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Abstract Liver cancer presents divergent clinical behaviors. There remain opportunities for
molecular markers to improve liver cancer diagnosis and prognosis, especially since tRNA-
derived small RNAs (tsRNA) have rarely been studied. In this study, a random forests (RF) diag-
nostic model was built based upon tsRNA profiling of paired tumor and adjacent normal sam-
ples and validated by independent validation (IV). A LASSO model was used to developed a
seven-tsRNA-based risk score signature for liver cancer prognosis. Model performance was
evaluated by a receiver operating characteristic curve (ROC curve) and Precision-Recall curve
(PR curve). The five-tsRNA-based RF diagnosis model had area under the receiver operating
characteristic curve (AUROC) 88% and area under the precisionerecall curve (AUPR) 87% in
the discovery cohort and 87% and 86% in IV-AUROC and IV-AUPR, respectively. The seven-
tsRNA-based prognostic model predicts the overall survival of liver cancer patients (Hazard Ra-
tio 2.02, 95% CI 1.36e3.00, P < 0.001), independent of standard clinicopathological prognostic
factors. Moreover, the model successfully categorizes patients into high-low risk groups. Diag-
nostic and prognostic modeling can be reliably utilized in the diagnosis of liver cancer and high-
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low risk classification of patients based upon tsRNA characterization.
Copyright ª 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

Primary liver cancer, comprised mainly of hepatocellular
carcinoma (HCC), remains the sixth most common cancer
and the second largest cause of cancer mortality in the
world.1 The highest incidence rates of liver cancer alter
geographically and parallels with the prevalence of viral
hepatitis. China accounts for about 50% of all incidences of
liver cancer.2 Chronic hepatitis B virus (HBV) infection is the
leading cause of HCC in Asia, in contrast chronic hepatitis C
virus (HCV), alcoholic cirrhosis and non-alcoholic steato-
hepatitis (NASH) are the main causes in the Western world.3

Due to the strong compensatory function of the liver and
often undetected early symptoms, liver cancer remains
difficult-to-detect until the disease has progressed to an
advanced stage.4,5 In China, the five-year survival rate for
liver cancer patients is 12.5%, while in the United States,
the 2-year survival rate is less than 50% and 5-year survival
is only 10%.6 Early identification and timely treatment can
significantly improve patient survival rate. Cancer bio-
markers can play an important role in the early diagnosis
and prognosis of liver cancer.

Transfer RNA (tRNA)-derived small RNA (tsRNA) are a
novel regulatory, small non-coding RNA generated from
precursor or mature tRNAs and participate in diverse physi-
ological and pathological processes.7e9 tsRNA is produced by
cutting specific sites of tRNA or pre-TRNA and their expres-
sion is not consistent with corresponding tRNA levels. This
suggests that tsRNAs are not a degradation product, but a
precisely regulated non-coding RNA. tsRNAs can be grouped
into three distinctive classes, inferring tRNA-derived small
RNAs with the characteristic 3’ poly U residues, mature
tRNA-derived fragments (tRFs), or tRNA-derived stress-
induced RNA (tiRNA). Emerging research has shown that
tRNA-derived small RNA (tsRNA) disorders occur in many
cancers and that their expression is regulated during cancer
development and staging. Furthermore, evidence suggests
that tsRNA can influence cellular processes such as cell
proliferation, apoptosis, translation inhibition, epigenetic
inheritance, and neuronal function, implicating them as a
potential biomarker in human diseases.10

However, the presence of tsRNAs in tissue and their
diagnostic potential remain unexplored. Here, we demon-
strate the presence and expression pattern of tsRNAs within
liver cancer tissue, highlighting their potential for cancer
diagnosis and prognosis.

Methods

Dataset

The miRNA expression, clinical data, and miRNA-seq binary
alignment map (BAM) files were collected from The Cancer
Genome Atlas (TCGA-LIHC and TCGA-CHOL) project on 1
September 2020. Among 379 patients diagnosed with liver
carcinoma, the median age was 61(IQR, 51e59.14), 66.2%
were males, Asians and Caucasian accounted for 42.4% and
50.6%, respectively. A total of 189 (49.8%) individuals were
diagnosed with Stage I, 94 (24.8%) with Stage II, 86 (22.6%)
with Stage III, and 10 (2.6%) with Stage IV. The training set
and internal validation were randomly separated according
to the ratio of 3:2. In the independent validation dataset
(GSE76903),11 the patient’s median age is 50, and males
account for 85% (Table 1).

Sequencing data analysis

All sequencing data were aligned using sRNAtool to extract
tsRNA expression.12 Briefly, all sequencing files were con-
verted to collapsed FASTA format after removal of
adapters. The TCGA miRNA-seq BAM files are files that have
removed adapters, can be converted directly. Unprocessed
FASTQ format reads had adapters trimmed and filtered for
�16 nucleotides utilizing Cutadpt 2.1.13 Missing values was
imputed by MetImp 1.2.14

Statistical analysis

We compared adjacent normal and tumor tissues using
paired student t-test. For survival analyses, the
KaplaneMeier method was utilized to analyze the correla-
tion between factors and disease-free survival, and the log-
rank test to examine survival curve. Multivariate survival
analysis was performed using Cox regression. Diagnostic
and prognostic samples, respectively, analyze the correla-
tion between tsRNAs and miRNAs. Then select miRNAs with
P < 0.001 through Spearman correlation for further anal-
ysis. The Mantel test was used in two matrices correlation
test. miRNA pathway analysis was performed using DIANA
tools.15 All analyses were performed with SPSS version V26
(IBM, Armonk, NY), Python (version 3.8.5), and R software
(version 4.0.2).

Random forests analysis and LASSO regression

Random forests (RF) is a famous and influential statistical
classifier that has been well established in biology disci-
plines. Compared to traditional linear regression, RF has
excellent accuracy in classification and determining vari-
able importance.16 We put statistically significant tsRNAs
into the RF to select relevant diagnosis biomarkers and built
a multi-tsRNA based diagnostic model. Furthermore, we
applied an independent validation dataset to test the
diagnostic model. “randomForest” package in R software
was utilized to conduct RF analysis.

We applied the LASSO regularized linear model to solve
the potential overfitting affected by high dimensional
ncRNA expression associated with the small number of
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Table 1 Demographic and clinical characteristic of patients with liver cancer in discovery Corhort1 set (TCGA) and inde-
pendent validation Corhot2 (GSE76903).

Cohort TCGA GSE76903

Num. of patients 379 20
Adjacent Normal 57 20
Primary Tumor 57 20

Age in years, median (IQR) 61 (51e59.14) 50 (45.25e60.25)
Sex

Male, count (%) 251 (66.2) 17 (85)
Race

Asian 161 20
White 192
Black or African American 15
American Indian or Alaska Native 2
Not Reported 9

Treatment Type

Radiation Therapy 181 Not Reported
Pharmaceutical Therapy 198

Stage

Stage I 189 Not Reported
Stage II 94
Stage III 86
Stage IV 10

Primary Diagnosis

Hepatocellular carcinoma 331 20
Cholangiocarcinoma 48

Events

Death 130 Not Reported
Alive 249

Follow Up time (days, IQR) 575 (308.5e1106.5) Not Reported

tRNA-derived small RNA diagnostic and prognostic signature in liver cancer 395
samples.17 We performed the LASSO Cox regression model
to pick the most valuable prognostic tsRNAs associated with
liver cancer and constructed a multi-tsRNA-based risk score
signature for predicting the disease-free survival of pa-
tients. Ten-fold cross-validation was implemented to mea-
sure the risk score model. The ’scikit-learn’ package in
python was used for LASSO regression analysis.
Results

Identifying candidate diagnostic tsRNAs based on
miRNA-seq profiling

Figure S1 summarizes the workflow for this study and has
been described in Methods. 57 paired liver primary tumor
and adjacent normal tissues were analyzed by miRNA-seq in
the discovery set (TCGA dataset) and differentially
expressed tsRNAs in tumors and normal tissue were exam-
ined (Fig. 1). Our evaluation revealed 14 tsRNAs whose
expression was significantly different by paired student t-
test after adjusting for false discovery rate (FDR) (Table 2).
Three tsRNAs (ts-N102, ts-N59, and ts-N41) were found to
be upregulated in cancer with a foldchange of 2.046, 2.079,
and 2.532, respectively; all other tsRNAs were reduced in
cancer. In addition, two tsRNAs (ts-N71 and ts-N44) were
found to be significantly downregulated in cancer vs normal
(both P < 0.05), however these tsRNAs failed to maintain
significance when FDR-adjusted (both P Z 0.122) and were
removed from further analysis. Due to ambiguity in naming
conventions across tsRNA databases, we have included both
our naming method, as well as Mintbase.
Constructing and validating the multi-tsRNAs based
diagnostic model

A random forest (RF) model using the 14 statistically sig-
nificant tsRNAs was then constructed. According to the RF
mean decrease of accuracy, five tsRNAs were selected,
including up-regulated ts-N102 and down-regulated ts-N7,
ts-N94, ts-N84, and ts-N37 in tumor tissue. Out-of-bag
(OOB) estimations were applied to evaluate predicted
error. We assessed the model performance by a receiver
operating characteristic curve (ROC curve) and Precision-
Recall curve (PR curve). We found that to differentiate
primary tumor from normal, the five-tsRNA-based model
has an area under the ROC (AUROC) 88% (Fig. 2A) and area
under the precisionerecall curve (AUPR) 87% (Fig. 2B). To
further test the classification model, we also calculated a
diagnostic RF-score for the independent validation data-
set (GEO dataset) based on the OOB predicted



Figure 1 tsRNA expression analysis of liver cancer diagnosis. Unsupervised hierarchical clustering of all significant tsRNA markers
selected for use in the diagnostic model. Each row is tsRNA, and the column is the patient sample.

Table 2 A list of top 16 tsRNAs that p-value less than 0.05 with tRF sequences when the paired student t-test was evaluated.

ID Mintbase ID tRF Sequences (50e30) P Values Fold Change (C/N) FDR

ts-N7 NA GCCCGGATGATCCTCAGTGGTCTGGGGTGCAGGCTTC 2.91321E-09 0.351073565 1.19E-07
ts-N63 tRF-22-RKVP4P9LL GGGGGTATAGCTCAGTGGTAGA 2.98038E-07 0.420801509 6.11E-06
ts-N144 tRF-18-897PVP04 TCCTCGTTAGTATAGTGG 1.58555E-05 0.458798884 0.000217
ts-N53 tRF-19-6S7P4PK4 GGCCGGTTAGCTCAGTTGG 4.83256E-05 0.407564036 0.000495
ts-N102 tRF-18-8R1546D2 TCCCCAGTACCTCCACCA 7.6764E-05 2.046345387 0.000629
ts-N42 tRF-19-QR18LOJ4 GCTCCAGTGGCGCAATCGG 0.000199338 0.317559469 0.001248
ts-N94 tRF-18-07QSNHD2 ACCCTGCTCGCTGCGCCA 0.000213077 0.657910809 0.001248
ts-N34 tRF-20-79MP9P9 M GTTTCCGTAGTGTAGTGGTC 0.00031426 0.517865005 0.001611
ts-N59 tRF-20-HDK2RSI2 ATAACCCAGAGGTCGATGGA 0.000415514 2.079287758 0.001738
ts-N84 tRF-28-HJ83RPFQZD0M ATAGCTCAGTGGTAGAGCATTTGACTGC 0.000423901 0.636436975 0.001738
ts-N52 tRF-25-0P58309NDJ ACCAGGATGGCCGAGTGGTTAAGGC 0.002677032 0.634413418 0.009978
ts-N115 tRF-17-WSNKP92 TCTCGCTGGGGCCTCCA 0.006990814 0.775397813 0.023885
ts-N37 tRF-29-RKVP4P9L5FKP GGGGGTATAGCTCAGTGGTAGAGCATTTG 0.011555279 0.486538973 0.036444
ts-N41 tRF-20-6S7P4PZ3 GGCCGGTTAGCTCAGTTGGT 0.013231647 2.532122558 0.03875
ts-N71 tRF-20-73VL4YMY GTGGTTAGTACTCTGCGTTG 0.045561725 0.31115994 0.122153
ts-N44 tRF-24-S3M8309N0Y GTAGTCGTGGCCGAGTGGTTAAGG 0.04766928 0.711120108 0.122153
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probabilities. The IV-AUROC and IV-AUPR was 87% and
86%, respectively.
Constructing and validating the multi-tsRNAs based
prognostic model

A prognostic model was then built from a TCGA dataset of
379 liver cancer patients (Table 1). Univariate Cox
regression analyses of overall survival was utilized and
identified 6 significantly associated tsRNAs (Table 3). Two
tsRNAs, ts-N20 and ts-N45, trended towards a significance
(P < 0.1) with overall survival. A LASSO Cox regression
model was adopted to build a prognostic model and
included seven of the eight tsRNAs (ts-N20, ts-N21, ts-N22,
ts-N36, ts-N37, ts-N44, and ts-N64, Fig. 3). Applying the
LASSO Cox regression models, risk score was estimated for
each patient based on individualized values of five tsRNAs:
risk score Z (2.99 � ts-N20) - (4.16 � ts-N21) þ (0.96 �
ts-22) -(0.132 � ts-N36) - (0.058 � ts-N37) -(0.93 � ts-N44)
þ(0.7 * ts-N64). Individuals were dichotomized by risk
score into low risk (score < 1244.2) or high risk. Classifi-
cation and survival status were assessed by Log-rank test
and low risk individuals were found to have increased
survival when compared to high risk in both training
(P Z 0.0066, Fig. 3A) and validation (P Z 0.037, Fig. 3B)
groups. Moreover, Figure S3 shows the four stages’ survival
plot corresponding to the risk model. There are significant
differences between the high and low risks in stage II, and
stage IV (P < 0.05).

A k-fold cross-validation is used to evaluate productive
models by partitioning the dataset into k equal subsets. Of



Figure 2 Random forest diagnostic model and LASSO selection. (A) ROC of the diagnostic prediction model with tsRNA markers in
the discovery data (TCGA) and independent validation data sets (GEO dataset). (B) PR curve in the discovery data (TCGA) and
independent validation data sets (GEO dataset). (C) LASSO coefficient profiles of the liver-cancer-associated tsRNAs. (D) Seven
tsRNAs selected by LASSO Cox regression analysis.

Table 3 A list of top 8 tsRNAs that p-value less than 0.1 when the univariate Cox models were applied.

ID Mintbase ID tRF Sequences (50e30) P Values Hazard Ratio 95% CI

ts-N20 tRF-25-395P4PN3FJ CCTTCGATAGCTCAGCTGGTAGAGC 0.081739 1.3388 0.964e1.86
ts-N21 tRF-23-395P4PN3X CCTTCGATAGCTCAGCTGGTAGA 0.008897 1.5525 1.115e2.163
ts-N22 tRF-18-YSQSD2D2 TTCCGGCTCGAAGGACCA 7.23E-05 0.5108 0.364e0.716
ts-N36 tRF-23-HDK2RSI20K ATAACCCAGAGGTCGATGGATCG 0.021841 1.4735 1.056e2.057
ts-N37 tRF-29-RKVP4P9L5FKP GGGGGTATAGCTCAGTGGTAGAGCATTTG 0.016874 1.4965 1.073e2.087
ts-N44 tRF-24-S3M8309N0Y GTAGTCGTGGCCGAGTGGTTAAGG 0.008527 1.5573 1.118e2.168
ts-N45 tRF-30-87R8WP9N1EWJ TCCCTGGTGGTCTAGTGGTTAGGATTCGGC 0.085083 1.3346 0.96e1.855
ts-N64 tRF-18-8R6546D2 TCCCCGGCACCTCCACCA 0.007235 0.6342 0.453e0.888
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each k subset, a single subset is used as validation and the
remaining k-1 subsets are designated for training. Cross-
validation is then performed k times, with each subset
being used once for validation. The k results are then
averaged for create a single, overall estimation. The
strength of k-fold cross-validation is that the entirety of the
dataset is used as both training and validation with each
sample being used as validation exactly once. The results of
10-fold cross-validation of this model is summarized in
Table S1.

Furthermore, we performed a multivariate Cox regres-
sion analysis of the tsRNA-based model with overall sur-
vival, the prognostic model remained an independent
prognostic factor (Fig. S2. HR 2.02, 95% CI 1.36e3.00,
P < 0.001).
tsRNA associated miRNA analysis

To better understand the functions of tsRNA, we con-
structed a correlation analysis to find miRNAs that are
highly related. Fig. 4 shows miRNAs that are profoundly
correlated with five diagnostic tsRNAs. Based on Mantel’s
P < 0.01, ts-N102 are highly associated with has-mir-215,
ts-N84 is highly correlated with hsa-mir-15a, hsa-mir-186,
hsa-mir-210 and hsa-mir-26 b. We further performed a



Figure 3 Risk score model by the seven-tsRNA-based signature, KaplaneMeier survival in training (A), internal validation (B). P
values calculated by the log-rank test.

Figure 4 Correlation analysis of diagnostic tsRNA and miRNA. The lower-left corner connection is the correlation between tsRNAs
and miRNAs, and the upper-right corner is the correlation analysis between miRNAs and miRNAs. miRNA data down from TCGA-LIHC
and TCGA-CHOL project.

398 Y. Zuo et al.



tRNA-derived small RNA diagnostic and prognostic signature in liver cancer 399
pathway analysis on these miRNAs. The analysis results
show that hsa-mir-26 b, hsa-mir-15a, hsa-mir-186 are
mainly involved in fatty acid synthesis and metabolism,
Viral carcinogenesis, and other pathways. Details are
showing in Fig. S4. Among prognostic tsRNAs correlated
miRNAs, hsa-mir-29b-1, hsa-mir-362, hsa-mir-3653, hsa-
mir-425, and hsa-mir-3607 are highly correlated with 3 or
more tsRNAs, respectively. Notably, hsa-mir-215 is related
to diagnostic biomarker ts-N102 and is associated with
prognostic biomarker ts-N64, more details shown in Fig. S3.
We further enriched the miRNAs related to prognosis and
found that the pathways related to fatty acid synthesis and
metabolism. Details in Fig. S4.
Discussion

Although over 90% of the human genome may be involved in
transcriptional processes, less than 2% of the whole genome
is comprised of protein-coding sequences. Therefore, non-
coding RNA (ncRNA) is a vital part of the human tran-
scriptome.18 In recent years, ncRNA, such as miRNA,
lncRNA, and snoRNA, has been widely studied in cancer
diagnosis and prognosis. However, tsRNA, a novel type of
ncRNA, has rarely been investigated, especially in regard to
its function in cancer.

In this study, we developed and validated a novel diag-
nostic and prognostic tool based on tsRNAs for cancer
diagnosis which can improve the prediction of patients’
overall survival with liver cancer. Our results revealed that
the diagnostic tool could successfully distinguish normal
and malignant tissue across discovery and validation data-
sets. The prognostic tool classifies patients into low-risk
and high-risk groups with great contrasts in 5-year disease-
free survival. Moreover, this suggested classifier can predict
the survival of patients as an independent factor and is
significantly more reliable than other clinicopathological
risk factors.

Since there have been only a limited number of studies
involving a small number of tsRNAs, the general and precise
mechanisms of action of tsRNAs are not very clear.19

Nevertheless, tsRNA have still been shown to share some
characteristics in common with miRNAs in regulating mRNA
stability, binding to proteins, and controlling RNA reverse
transcription.20 Our research explored correlations be-
tween miRNAs and tsRNA to identify candidate regulatory
pathways in which tsRNA may participate. Among diag-
nostic tsRNAs, ts-N102 is significantly up-regulated in can-
cer tissues, while the highly related hsa-mir-215 is a tumor
suppressor in colorectal cancer, and multiple
myeloma.21e23 We infer that ts-N102 is a proto-oncogene
and can inhibit the expression of tumor suppressor hsa-
mir-215. ts-N84 has a significant correlation with many
miRNAs. Among them, hsa-mir-210 has the highest corre-
lation. Studies have shown that hsa-mir-210 promotes
venous metastasis in hepatocellular carcinoma when highly
expressed, and it participates in hepatic ischemic-
reperfusion injury as part of a negative feedback loop
with Mothers against decapentaplegic homolog 4 gene
(SMAD4).24,25 In regard to the prognostic significance of
tsRNA, the regulatory network is more complicated. For
instance, let us consider ts-N22 and the related hsa-mir-331
and hsa-mir-33a as examples. ts-N22 is a tsRNA with pro-
tective properties (HR Z 0.51) in liver cancer, and patients
who express ts-N22 have a higher survival rate. The related
hsa-mir-331 and hsa-mir-33a are tumor suppressors. Hsa-
mir-331 can regulate expression of neuropilin-2 to inhibit
glioblastoma cell migration.26 Depletion of hsa-mir-33a is
associated with tumorigenesis and poor prognosis in pa-
tients with hepatocellular carcinoma (HCC).27 Further-
more, miR-33a-5p can interfere with the cisplatin
resistance of HCC cells.28

According to the enrichment analysis results, miRNAs
highly related to liver cancer tsRNA are mainly enriched in
fatty acid synthesis and metabolism pathways. Researches
show that Long-chain acyl-CoA synthetases (ACSLs) effec-
tive for activation of the most abundant long-chain fatty
acids are usually deregulated in cancer.29 Fatty acid
oxidation as a fuel in the metabolic adaptation triggered by
b-catenin oncogenic activation in hepatocytes.30 This evi-
dence indicates that tsRNA may be a regulatory factor
regulating the fatty acid synthesis and metabolism and
potentially as a liver cancer treatment target.

Our study has some limitations. First, in the diagnostic
model, we only used one independent validation data set.
Second, although a large sample was used in the prog-
nostic model, no suitable independent validation set was
found. Third, although we inferred that ts-N37 is a po-
tential tumor suppressor gene, more experiments are
needed to verify this, and it also lays the foundation for
our future work. Finally, tsRNA fragments are relatively
small, and non-specific bands may be generated during
PCR amplification, and a more appropriate method needs
to be selected.
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