.7 ± 2.2%, as shown in Table 2.
Moreover, the concentration of MDX and PG remarkably enhanced the moisture uptake.
Figure 1B shows ZMTs-OFDFs prepared with 300 mg PU only (F6) were lower than ZMT-
OFDFs prepared with PU:MDX in a ratio of 300:100 mg (F9), when the same amount of PG
was used. In addition, alterations in plasticizer content also influenced moisture absorption
(%). ZMT-OFDFs plasticized with 15% PG (F5) absorbed less moisture than films composed
of 25% PG (F1) when an equivalent polymer amount was used. The overall trend of upsurge
in moisture uptake (%) with the increase in both MDX and PG concentration was noticed.
This is due to the enhancement in MDX mobility, with the PG getting between the polymer
chains, thereby divulging more of its strands for moisture uptake [36]. On the other hand,
ZMT-OFDFs prepared with only PU, as a polymer matrix, absorbed minimum moisture
content (Figure 1B). It is attributed to straight polysaccharide chain of PU, which lacks
side chains. As a result, the molecular chains in the OFDFs were closely aligned, therefore,
the penetration of moisture molecules was difficult to pass through PU [39]. Thus, the
incorporation of MDX to PU is an effective and efficient method of preventing brittleness
of ZMT-OFDFs.

3.5. In Vitro Drug Release Study

The in vitro release performance of ZMT-loaded OFDFs was evaluated in pH 6.8-simulated
saliva, as shown in Figure 2. When an equivalent amount of plasticizer (20%) was used,
the release (%) of ZMT-OFDFs (t = 15 min) composed of 300 mg PU (F6) was remarkably
faster than the prepared one containing 500 mg PU (F8). This may be due to the wicking
effect caused by the high polymer concentration. It is thought that this produces a thicker
barrier layer, which impedes the moisture penetration leading to prolonged D-time and
dissolution. The ZMT-OFDFs composed of low polymer concentration dissolve and form
porous channels more easily, which is beneficial for the rapid disintegration and drug
release [40–42]. All the herein tested ZMT-OFDFs released ZMT completely at 15 min.
The release curve difference was observed at the early time points (2 min, 5 min), as
shown in Table 1. The dissolution performance of ZMT-OFDFs with 100 mg MDX (F9) was
significantly (p < 0.05) superior to that without MDX (F6) in the first 5 min. This might
be due to the effect of oligosaccharide MDX on PU polymer structure, which enhances
the water permeability and causes a rapid disintegration of ZMT-OFDFs while increasing
the solubility and diffusion of the drug [36]. In addition, the alteration in the PG amount
impacted the ZMT-OFDFs drug release mechanism. When ZMT-OFDFs were prepared
with the same polymer proportion (PU:MDX, 400:100), the release rate of ZMT-OFDFs
(t = 15 min) plasticized with 25% PG (F7) was slightly faster compared to that one prepared
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with 15% PG (F10). This might be because the polar (-OH) group generated a plasticizer-
polymer hydrogen bond, substituting the polymer–polymer interaction in biopolymer
ZMT-OFDFs, resulting in a more porous and less dense polymer structure that can easily
disrupt at weak force, thereby ensuring fast disintegration and dissolution.

Figure 2. In vitro release profile of ZMT from OFDFs in simulated saliva fluid, at pH 6.8. Values are
plotted as mean ± S.D. (n = 3).

The software recommended a significant linear model for response release at 5 min,
and their lower SD values demonstrated fewer differences in the suggested model (Table 3).
Relatively higher polynomial coefficient (R2 = 0.96) values of response released at 5 min
guaranteed high prognostic propensity. Similarly, the suggested linear model explained
variability around the mean; thus, the applied model could elucidate about 96% of the
variability in the results. Consequently, the model was substantiated for full model analysis
of variance (ANOVA), as shown in Table 4.

The best model F value for Y1 (71.4) and regression coefficients having a p < 0.05
value indicated the model’s significance. The dependent variable release (Y1) was strongly
dependent on the corresponding factors (X1 = PU, X2 = MDX, and X3 = PG). The ANOVA
results were used to generate a statistical model that specified a reasonable covenant among
dependent and independent variables. Equation (5) was generated when drug release (Y1)
was correlated with independent variables (X1, X2, and X3):

Y1 = 89.15 − 4.96X1 + 4.69X2 + 1.31X3 (5)

It can be seen from Equation (5) that X1 (PU amount) signified a synergistic influence
on Y1, whereas X2 (MDX amount) and X3 (PG amount) had an antagonistic impact. This
means that even with slight increases in PU concentration in ZMT-OFDFs, drug release
was significantly decreased. Following on from this, the negative sign indicates that as
the amount of MDX and PG increased, the drug release of ZMT-OFDFs was dramatically
enhanced. From the above equation, it is evident that the impact of X2 on the response (Y1)
was significant (p < 0.05) compared to that of X3. The findings are following the suggested
D-time results of ZMT-OFDFs.

Figure 3 shows the correlation between the dependent variables and response release
at 5 min. It can be seen from Figure 3A that the drug release at 5 min (Y1) decreased as the
amount of PU (X1) increased, while it increased as the ratio of X2 and X3 in ZMT-OFDFs
increased. It was clarified that at fixed actual factor of X1 (PU = 500 mg), with any level of
X2 (MDX = 0–100 mg), and X3 (PG = 15–20%) demonstrated 82.2 to 87.9% of drug release.
In addition, a sharp rate of early release was observed when the X2 amount was maintained
at a high level (MDX = 100 mg), X1 at a low level (PU = 300 mg), at a condition that X3
increased to medial level (PG = 20%). A fixed factor of X3 in Figure 3C explained the
significant antagonistic effect of X1 and synergistic effects of X2 on the release (%) of ZMT



Materials 2022, 15, 3591 12 of 19

from OFDFs. The results agree with the software-generated linear equation of drug release
at 5 min.

Figure 3. Three-dimensional (3-D) plots demonstrate the effect of (A) Pullulan (X1), (B) Maltodextrin
(X2), (C) Propylene glycol (X3) on response release at 5 min (Y1) of ZMT-OFDFs.

3.6. Disintegration Time

When ZMT-OFDFs were plasticized with the same amount of plasticizer (20%), the
D-time of films comprised with PU:MDX:PG = 300:100:20 (F9) disintegrated faster than
PU:MDX:PG = 500:100:20 (F11) due to the wicking disintegration mechanism [40,41], as
shown in Figure S3. On the other hand, the D-time of ZMT-OFDFs (F9) composed of
PU:MDX = 300:100 was less than PU 300 (F6, excluding MDX) as shown in Table 1. This
could be attributed to the hydrophilic/oligosaccharide nature of MDX that influenced the
polymer chains attrition which primarily enhanced the water penetration to films, leading
to its fast disintegration. The results agree with the previous work of El Meshad and El
Hagrasy [36]. Moreover, when using the same proportion of polymer (PU:MDX = 400:100),
the films comprised of 25% PG (F7) disintegrated faster than those plasticized with 15%
PG (F10). This might be attributed to enough PG that disrupted the polymer chain after
exposure to water, which ultimately breaks the small polymer crystallites, leading to
faster disintegrating of the film. The estimated regression coefficient of the entire model
is tabulated in Table 5. The obtained R2 value of the whole model was 0.946 indicating
the significance of the model. It means that the model could describe around 94.6% of
variability around the mean. ANOVA of the entire model is shown in Table 6. Model F
value of 180.4 indicated that the proposed model was significant. The regression output
demonstrated a p < 0.05 value specifying the significance of the model.

The following multiple linear regression equation (Equation (6)) prevailed from the
model for the response D-time (Y2).

Y2 = 29.89 + 9.68X1 − 3.48X2 − 1.46X3 (6)

A positive sign in Equation (6) demonstrated that the independent variables positively
affected the response variable. A negative sign indicated that the independent variables
were negatively related to the response variable. The results revealed that with the increase
of X1 (PU amount), the D-time of ZMT-OFDFs was prolonged, while X2 (MDX amount)
and X3 (PG%) shortened the D-time. The order of impact was X1, X2, and X3.

The contour plot and three-dimensional (3D) response surface model showing the
effect of pullulan (X1), maltodextrin (X2), or propylene glycol (X3), on D-time (Y2) of ZMT-
OFDFs, are presented in Figure 4. It is perceived from the plots that ZMT-OFDFs composed
of a high level of X1 (PU = 500), with any level of X2 (MDX = 0–100 mg) and X3 (PG = 0–25%)
displayed a D-time that varied from 36.2 to 44.5 s (Figure 4A). Films prepared with a fixed
amount of X2 (MDX = 100 mg), at a condition where X1 is increasing from a low to a high
level, increased the D-time of films significantly (p < 0.05). An increase in the amount of
X3 slightly decreased the D-time of ZMT-OFDFs, as shown in Figure 4B. However, a film
comprised of a low level of X1 (PU = 300 mg), a high level of X2 (MDX = 100 mg), and a
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medium level of X3 (PG = 20%) displayed a significant depression in D-time to 18.3 s, as
shown in Figure 4C.

Figure 4. Three-dimensional (3-D) plots demonstrate the effect of (A) pullulan (X1), (B) maltodextrin
(X2), (C) propylene glycol (X3), on D-time (Y2) of ZMT-OFDFs.

3.7. Mechanical Properties Analysis

The mechanical results showed that as the amount of MDX and PG content increased,
the TS of ZMT-OFDFs decreased, and the %E increased (Table 1). When ZMT-OFDFs were
plasticized with the same amount of PG, F9 (PU:MDX = 300:100) had lower TS and higher
%E than F6 (PU = 300), as shown in Figure 5. Moreover, the ZMT-OFDFs prepared with PU
(single) showed higher TS and brittleness when exposed to a dry environment. The results
agree with the previous work of Sharma et al. [35] and Kim et al. [23]. The incorporated
MDX with a high hydrolysis conversion rate (DE value) exerted the combined effect of
PU-MDX in OFDFs which improved the mechanical properties of ZMT-OFDFs. This can
be explained by the different bonding systems between PU-MDX. The PU-MDX leading
chains segmental flexibility is related to the α-1, 6, and α-1, 4 bonds in the structure. The
first one is relatively rigid, and the latter has a larger flexibility region [42]. On the other
hand, as the PG content increased, the TS of ZMT-OFDFs decreased significantly, while
the extensibility increased. At the same proportion of polymer, the film composed of 25%
PG (F1) had lower TS and higher %E than 15% PG (F5), as shown in Figure 5. This may
be due to the easy insertion of low molecular weight and highly hydrophilic PG into the
polymer chain; this resulted in a hindered association between the PU-MDX chains, in the
meantime increasing the molecular mobility of the polymer chain, enhancing the elasticity
and reducing the rigidity of the ZMT-OFDFs [43].

Figure 5. Impact of maltodextrin and propylene glycol concentrations on mechanical properties of
ZMT-OFDF formulations F1, F5, F6, and F9. (A) Tensile strength (%); (B) Elongation (%). Data are
expressed as mean ± SD (n = 3).
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The polynomial equation of the full model for TS is presented in Table 7. The R2 value
was found to be 0.940, indicating the model significance and defining 94.0% of variability
around the mean. ANOVA of the whole model is shown in Table 8. The model F value of
70.6 suggested that the model was significant. Furthermore, p < 0.05 value indicated that
the model terms were substantial.

The multiple linear regression for response TS (Y3) was expressed by Equation (7),
as follows:

Y3 = 8.42 + 1.91X1 − 1.70X2 − 6.69X3 (7)

Equation (7) shows that X1 (PU amount) had a positive effect on TS, which means that
as the X1 amount increased, the TS of ZMT-OFDFs increased. The negative results of X2
and X3 on TS indicate that as these factors’ concentration increased, the TS decreased. The
order of influence of independent variables on response TS was X3 > X2 > X1.

Three-dimensional surface plots explored the highest TS of about 17.1 MPa occurred
roughly at the lower level of PG and MDX (Figure 6A). At a fixed actual factor X2, the
TS became lower with increasing PG amount to PU in films (Figure 6B). Contour plots in
Figure 6C revealed that PG, at the highest level of 25% to any polymer ratio, significantly
reduced the TS of ZMT-OFDFs.

Figure 6. Three-dimensional (3-D) plots demonstrate the effect of (A) pullulan (X1), (B) maltodextrin
(X2), (C) propylene glycol (X3) on tensile strength (Y3) of ZMT-OFDFs.

3.8. Validation of Optimum Formulation

The Design-Expert (DE) software analyzed all responses in one measurement to predict
the optimum level of independent variables based on the desirability function. The model-
generated optimized ZMT-OFDFs (F9) was composed of PU (300 mg), MDX (100 mg), and
PG (20%), respectively. The films were evaluated for drug release (Y1, %), D-time (Y2, s),
and TS (Y3, MPa) to prove the validity of the model (Table 9). The values were calculated
based on derived polynomial equations compared with predicted values to confirm their
adequacy and reliability by the given equation [14].

Relative error (%) = 1 +
predicted value − experimental value

predicted value
× 100 (8)

Table 9 displayed the experimental and predicted testing of the optimized formulation.
Experimental results were closed to those predicted by the model. The difference between
the actual and the model predicted properties were statistically insignificant (p > 0.05),
which ensured model validity.
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Table 9. Difference between actual and predicted values of optimized ZMT-OFDFs.

PU:MDX:PG = X1:X2 (mg):X3 (%) Response
Variables

Actual
Values

Predicted
Values

Relative Error
(%)

Y1
(Release) 99.8 98.4 −1.5

PU:MDX:PG
300 mg:100 mg:20%

Y2
(D-time) 18.3 17.2 −6.2

Y3
(Tensile strength) 6.7 7.0 4.8

3.9. Compatibility Analysis

The DSC study was performed to detect any potential interaction amongst pure drug
and emerged polymers in ZMT-OFDFs (Figure 7). Their corresponding irreconcilability was
illustrated by the shifting, arrival, or disappearance of melting peaks. The DSC thermogram
of the pure ZMT displayed an endothermic transition at 140 ◦C indicating that ZMT melts
at a temperature of 140 ◦C, as shown in Figure 7A [7]. The disappearance of peaks in
the thermogram of ZMT-OFDFs signified complete molecular miscibility and uniform
dispersion of ZMT in film-forming components. Additionally, the absence of extra peaks
indicated the lack of ZMT recrystallization in the ZMT-OFDFs [41].

Figure 7. Compatibility analysis. (A) DSC thermograms, (B) XRD spectrum of ZMT, physical mixture
of polymers and drug, Maltodextrin, Pullulan, Blank OFDFs, and ZMT-OFDFs.

An XRD study was carried out to verify the crystallinity transformation of a model
drug in the optimized formulation. Figure 7B shows the patterns of pure ZMT, physical
mixture of drug and polymer, MDX, PU, blank OFDFs, and optimized ZMT-OFDFs. The
XRD diffractogram of the pure ZMT exhibited intense and sharp peaks at 11.4, 12.4, 13.6,
15.8, 19.5, 22.1, 23.8, and 29.1◦ that indicated the pure crystalline form of ZMT [6]. The
characteristic crystalline peaks of ZMT were detected in the physical mixture of drug and
polymers. The patterns of MDX, PU, and blank OFDFs displayed a broad peak at 18.1◦

which specified polymers’ amorphous form. The hallo diffractograms of ZMT-OFDFs
showed a broad rise at 16.3◦, respectively. The results indicated that the crystalline state of
ZMT had been partially transformed into an amorphous form. It might be attributed to
the fact that drug crystallinity could be converted to an amorphous form during chemical
manipulation [35,41].

3.10. Surface Morphology Analysis

The SEM image of ZMT powder demonstrated a stable crystal structure, as shown in
Figure 8A. Whereas the SEM image of ZMT-OFDFs displayed a smooth surface without
any scratches or traverse striations on the surface (Figure 8B). The results indicated the
proper miscibility and uniform distribution of ZMT in the OFDFs [14,44].
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Figure 8. Scanning electron microscopy (SEM) of (A) ZMT powder, (B) optimized formulation.

3.11. Pharmacokinetics Study

The plasma concentration profile of ZMT-OFDFs and ZMT intragastric suspension in
rat plasma was plotted against time (Figure 9). The peak plasma concentration (Cmax), the
time to reach the maximum peak (Tmax), the area under the drug time curve (AUC0–t), and
the mean retention period (MRT) were determined (Table 10).

Figure 9. Pharmacokinetics profile of ZMT after oral administration of OFDFs and intragastric
suspension at a dose of 10 mg·kg−1 to rats. Values are given as mean ± S.D (n = 6).

Table 10. Pharmacokinetics profile of ZMT after oral administration of OFDFs and intragastric
suspension at a dose of 10 mg·kg−1 to rats.

No. PK-Parameters ZMT-OFDFs ZMT-ig Suspension

1 Cmax (µg·mL−1) 2.44 ± 0.34 1.56 ± 0.37
2 Tmax (h) 0.5 0.5
3 AUC (0–t) (ng·h·mL−1) 5.89 ± 0.94 2.82 ± 1.02
4 MRT (h) 2.9 ± 0.7 2.3 ± 0.9

Values are expressed as mean ± S.D., n = 6.

The corresponding PK parameters of both dosage forms were different from each other.
The Cmax of ZMT-OFDFs and ZMT intragastric suspensions were 2.44 ± 0.34 µg·mL−1

and 1.56 ± 0.37 µg·mL−1, respectively, with significant difference (p < 0.05), reaching
the peak at 0.5 h. The AUC0–t among the two groups was 5.89 ± 0.94 µg·h·mL−1 and
2.82 ± 1.02 µg·h·mL−1, with significant differences (p < 0.05). The MRT of the two formu-
lations was 2.9 ± 0.7 h and 2.3 ± 0.9 h, respectively, indicating that the retention time of
ZMT in vivo was nearly similar. The obtained results are consistent with the earlier work



Materials 2022, 15, 3591 17 of 19

of Singh et al. and Bhagawati et al. [44,45]. The above results show improved absorp-
tion of ZMT-OFDFs compared to ZMT intragastric suspensions in the rats. This can be
attributed to the faster disintegration and dissolution of OFDFs leading to rapid absorption
of ZMT from the oral mucosa which undoubtedly resulted in a decreased pre-systemic
biotransformation and degradation of the digestive tract environment [16].

4. Conclusions

In this study, ZMT-OFDFs were successfully prepared by SCM based on the Box–Behnken
design. Considering the feasibility of ZMT-OFDFs formulation, an optimized PU-MDX
mixture was used as polymeric materials and PG as a plasticizer. The formulated OFDFs
were transparent with smooth surface without any conceivable interactions between the
model drug and polymers. The multiple regression exploration of the outcomes led to
equations that pronounce adequately the effect of the selected independent variables on the
responses under current study. The desirability function directed to the optimum values of
the selected factors at which the formulated OFDFs showed fast drug release, rapid D-time,
and favorable mechanical possessions. The in vitro and in vivo results of ZMT-OFDFs
showed that the fabrication of ZMT-OFDFs had some advantages over the traditional
oral administration, such as sample preparation method, convenient administration, fast
disintegration, and improved patient compliance. In addition, ZMT-OFDFs could offer
a solution to some of the challenges that exist in the current migraine therapy. Impaired
absorption of ZMT is a significant problem considering high reports of gastrointestinal
(GIT) dysfunction as a symptom of migraine. ZMT-OFDFs bypass this by directly entering
to the systemic circulation with reduced hepatic first-pass effect. The preliminary findings
indicated that ZMT-OFDFs prepared with 3:1 (PU to MDX) and 20–25% PG content (based
on solid content) is the optimal formulation that meets the quality requirements of rapid
disintegration, dissolution, and favorable mechanical properties for the oral cavity.

This study is expected to provide a new basis for the research and development of
anti-migraine drugs.
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sample obtained after dissolution of ZMT-OFDFs (F1) at 5 min (C), typical calibration curve of ZMT
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