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A B S T R A C T   

Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in 
dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, 
has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of 
thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells 
(ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, pro-
moting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of 
endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemo-
taxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible 
surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation 
can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and ther-
apeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can 
inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded 
with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for 
enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of 
EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomo-
dulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication 
strategies are required in further studies.   

1. Introduction 

Vascular diseases are the most prevalent cause of ischemic necrosis 
of tissue and organ, which has attracted much attention [1]. Vascular 
defect caused by trauma or underlying diseases like diabetes can reduce 
oxygen and nutrients supply for tissues and organs, which may result in 
severe consequences, like claudication, sores, organ disfunctions, ne-
crosis, or even death [2,3]. When long-segment defects occurred or the 

defects happened in vital organs like heart, artificial vascular grafts are 
required to restore blood supply for tissues. 

Synthetic vascular grafts have been widely utilized in clinics as 
conventional strategies for vascular impairment, like polyurethane, 
polyester, expanded polytetrafluoroethylene (ePFTE), and etc., with 
diameter greater than 6 mm [4]. However, these synthetic grafts have 
long-term risk since they are prone to intimal hyperplasia (IH) and 
thrombogenesis, and result in implantation failure [5], particularly for 
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small diameter vascular grafts (diameters less than 4 mm) [6]. Hence, 
ideal vascular grafts are required to imitate the framework and consti-
tution of native vessels, as well as inhibit protein deposition, blood 
coagulation, and immunological rejection [7,8]. To construct a bio-
mimetic vascular graft, it is indispensable to figure out the critical fac-
tors and challenges in graft development. 

It has been widely recognized that endothelialization is critical for 
blood contacting devices [9,10]. The endothelium, the inner tunica with 
monolayer endothelial cells (ECs) lining in vessel lumen, directly con-
tacts with blood, and plays an important role in maintaining vascular 
hemostasis and patency by releasing regulatory molecules including 
nitric oxide (NO), heparins, and plasmin, etc. [9]. Losing endothelium 
layer may lead to a cascade of pathological reactions, like thrombo-
genesis, inflammation reactions, and smooth muscle cell (SMC) hyper-
plasia [11,12]. Thus, endothelium regeneration is crucial for vascular 
graft. 

In conventional tissue engineered vascular grafts (TEVGs), ECs are 
cultured and seeded on scaffolds prior to implantation, which is called in 
vitro endothelialization [13]. The proliferation ability of in vitro cultured 
ECs is limited. And greater stemness stem cells are applied, like endo-
thelial progenitor cell (EPC), induced Pluripotent Stem Cell (iPSC), and 
mesenchymal stem cell (MSC) [14–17]. However, the viability, bioac-
tivity and stability of seeded cells after implantation cannot guarantee, 
and the clinical application of this strategy is inhibited by its poor 
effectiveness and practicality [18,19]. Moreover, in vitro cell culture 
consumes more time and cost, and have greater risk of contamination. In 
situ endothelialization, commanding the regeneration of a healthy 
endothelium on the surface of vascular grafts directly after implantation, 
is more effective than in vitro endothelialization [20,21]. Early strategies 
pay attention to appealing cells from anastomotic regions, but poor EC 
proliferative ability hinders the long-term expectation. Thus, the 
mobilization, recruitment and homing of EPC from peripheral blood and 
bone marrow has appealed much attentions [22,23]. Furthermore, ideal 
in situ endothelialization needs more attention on biomaterial type, 
surface modification and releasing factors to regulate cell performance, 
in which enhanced adhesion, orientation, proliferation and activation of 
ECs and EPCs on graft surface are required. 

For long-term patency, thrombogenesis is the key factor leading to 
vascular occlusion. Vascular grafts, as the foreigner directly exposed to 
blood flux in vasculature, are easy to cause protein deposition and 
provoke thrombogenesis [24,25]. The aggregation of insoluble fibrin, 
platelet, and red cells induces the coagulation cascades and results in 
thrombus formation [26–28]. ECs serve as the first line for thrombo-
genesis. ECs can release and control key molecules, including tissue 
plasminogen activator (tPA), anti-thrombins, and plasmin, etc., to 
modulate anti-thrombogenesis process for vascular grafts, and these 
molecules are also potential treating drugs for application [24,29]. 
Another high potential risk is IH. The platelets, inflammatory cells, and 
SMCs aggregate and release growth factors, resulting in SMCs prolifer-
ating and migrating to vascular intima uncontrolledly, which exerts 
adverse effects on lumen patency [30]. 

Furthermore, inflammatory responses, induced by vascular graft 
implantation, are crucial in modulating graft development [31,32]. 
Biomaterial degradations act as stimulus, activate toll-like receptors 
(TLRs), and thus induce initial inflammation responses, which then 
cause white blood cells including neutrophils, monocytes, and lym-
phocytes to infiltrate from blood flow to implantation scaffolds [33–35]. 
And then growth factors released by macrophages, like tumor necrosis 
factor-α (TNF-α), TNF-β, and interleukin-1 (IL-1), etc., may play a role in 
influencing the biological behavior of ECs and SMCs, and thus modu-
lating in situ endothelialization and lumen patency of vascular graft [36, 
37]. 

Maintaining long-term lumen patency for small-diameter vascular 
graft is still challenging. Days after graft implantation, the proliferation 
of ECs happens, and simultaneously blood cells, platelets and fibrin 
deposit onto foreign graft. Weeks after implantation, more ECs 

proliferate and adhere onto graft surface, but no intact EC layer forms, 
and coagulation cascades may be activated, then resulting in thrombo-
genesis. Months after implantation, SMCs migrate from anastomotic 
sites and proliferate uncontrollably, thus leading to IH. Meanwhile, in-
flammatory cells, especially macrophages, can regulate EC and SMC 
behavior via inflammatory factors. The process is shown in Fig. 1. 

Multiple strategies can be adopted to respond to the challenges 
described above for enhanced long-term lumen patency of vascular 
grafts (Fig. 2). ECs form the inner endothelium layer, and are crucial in 
preventing coagulation and thrombogenesis. Thus, promoting in situ 
endothelialization in vascular graft remodeling takes top priority, which 
requires recruitment of EPCs, migration, adhesion, proliferation and 
activation of EPCs and ECs. Surface modification with heparin or hy-
drophilic polymers can reduce thrombogenesis, and some drug release 
can inhibit IH. Additionally, NO and macrophages also play a crucial 
role in regulating the biological behavior of ECs and SMCs. Thus, in this 
paper we will review and summarize different strategies in promoting in 
situ endothelialization and inhibiting thrombogenesis and IH for long- 
term lumen patency of vascular grafts. 

2. Homing and adhesion of EPCs and ECs for enhanced in situ 
endothelialization 

EPCs, circulating cells located in bone marrow and low quantities in 
peripheral blood, can differentiate into ECs [22,38]. EPCs has also been 
applied in cell therapy for the treatment of critical limb ischemia [39]. It 
has been recognized that EPCs plays a critical role in endothelialization 
of vascular grafts [40]. However, the quantity of EPC homing to the 
neovascularization sites is limited. For enhanced in situ endothelializa-
tion, the homing of EPCs and recruitment of ECs is vital, which includes 
chemotactic effects, capture and adhesion of cells on graft surface [41]. 
Multiple chemokines can be utilized for EPC chemotaxis, and strategies 
like nanofibrous structure, biocompatible surface with bioactive binding 
sites and specific molecules modification can be applied for cell adhe-
sion (Fig. 3). 

2.1. Homing of EPCs by chemokines 

EPCs have multiple sub-populations and display different markers on 
their surface. Early EPCs display markers including CD34, CD133 and 
VEGFR2, etc., which are reduced as cell maturity increases [39,42]. 
These EPCs in different subpopulations exert synergistic effects on 
endothelialization [43,44]. Multiple chemokines that can be utilized for 
EPC homing are summarized in Table 1. 

The quantity of EPCs in circulation blood flow is low, and EPCs from 
bone marrow can mobilize into peripheral blood for enhanced endo-
thelialization. Multiple growth factors play a role in the chemotaxis of 
EPC homing to the region of neovascularization, but the underlying 
mechanism of signaling pathways in EPC homing has not been 
elaborated. 

2.1.1. Chemokines targeting CXC families on EPC surface 
Stromal cell-derived factor-1α (SDF-1α), which can act as the che-

moattract for CXC family, has potential in EPCs chemotaxis and 
recruitment [45–47]. SDF-1α can bind to CXCR4 on hematopoietic stem 
cell (HSC) surface for stem cell homing, and it has also been reported 
that SDF-1α can bind to CXCR4 expressed on EPC surface [48–50]. Yu 
et al. [51] immobilized SDF-1α on vascular graft and found that SDF-1α 
immobilization could recruit EPCs and smooth muscle progenitor cells 
(SMPCs) simultaneously for enhanced in situ endothelialization. The in 
vivo results indicated that the lumen patency 12 weeks after implanta-
tion for naked graft was 44%, heparin coated graft was 67%, and 
SDF-1α/heparin modified graft was 89%. Issa et al. [52] studied the 
performance of dickkopf-3 (Dkk3) and results indicated that Dkk3 could 
interact with cell surface ligand CXCR7, activate ERK1/2 and PI3K/AKT 
signaling pathway, and thus enhance the recruitment and differentiation 
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of EPCs. 
Chemokines can directly immobilize on graft surface, for example, 

Wang et al. [53] immobilized SDF-1α onto PLLA/PLGA/PLCL vascular 
scaffolds for EPC homing. Nanoparticles (NPs) are also ideal strategy for 
bioactive molecules carrier. He et al. [54] constructed chitosan/fucoi-
dan NPs to load SDF-1α to induce EC migration for promoted in situ 
endothelialization. 

2.1.2. Chemokines targeting integrin families on EPC surface 
It has been reported that the integrins play a role in homing of EPCs. 

De Visscher et al. [50] constructed a synthetic graft coated with fibro-
nectin (FN) and SDF-1α, and proved that FN could activate 

α4-integrin-VCAM1/FN axis for EPC homing. Particularly, integrinβ2 
have potential in regulating EPC recruitment to ischemic sites [55,56]. 
Chavakis et al. [55] found that integrinβ2 not only induced the adher-
ence of EPCs to ECs and ECM proteins, but also regulated the chemotaxis 
of EPCs to the neovascularization sites. Furthermore, integrinβ2 acti-
vated by specific anti-β2-integrin antibody can effectively enhance the 
homing of EPCs for in situ endothelialization. Integrin mediated migra-
tion of EPCs can be promoted by enhancing the activity of GTPase Rap1, 
and Rap1 can be activated by Epac1 [57,58]. Carmona et al. [59] uti-
lized 8-pCPT-2′-O-Me-cAMP to directly activate Rap1 for recruitment of 
EPCs, providing a new strategy for promoted homing of EPCs. . 

Moreover, some other molecules have also been explored and found 
to be able to promote homing of EPCs, like ephrine-B2-Fc chimera [62] 
and HMGB-1 [60], which target to specific receptors on EPC surface. 

The markers like CD34 and CD133 on EPC surface are not specific, 
which may also display on hematopoietic stem cell (HSC) surface. 
Lacking specific makers on EPC surface for chemokines reduces homing 
efficiency. Moreover, the mechanism under chemokines induced stem 
cell homing has not been clearly figured out. Deep explorations are 
needed to uncover the mechanism, and more specific chemokines are 
required to effectively promote homing and recruitment of EPCs for 
endothelialization. 

2.2. Adhesion of EPCs and ECs on graft surface 

After homing of EPCs, cell adhesion on graft surface utilizing nano-
fibrous structure, biocompatible surface with bioactive binding sites or 
specific molecules modification takes prior consideration (Fig. 3). 

2.2.1. Biomimetic nanofibrous scaffolds for enhanced cell adhesion 
Extracellular matrix (ECM), with nanoscale construction, is the 

micro-environment for cell adhesion, proliferation and differentiation, 
and is essential for the maintenance of cell biological activity [63–65]. 
Biomimetic nanofibrous scaffolds, with greater surface to volume ratio, 
provide more binding ligands for cell adhesion and biomolecules 
adsorption [66,67]. Multiple approaches can be applied to obtain 
nanoscale vascular grafts. Generally, there are three approaches for 
nanofiber fabrication in vascular graft construction, including 
self-assembly, phase separation, and electrospinning, etc. 

Self-assembly is a fabrication process by which individual 

Fig. 1. The challenges after vascular graft implantation. Days and weeks after implantation, insufficient endothelialization and thrombogenesis may happen. Months 
after implantation, uncontrollable proliferation of SMCs may lead to IH. Inflammatory cells play a role in regulating EC and SMC behavior. 

Fig. 2. Schematic illustration for in situ endothelialization and lumen 
patency strategies. 
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components are arranged into hierarchical organized structures spon-
taneously supported by non-covalent interactions [68]. This process is 
ubiquitous in various molecular bio-behavior [3,69]. Peptide amphi-
philes (PAs) have been widely applied in fabricating collagen-like 
adaptable nanofibrous biomaterials utilizing self-assembly strategy 
[70,71]. Nanofibrous structure developed by self-assembly can simulate 
the ECM with the lowest scale at 5–8 nm, but the synthesis process is 
difficult to be regulated and the efficiency of productivity is relatively 
low. Thus, the application of this strategy in vascular graft construction 
is limited [72]. Phase separation can also fabricate nanofibers at the size 
similar to native ECM collagens, with different porous structures at 
macroscale [73], which can also effectively enhance cellular adhesion 
onto the scaffold surfaces [74]. Various biodegradable aliphatic poly-
esters can be developed into nanofibers using phase separation, with 
fiber diameter ranging between 50 and 500 nm [72,75,76]. The porosity 
and pore sizes can be tuned by modulating parameters, like polymer 

concentrations, porogen morphology utilized, gel temperatures and 
frozen temperatures [73]. Compared to self-assembly strategy, phase 
separation is a relatively simpler strategy that does not need professional 
techniques. However, its application is restricted because of low yield 
efficiency, a finite number of selected polymers for fabrication and 
consequently inappropriate for industrialized scale manufacture [75]. 

Electrospinning has been considered as an appealing strategy to 
simulate native ECM, for its simplicity and scalability. To fabricate 
optimal electrospun scaffolds, construction parameters including 
voltage, solution concentration, interval to collector, and collection 
approaches, can be tailored to acquire ideal fibrous orientation, di-
ameters, porosity and mechanic characteristics [77–80]. Compared to 
self-assembly and phase separation, a broader spectrum of biomaterials 
can be produced into nanofibers using electrospinning. Furthermore, 
convenient preparation methods, abundant biomaterials with 
electrospin-ability and high yield efficiency make the electrospinning 

Fig. 3. Recruitment and adhesion of EPCs and ECs. Chemokines can be utilized for EPC chemotaxis. Nanofibrous structure, biocompatible surface with bioactive 
binding sites and specific molecules modification can be applied for EPC and EC adhesion. 

Table 1 
Chemokines for stem cell chemotaxis to enhance in situ endothelialization.  

Targeting Receptors Chemokines Loading approach Targeting cells Activated Signaling 
Pathway 

Effects Ref 

CXC 
Family 

CXCR4 SDF-1α / CD117+ stem 
cell 

SDF-1α/CXCR4 axis CD117+ cell homing to injured sites [47, 
48] 

CXCR4 SDF-1α Coating on synthetic 
polyester grafts 

CD117+/CD34+

stem cell 
SDF-1α/CXCR4 axis CXCR4+ cell homing for in situ 

endothelialization 
[50] 

CXCR7 SDF-1α Immobilized onto 
heparin 

CD34+ EPC, 
SMPC 

SDF-1α/CXCR7 axis Both EPC and SMPC recruitment for 
in situ endothelialization 

[51] 

CXCR7 Dkk3 Co-electrospinning 
technology 

Sca-1+ cells Dkk3/CXCR7/ERK1/2; 
PI3K/AKT axis 

EPC recruitment and differentiation [52] 

Integrin 
family 

α4-integrin- 
VCAM1 

Fibronectin (Fn) Coating on synthetic 
polyester grafts 

CD117+/CD34+

stem cell 
Fn/VCAM1 axis VCAM+ cell homing [50] 

Integrin 8-pCPT-2′-O- 
Me-cAMP 

/ EPC GTPase Rap1 EPC recruitment [59] 

Others RAGE HMGB1 / EPC integrin-dependent 
adhesion of EPCs 

EPC homing to injured sites [60] 

Rac1 MCP1 / SMC p115 RhoGEF/Rac1 
GTPase pathway 

SMC migration and proliferation for 
vascular remodeling 

[61] 

VEGFR1, 
VEGFR2 

VEGF Surface-fixed on 
styrenated gelatin gel 

EPC VEGF/VEGFR Graft for in situ EPC homing and 
capture   
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strategy accessible for scaffold fabrication both on laboratory and in-
dustrial scales [75,81]. 

Multiple biomaterials have been utilized in electrospinning, 
including synthetic polymers, natural polymers and hybrid biomaterials. 
Non-degradable synthetic polymers like poly (ethylene terephthalate) 
(PET) [82,83], expanded poly (tetrafluoroethene) (ePTFE) [84–87], 
polyurethane (PU) [5,88,89] have ideal electrospinnability and 
outstanding mechanical characteristics. Non-degradable biomaterials 
can be implanted for long term application, but excellent tissue engi-
neered grafts should possess proper biodegradability for minimized in-
flammatory reactions. Degradable biomaterials are favorable for 
adhesion and proliferation of ECs [90,91]. Biodegradable synthetic 
polymers like poly (ε-caprolactone) (PCL) [92,93], PGA [94], PLGA 
[95], and natural polymers like collagen [96,97], elastin [98], silk 
fibroin [99], gelatin [100], are also applied for vascular graft fabrica-
tion. Natural polymers have ideal biocompatibility, but insufficient 
mechanical properties. It is an appealing approach to blend the natural 
polymers possessing outstanding biocompatibility with the synthetic 
polymers possessing adequate mechanical properties to overcome these 
disadvantages, for example, collagen and PEG [96], elastin and PCL 
[98], gelatin and PVA [100], etc. For construction of biomimetic vessel 
structure, layer by layer (LBL) strategy can be applied in vascular graft 
fabrication, for example, silk fibroin as inner layer, hydrogels as the 
medial, and TPU nanofibers as outer layer, to simultaneously obtain 
mechanical strength and biological activity, and simulate natural vessel 
structure [101]. 

2.2.2. Biocompatible surface with bioactive binding sites for enhanced cell 
adhesion 

Synthetic polymers can provide sufficient mechanical strength in 
vascular graft construction, but inadequate bioactivity since lacking 
sufficient cellular recognition sites for cell adhesion [102]. Natural 
polymers with outstanding biocompatibility can provide enough cellular 
ligands [103]. Thus, surface modification with natural polymer for 
synthetic polymers is an effective strategy for enhanced cell adhesion in 
vascular graft fabrication. 

Gelatin possesses cell surface binding ligands RGD which are favor-
able for cell adhesion. Gelatin has attracted much attention for surface 
modification because of its biocompatibility, biodegradability, and 
editability. Cationized gelatin can be covalently grafted on electrospun 
PLLA nanofibers for better surface bioactivity [104]. Merkle et al. [105] 
applied co-axial electrospinning to construct core-shell structure, with 
PVA as core to provide mechanical strength, and with gelatin as shell to 
display biocompatible surface. The Young’s modulus of core-shell 
structure was about 169 MPa and the tensile strength was about 5.4 
MPa, and the mechanical properties was greatly enhanced compared 
with single PVA or gelatin [105]. Blended gelatin and heparin can also 
be an alternative strategy. Wang et al. [106] fabricated gelatin, heparin 
NPs, and polylysine nano-coating using self-assembly to construct a 
biomimetic vascular structure. 

Collagen, component of natural ECM, possesses excellent biocom-
patibility and bioactivity [107]. Grus et al. [108] fabricated polyester 
vascular scaffold coated with collagen to enhance biocompatibility and 
improve lumen long-term patency. Furthermore, vascular graft Poly-
Maille (Perouse Medical, France) with collagen coating is already 
available. Some other natural polymers, like elastin [109], silk fibrin 
[110,111], are also alternative for vascular graft application. These 
polymeric coatings can provide non-specific binding sites not only for EC 
adhesion, but also for other blood cells like platelets, white cells, and 
SMCs, which may induce thrombogenesis and IH. Thus, more specific 
binding coatings are required for in situ endothelialization. 

2.2.3. Cell-capturing molecules on surface for enhanced cell adhesion 
EPCs can differentiate into ECs and generate the inner endothelium 

layer on graft surface. Hence, it is important to targetedly capture the 
circulating EPCs and ECs onto graft surfaces for enhanced in situ 

endothelialization. To promote the migration and adhesion of cells, 
antibodies, cell adhesive peptides and cell-specific aptamers have been 
extensively investigated [23,112,113]. 

CD34 and VEGFR-2 are the surface markers on EPC surface [39]. Anti 
CD34 antibodies (Ab) have been the most widely utilized for EPC target 
and capture [114,115]. But there are some disadvantages concerning 
about anti CD34 Abs, since anti CD34 Abs are not only specific for EPCs, 
they can also capture other cells, some of which can even differentiate 
into SMCs and lead to thrombosis [116,117]. Clinical investigations 
indicated that anti CD34 Abs coated graft cannot reduce risk of vascular 
occlusions than conventional graft surface, especially of IH [118,119]. 
To overcome this problem, it was proposed that anti CD34 Abs can 
combine with drugs like sirolimus to reduce IH [120,121]. Anti 
VEGFR-2 Abs are also alternative for EPC capture. Anti VEGFR-2 Abs can 
effectively target and capture EPCs and ECs from blood flowing [122, 
123]. It has been reported that the specificity of VEGFR is superior than 
that of CD34 and CD31. Although the superior specificity, the VEGFR-2 
also expresses on surface of monocytes and macrophages, and the 
recruitment of immune cells will induce undesirable inflammatory re-
sponses. The specific markers for stem cell recognition remains unclear 
and needs more explorations. 

Cell adhesive peptides are also critical for biological identification 
between cell membrane and relevant ligand for cell capture and 
adherence. Integrins on cell surface mediate the adhesion of cell onto 
ECM in a dominated manner [124]. Multiple peptide sequences have 
been applied for surface modification for enhanced adhesion of EPCs 
and ECs, including RGD [125–129], CAG [130,131], REDV [132,133], 
and YIGSR [134,135], etc. These peptide sequences modified on graft 
surface display specific affinity with ECs, enhancing the adhesion of ECs 
and inhibiting the adherence of platelets [136–139]. 

Aptamer, the short oligonucleotide sequences, exhibits affinity to 
specific targeted molecules. Aptamer sequences can be obtained through 
cell-SELEX technology [140]. It was reported that aptamer could cap-
ture porcine EPCs for enhanced in situ endothelialization [141]. But the 
application of aptamers in EPC capture has not been widely used. The 
effects of aptamers on the in vitro and in vivo cell performance and 
vascular patency still require more studies to verify. The stability of 
aptamers in vivo is unclear. Moreover, some aptamers have risks of 
causing inflammation responses, and the relative immunomodulation is 
poor known [142]. 

The cell-adhesive peptides, originating from ECM, bind to integrins 
on EC surface for cell capture. The ECs possess stronger specificity to 
peptides like YIGSR and REDV than SMCs. Peptides can promote cell 
adhesion, but with poor targeting. Antibodies can target to relevant 
markers on cell surface, but the targeting markers are not specific on 
EPC or EC surface. Aptamers, the oligonucleotide sequence, have high 
affinity with target cells. However, the immune responses of aptamers in 
vivo remain unclear. 

3. Cell behavior regulation for enhanced in situ 
endothelialization 

Ideal vascular graft is also required for enhanced cell elongation, 
proliferation, activation and differentiation of EPCs and ECs. 

Circulating EPCs can be subdivided into two main categories, he-
matopoietic lineage EPCs and nonhematopoietic lineage EPCs. The he-
matopoietic EPCs originate from bone marrow and represent a 
provasculogenic subpopulation of hematopoietic stem cells (HSCs), 
which play an indispensable role in vascular repair. Different stem cells 
have different stemness. Embryonic stem cells (ESCs) possess totipotent 
differentiation potential, and mesenchymal stem cells (MSCs) are also 
pleuripotent in osteogenic, chondrogenic and adipogenic differentia-
tion. But the stemness and differentiation potential of EPCs, the somatic 
stem cell, is limited, without multiple differentiation potential. Under 
normal physiological conditions in adults, the stem cells are in quiescent 
conditions, and maintain a dynamic balance in growth and decay of 
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tissues. But under pathological conditions or external inductions, the 
ability to differentiate, regenerate and re-new can be activated. Thus, 
after the circulating EPCs are recruited, the defected vascular environ-
ment will release the molecules, and initiate the oriented differentiation 
of EPCs into ECs. To further enhance the proliferation and oriented 
differentiation of EPC to EC for promoted endothelialization, topog-
raphy to regulate cell orientation, bioactive molecules and therapeutic 
genes can be applied. 

3.1. Regulated cell alignment and orientation 

Topography cues for vascular graft surface can exert significant ef-
fects on modulating biological behaviors of ECs and endothelialization 
[143,144]. Micro- and nano-scale topography factors including aligned 

nanofibers and surface patterns can induce the formation of uniformly 
aligned ECs for intima construction [145,146]. 

3.1.1. Aligned nanofibers 
Electrospinning technology has been widely applied in nanofibrous 

vascular graft fabrication, and fiber orientation can be tuned by regu-
lating spinning parameters. The aligned nanofibers can induce cell 
orientation and modulate cell morphologies and biological perfor-
mances [93]. Multiple studies have reported that the axially oriented 
fibers can arrange the morphology and alignment of ECs or MSCs for 
intima reconstruction [147,148]. Furthermore, the aligned fibers can 
also provide tensile mechanical strength, enhance SMC alignment in 
outer layer [149], and higher lumen patency rate [150]. 

Fig. 4. The influence of surface topography 
on cell morphology and biological behavior. 
(A–B): Scanning electron microscopy (SEM) 
for inner lamellar structure of vascular graft; 
A: Inner lamellar structure fabricated by 
freeze-cast, with the lamellar 10 μm high, 
200 nm thick, and the interval between la-
mellas was 20 μm; B: Inner non-lamellar 
structure fabricated by direct freeze-drying. 
(C): Cell behavior on graft surface; (a): 
Platelets adhesion. SEM figures showed that 
less platelets adhered on lamellar structure, 
and they were not activated; b: ECs elonga-
tion. ECs displayed elongated adherence 
along aligned surface of vascular graft and 
enhanced proliferation. (D): Optical figures 
and HE staining 3 months after implanta-
tion. Reproduced from Ref. [160], ACS 
NANO, ACS Publication @ 2019.   
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3.1.2. Surface micro- and nano-patterns 
Cell-surface interactions play a crucial role in enhancing endotheli-

alization. Graft surface with micro-/nano-scale grove/ridge patterns can 
enhance the construction of an intact EC layer spontaneously aligned 
along a prior orientation, which then effectively simulates the elongated 
endothelium layer structure [151,152]. The aligned ECs have been re-
ported to inhibit leukocyte invasion and consistent with elongated 
morphology of native ECs under blood flow [153,154]. 

Surface patterning has potential in promoting spontaneous in situ 
endothelialization [146]. Photolithography, electron beam lithography, 
and soft lithography can be utilized to develop micro-/nano-scale 
tube/groove/pillar patterns in different sizes [151,155,156]. The pat-
terns can enhance EC elongation and endothelialization, as well as 
inhibit platelet adhesion and maintain long-term patency rate [144, 
157–159]. Wang et al. [160] constructed a biomimetic vascular graft 
modified with nano-topographic lamellar structure utilizing freeze-cast 
technique, and the lamella was 10 μm high, 200 nm thick (Fig. 4A). The 
results indicated that the nano-lamellar framework could prevent 
platelet activation and enhance EC orientation (Fig. 4C). The number of 
platelet adhesion on lamellar surface was about 3 times fewer than that 
on non-lamellar surface. The HE staining images indicated that lamellar 
structure could promote in situ endothelialization, while distinct 
thrombus formed in non-lamellar structure group (Fig. 4D). Zorlutuna 
et al. [161] constructed a vascular graft with channel nanopatterns at 
the periodicity of 650 nm. The nanopatterns were on both sides of sur-
face to induce orientation and proliferation of ECs and SMCs simulta-
neously. Different surface nanopatterns are effective strategies to tune 
cell orientation and vascular remodeling in a pattern-dependent way. 

The arrangements of adhesive peptides also influence the migration, 
morphology and proliferation of ECs [162]. Wang et al. [163] explored 
the effects of RGD nano-spacing in different nanoscale size (37–124 nm) 
on MSC performance, and the results indicated that RGD nano-spacing 
might have a role in modulating differentiation of MSCs. Saux et al. 
[164] found that micro-scale pyramids could impede cell migration, 
while RGD spacing with density of 6✕108 mm2 could enhance cell 
spreading and adhesion. Karimi et al. [165] compared random and 

nano-clustered RGD spacing on vascular graft surface, and demonstrated 
that the nano-island pattern on surface could promote the migration and 
adhesion of ECs for enhanced in situ endothelialization. RGD is specific 
for EC capture, and designing RGD pattern on surface can further pro-
mote cell migration and proliferation. 

3.2. Promoted cell proliferation and activation 

To promote the proliferation and activation of ECs and EPCs after cell 
adhesion, bioactive molecules and therapeutic genes are promising ap-
proaches (Fig. 5). 

3.2.1. Microenvironment regulation for enhanced cell performance 
Multiple molecules possess capability to motivate the proliferation, 

differentiation and activation of ECs and EPCs, including growth factors, 
gas and microRNAs (Fig. 5). Vascular endothelial growth factor (VEGF) 
is vital in vascularization, and plays a key role in regulating EC behavior 
[38,166,167]. Sustained VEGF releasing in vascular graft can promote 
endothelialization via facilitating differentiation of EPCs and enhancing 
the proliferation and activation of ECs [168,169]. VEGF can be loaded 
on vascular grafts through multiple strategies, like NPs [170], coaxial 
electrospinning [171], direct blending electrospinning [172], and 
emulsion electrospinning [173], etc. Remarkably, VEGF can also serve 
as chemotaxis for EPC homing via target of VEGFR1 and VEGFR2 re-
ceptors on cell surface [174,175]. Fibroblast growth factor-2 (FGF-2), 
with potential in directing stem cell differentiation, is also applied in 
vascular graft [176,177]. Rajangam et al. [178] combined heparin and 
PAs, and constructed a self-assembly nanofibrous gel to capture VEGFs 
and FGF-2 for enhanced angiogenesis. Furthermore, platelet-derived 
growth factor (PDGF) can promote the migration and proliferation of 
SMCs [179]. Han et al. [180] constructed a double-layer electrospun 
nanofibrous scaffold, with inner layer loaded with VEGF for EC prolif-
eration, and outer layer with PDGF for SMC proliferation, thus inducing 
an intact vascular blood vessel formation. Growth factors can directly 
play a role in vascular construction, but for protein delivery, protein 
bioactivity and concentration maintenance in vivo are still concerned. To 

Fig. 5. Bioactive molecules and therapeutic genes for enhanced in situ endothelialization. Strategies including micro/nano particle loading, nanofibers embedment or 
graft surface coating can be utilized to deliver therapeutic factors for promoted cell proliferation and activation. Furthermore, targeting molecules are used for more 
efficient gene delivery to targeted cells. 
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enhance delivery efficiency and maintain protein activity and concen-
tration in vivo, multiple nanoscale and microscale carriers are utilized, 
which are summarized in Table 2. 

VEGF is efficient in promoting proliferation and activation of ECs, 
but the immunogenicity and high expense make the application of VEGF 
in clinic difficult. MicroRNAs (miRNAs), the non-coding RNAs, have 
been reported to play a role in regulating vascularization by bonding 
with promotor region of target genes in recent studies [184,185]. It has 
been showed that miRNA-126 can regulate the vascular development 
via modulating the responding of ECs to VEGF, and inhibiting Spred-1 
expression, which restrains angiogenic signal pathways [186,187]. 
Electrospun nanofibers are viable and convenient to load biomolecules, 
and have been widely utilized to carry miRNAs. Zhou et al. [173] uti-
lized REDV modified PEG-trimethyl chitosan to load miRNA-126, and 
delivered the miRNA to the targeted ECs. The miRNA complex was 
incorporated into electrospun polymers utilizing emulsion electro-
spinning to construct vascular scaffold, and miRNA was released sus-
tainedly for enhanced EC performance. Cui et al. [188] loaded 
miRNA-126 in inner electrospun fibers, and miRNA-145 in outer fibers, 
respectively to regulate biological behavior of ECs and SMCs. Moreover, 
some other miRNAs are also found and explored their effects on 
vascularization. MiRNA-22 could prevent the apoptosis of SMCs via 
targeting p38-MAPK pathway during vascular remodeling [189]. Sup-
pression of miRNA-21 restrains EC growing through PTEN 
dependent-PI3K pathway [190]. Nevertheless, effects of these miRNAs 
are still at primary research stage, and has not been widely recognized. 

Moreover, NO can also stimulate proliferation and activation of ECs, 
as well as homing of EPCs [191,192], which makes NO donors attractive 
for vascularization. The biological functions and multiple NO donors 
applied in vascular grafts will be introduced in the following contents. 

3.2.2. Therapeutic gene delivery for enhanced cell performance 
Delivery of proteins like VEGF and FGF can directly bind to receptors 

on target cell surface, and modulate the expression of angiogenesis 
related genes via signaling pathways, but have risk of protein degrada-
tion, inactivation and gradual consumption. Gene therapy is a favorable 
approach for promoting endothelialization through transfecting ECs, 
since genes can be transfected into nucleus and translated for protein 
releasing, potential in maintaining a relative high protein concentration 
in vivo (Fig. 5) [193]. VEGF, FGF and ZNF580 genes are promising genes 
for therapeutic gene delivery in vascular graft applications. 

To guarantee the transfection efficiency, gene carriers are vital for 
delivery. Nanoparticles (NPs) can act as carriers, preventing DNA from 
degradation by enzymes, targeting to the specific cells, entering cell 
membrane, translocating to the nucleus, and finally integrating to host 
genome. Various biomaterials have been widely utilized for gene de-
livery, including lipid NPs [194,195], polymeric NPs like cationic ester 
polymers [196], co-polymers [197–199], poly (ethylenimine) (PEI) 
[200], PEI based co-polymers [201,202], inorganic NPs like calcium 

phosphate [203], and peptide based NPs [204]. Furthermore, electro-
spinning technology is also attractive in gene loading. Plasmid-DNA 
(pDNA) can be directly mixed in solvent for electrospinning [203,205, 
206], or modify nanofibers with gene loaded microparticles [207]. 

The cell adhesive peptide like RGD [208,209], REDV [210] can be 
utilized for target gene delivery to facilitate peptide modified pDNA 
complex bind to integrins on EC surface. Wang et al. [210] constructed a 
REDV modified pZNF580 NP complexes utilizing self-assembling strat-
egy. The REDV mediated NPs could prevent the pZNF580 from DNase 
degradation, display better hemocompatibility and enhance delivery 
efficiency for enhanced in situ endothelialization. Kibria et al. [211] 
utilized RGD and PEG as dual-ligand modification to promote target 
gene delivery efficiency. 

Delivered genes can integrate into target cell genome, and stably 
expressing transfected proteins in a long period time, compared with 
direct protein delivery. But the transfection efficiency is a potential risk, 
and the transferred genes cannot function in vivo immediately like 
proteins. 

4. Preventing vascular incidents for long-term lumen patency 

Thrombogenesis, IH and calcification can reduce lumen diameter, 
and are major risks in maintaining long-term lumen patency after 
vascular implantation. Preventing thrombus formation, IH and calcifi-
cation is crucial for survival of vascular graft. Hydrophilic surface and 
heparin coating are effective in anti-thrombogenesis, and some drugs 
can inhibit IH. Moreover, NO can play a role in inhibiting coagulation 
and IH. 

4.1. Anti-thrombogenesis for enhanced long-term lumen patency 

It is easy to provoke thrombogenesis if lacking ECs on graft surfaces, 
but during early healing process, there have not been adequate ECs 
lining on surface to release molecules for thrombus prevention. Thus, at 
the beginning of implantation, vascular grafts may direct contact with 
blood cells in vasculature. The vascular grafts are transplanted as foreign 
matters, and easy lead to the absorption of plasma proteins and blood 
cells, and then activate the coagulation cascades [212]. The graft surface 
with minimized protein adsorption, drugs or gases for anti-coagulation 
are effective strategies for thrombogenesis prevention. 

To inhibit thrombogenesis, minimizing the absorption of plasma 
proteins on graft surfaces is crucial. Thus, a biocompatible surface with 
minimized protein adsorption is required. The hydrophilic surface can 
effectively prevent the protein adsorption. Some biocompatible and 
hydrophilic biomaterials have been utilized for the surface modification 
of vascular grafts, for example, PEG [213], zwitterionic polymers [214, 
215]. PEG and zwitterionic polymers or groups can be directly coated 
[216], blended [217,218] or covalently grafted [213,219] on the scaf-
fold surfaces, and the hydrophilic surfaces can effectively inhibit the 

Table 2 
Nanoscale and microscale carriers for growth factor delivery.  

Carriers Cargos Sizes Dosages Results Ref. 

Nanoparticle Chitosan/heparin NP VEGF 67–132 nm 43, 113, or 237 ng/mL Enhancing regeneration of decellularized tissue- 
engineered scaffolds 

[170] 

Microparticle Alginate microbeads FGF-1 140 μm 600 ng Rapid and persistent vascular response [181] 
Gelatin microspheres FGF-2 40 μm 30 mg Improving mechanical properties and releasing 

FGF-2 
[182] 

Gelatin microparticles VEGF 75–125 μm 0–100 ng/mL Prolonging VEGF activity and increasing 
endothelialization 

[183] 

Nanofibers Electrospun PELCL/gelatin and PLGA/ 
gelatin nanofibers 

VEGF, 
PDGF 

VEGF 0.59 ng/ 
mg; 
PDGF 0.53 ng/ 
mg 

PELCLC 568 nm; PLGA 
940 nm 

VEGF for EC proliferation, and PDGF for SMC 
proliferation 

[180]  

Self-assembly nanofibrous gel VEGF, 
FGF-2 

25 ng / Promoting the tube formation of ECs [178] 

Note: Poly (ethylene glycol)-b-poly (L-lactide-co-ε-caprolactone): PELCL; poly (L-lactide-co-glycolide): PLGA. 
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protein adsorption and platelet adherence [214,220]. 
Furthermore, heparin, known as an anti-coagulative drug, can be 

coated or immobilized on vascular graft surface, which plays a role in 
anti-thrombogenesis [221–223]. Heparin can interact with 
anti-thrombase AT III, to restrain the function of thrombase and coag-
ulation factor Xa. Heparin, with carboxyl groups, can also be blended 
with gelatin to provide a biocompatible and anti-coagulative surface 
[88,224]. Liu et al. [225] constructed heparin/poly-L-lysine mixed NPs, 
and immobilized these NPs on a dopamine modified surface. They found 
that heparin modified surface could enhance biocompatibility, inhibit 
fibrin induced platelet adherence, and prolong thrombin time (TT) to 
23.7–27.9s. Moreover, LBL technology can be utilized to graft heparin 
on the graft surfaces [226]. Easton et al. [227] constructed a LBL 
coating, utilizing ploy (acrylic acid) and polyethyleneimine to immo-
bilized heparin on an electrospun nanofibrous scaffold, and the results 
indicated that the hemocompatibility of scaffold was enhanced. 

Some other anti-coagulation drugs can also be utilized, for example, 
clopidogrel, warfarin, t-PA [228]. The t-PA is the enzyme converting 
plasminogen to plasmin, inducing the fibrinolytic process [229]. Liu 
et al. [228] immobilized t-PA on electrospun PVA nanofibrous mats, 
aiming to mimic natural fibrinolysis function and prevent thrombus 
formation. Furthermore, Gastrodin, which is applied in cardiovascular 
diseases, can lower blood viscosity and regulate inflammation reactions. 
Zheng et al. [25] fabricated Gastrodin-loaded PU scaffolds, and found 
that the Gastrodin modified grafts showed greater potential in pre-
venting thrombogenesis and inflammations. 

Apart from surface modification and drugs, one novel nano-
composite has been indicated to possess the ability to prevent 

thrombogenesis and display ideal mechanical characteristics 
[230–232]. To inhibit thrombogenesis of PU vascular graft scaffolds and 
improve bistability of PU in vivo, Kannan et al. [233] attached poly-
hedral oligomeric silsesquioxane (POSS) nanoparticles into poly (car-
bonate urethane) (PCU) scaffold with covalent bonding and developed a 
new POSS-PCU nanocomposite biomaterial. This POSS-PCU nano-
composite can be developed into small-diameter vascular grafts with 
enhanced mechanical properties and hemocompatibility, free from 
adverse events like IH and calcification. 

For hydrophilic surface, it can reduce fibrin adherence and coagu-
lation cascades, but can also decrease EC adhesion. For heparin modi-
fication, the bioactivity and coating density are concerned. Hence, more 
studies are required to obtain ideal graft surface with reduced platelet 
and fibrin adherence and enhanced EC adhesion. 

4.2. Anti-IH for enhanced long-term lumen patency 

IH has high incidence in causing long-term vascular occlusion 
several months after implantation, which is caused by uncontrollable 
SMC pathological proliferation [234].ECs, serving as the paramount 
defender in vascularization, can release molecules for IH inhibition. 
Apart from promoting EC adhesion and activation, some drugs like E2F 
and MK2i also have potential in preventing IH by controlling SMC 
proliferation in a more direct way [235]. In clinic, E2F transcription 
factor was utilized to keep a 30 min lumen patency for the vascular 
tissue in vitro. But the clinical trial results indicated that E2F treated 
grafts in vitro failed to preventing IH via inhibiting proliferation of SMCs 
after implantation [236,237]. The p38 MAPK signaling pathway can 

Fig. 6. NO plays a crucial role in modulating endothelialization, thrombogenesis and IH. (A): The biological performance of NO. NO can be liberated by catalyzing 
NO donors, and play a role in vascularization, including inhibiting activation of thrombin, platelets, immune cells and proliferation of SMCs, as well as promoting 
proliferation and activation of ECs, relaxation and phenotype regulation of SMCs. (B–C): Fluorescence staining of ECs and SMCs 24h and 72h after in vitro culture. NO 
can promote EC proliferation (B) and inhibit SMC growth (C). (A) reproduced from Ref. [242], Research, CAST@ 2020. (B–C) reproduced from Ref. [249], Bio-
materials, Elsevier @ 2019. 
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play a role in activating proliferation of SMCs, and then induce the 
downstream inflammatory and fibrotic cascades in IH [238–240]. To 
prevent IH, Evans et al. [241] utilized MAKP inhibitory peptide (MK2i) 
and constructed MK2i NPs for graft modification to prevent uncontrol-
lable proliferation of SMCs. 

4.3. Role of NO in enhancing long-term lumen patency 

NO can play an important protective role in vasculature, and also 
play an effective role in influencing relevant physiological functions 
(Fig. 6A) [191]. In physiological environment, NO is secreted by endo-
thelial cells, which is synthesized through catalytic reactions in the 
presence of nitric oxide synthase (NOS) [242]. NO can inhibit the ag-
gregation and activation of platelets, to avoid thrombogenesis [243], 
restrain proliferation of SMCs, to avoid IH [242,244], as well as prohibit 
the recruitment and activation of inflammatory cells, to avoid inflam-
mation (Fig. 6A) [245]. Furthermore, NO plays a critical role in pro-
moting the growth of endothelial cells (Fig. 6A) [246]. Insufficient ECs 
lead to deficient NO release, which may then trigger pathological pro-
cess [247]. Hence, abundant NO release is required to enhance ECs 
growth, inhibit SMCs proliferation, and provide an appropriate envi-
ronment for endothelialization of vascular graft [248]. 

N-diazeniumdiolates (NONOates) and S-nitrosothiol (RSNOs) can 
serve as the potential NO donors to be applied in biomaterials. One mole 
of NONOate [− N(O) = NO− ] can be catalyzed to release 2 mol NO via the 
hydrolysis reactions in the physiological environment (temperature at 
37 ◦C, pH at 7.4) [250]. In RSNOs, thiols (-SH) can react with nitrous 
acid (HNO2) to release NO, generally under the catalysis of copper ion 
(Cu2+) [251,252]. Selenocystamine (SeCA), having glutathione peroxi-
dase (GPX)-like functions, is also a potential catalysts for NO synthesis 
by decomposition of RSNOs [249,253,254]. 

Multiple strategies have been utilized in vascular devices to catalyze 
NO generation, like selenocystamine (SeCA) [249,254], metal-phenolic 
surface [253], and copper ion (Cu2+) [242,255]. Qiu et al. [249] utilized 
SeCA coating to catalyze NO generation, and the results indicated that 
NO can promote EC proliferation and inhibit SMC growth (Fig. 6B and 
C). The amount of ECs on SeCA/heparin surface was about 1.5–2.0 folds 
more than that on naked surface, and EC migration distance and density 
was enhanced by 26% and 23%, respectively on SeCA/heparin 
compared with the naked one [249]. Nanoparticles (NPs) can serve as 
effective delivery vehicles for NO release. The better surface to volume 
rate can offer more chance for optimized quantity of NO donors. Tar-
geted NPs can deliver NO via altering surface chemical characteristic to 
regulate the localized areas [256]. Various NPs have been studied to 
serve as carriers for NO donors, including silica nanoparticles (SiNPs) 
[257–259], liposome nanoparticles [260,261], and metallic nano-
particles [255]. 

SiNPs are easily compounded in the nanoscale, and contain func-
tional groups like amine groups (-NH2) on the surface [262]. The 
amine-functionalized SiNPs were synthesized, with the size ranging 
from 20 to 500 nm, to serve as NO carriers via converting the –NH2 
groups into NONOates donors under high pressure of NO [262]. To 
promote the storage and releasing characteristics of NO, the synthesis of 
SiNPs following the preparation of NONOates modified aminosilanes 
was proposed by the same team [263]. Fumed silica (FS) particles can 
also serve as NO carrier, and can be embedded into polymers to control 
NO releasing [258]. Zhang et al. [259] synthesized FS particles 
(200–300 nm), with NONOates formed on the surface, and embedded 
within PU films as anti-thrombotic coating. 

Liposomes are competent carriers, owing to their efficient cell 
encapsulation ability [264]. The influence of hydrophobic liposomes 
and surface micelles on the NO releasing were studied. Dinh et al. [261] 
found that anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-(1-glycerol)] 
sodium salt (DPPG) liposomes possessed greater NO releasing catalysis 
efficiency than sodium dodecylsulfate (SDS) micelles. Dinh et al. [265] 
further explored the influence of unilamellar (anionic and cationic) 

phospholipid vesicles on dissociating NO from NONOates, and found 
that anionic liposome NPs showed an enhanced NO releasing. Ther-
mosensitive liposome NPs [266] and photo-sensitive NO donors [267] 
were also explored. 

Silica and liposome NPs described above can effectively load and 
liberate NO, but cannot deliver the gas to targeted tissues. Some metallic 
NPs are potential strategies to serve as loading vehicles for NO delivery 
to targeted tissues, including gold (Au) NPs [268–270], platinum (Pt) NP 
[271], silver (Ag) NPs [272–274]. Furthermore, metal organic frame-
works (MOFs), composed of metal ions as nodes and organic ligands as 
linkers, have been utilized to embed and release NO to promote 
re-endothelialization for vascular grafts [275]. Fan et al. [255] con-
structed nanoscale copper-based MOFs (Cu-MOFs), and proved that 
Cu-MOFs performed as heterogeneous catalysts for NO regeneration 
synthesized by endogenous RSNOs. Simultaneous delivery of NO and 
Cu2+ could restrain restenosis and enhance endothelialization syner-
gistically [275]. 

Moreover, NO gas can be combined with growth factor VEGF, and 
spontaneously released to promote endothelialization and inhibit 
thrombogenesis and IH [276]. Although multiple studies have proved 
the influence of NO in in vitro and in vivo experiments, no clinical trials in 
therapeutic effects of NO donors have been conducted. Furthermore, the 
therapeutic effects on diabetic wounds still need more concerns [193]. 

5. Immunomodulation in vascular graft development 

Inflammatory responses, induced by graft implantation, are crucial 
in modulating graft development. Molecules released from immune cells 
influence the biological behavior of ECs and SMCs, and thus modulating 
in situ endothelialization and lumen patency of vascular graft. 

5.1. Immunomodulation and in situ endothelialization 

Macrophages, as the key cells in innate immunity, can release mul-
tiple molecules modulating in situ endothelialization process [277,278]. 
It has been reported that TNF-α secreted by macrophages plays a role in 
regulating migration and differentiation of EPCs and graft development. 
TNF-α can induce the differentiation of EPCs through activating TNF-α 
receptor 1 and NF-κB signaling pathway [279]. Moreover, TNF-β1 can 
promote platelet mediated-EPC homing via integrin β3 on cell surface 
[280]. 

The polarization of macrophages can be controlled to regulate the 
inflammatory microenvironment. Classical macrophages (M1) may se-
cret inflammation cytokines, while alternatively induced macrophages 
(M2) tend to activate anti-inflammation molecules and enhance tissue 
repairment [281]. The acute inflammation responses can be modulated 
by lipid mediators which possess potential in anti-inflammation, like 
Resolvins [282,283]. Shi et al. [284] incorporated Aspirin-Triggered 
resolvin D1 (AT-RvD1) into electrospun PCL vascular graft, and 
demonstrated that the incorporation of AT-RvD1 enhanced vessel tube 
formation in vitro through M2 macrophage polarization. 

Inflammatory cells paly a complex role in regulating angiogenesis. 
VEGF-A is an important modulator in vascularization, and recently one 
subset type of neutrophils (which was shown as CD49d+VEGFR1-
highCXCR4high) were identified [285]. Massena et al. [285] demon-
strated that homing this subset neutrophils to hypoxia 
neovascularization site could promote angiogenesis. The interaction 
between angiogenic cells and inflammatory cells is still not completely 
clarified, which requires more further explorations. 

5.2. Immunomodulation and long-term lumen patency 

Inflammatory cells also play a role in modulating the long-term 
lumen patency after graft implantation, like IH and intima calcifica-
tion. Molecules secreted by macrophages and platelets, like TGF-β, cause 
enhanced migration and proliferation of SMC, and the unregulated SMC 
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proliferation and the inrush of macrophages are dominating factor 
leading to IH [286]. SMCs from anastomosed sites migrate towards in-
tima, and SMCs transform from the quiescent phenotype into the 
dedifferentiated, proliferative type, thus resulting in IH [287–289]. 

Macrophages are the predominant inflammatory cells targeting 
SMCs, and lead to the pathological proliferation of SMCs [290,291]. 
Thus, reducing IH via regulating macrophage behavior has attracted 
great attention. To attenuate chronic inflammation induced IH, Ding 
et al. [292] constructed resveratrol (RSV) modified carbon nanotube 
(CNT) coating for tissue engineered blood vessels. RSV has been re-
ported to inhibit inflammation process via inducing M2 macrophage 
polarization [293]. The RSV modified CNT can be utilized for macro-
phage intake, and released intracellularly, which effectively promoted 
transformation of M1 into M2 and prevented IH [292]. Yang et al. [294] 
modified a decellularized vascular graft with the rapamycin 
(RM)-blended electrospun PCL coating, and the results indicated that 
the RM-loaded graft could enhance M2 polarization, inhibit IH, and 
promote endothelialization. 

Inflammation is also the leading factor contributing to atheroscle-
rotic calcification [295]. Wei et al. [296] extracted small extracellular 
vesicles (sEVs) containing VEGF, miRNA126, and miRNA145 from MSC, 
and loaded sEVs on a heparinized electrospun PCL scaffold. Wei et al. 
[296] found that sEVs loaded graft exhibited immunomodulatory 
function, and induced the transition of M1 into M2, which effectively 
reduced graft calcification and enhance lumen patency for hyperlipid-
emia patients. 

Macrophages, the key cell in innate immune system, can polarize 
from M1 type to M2 type, which is induced by biomaterials, drugs or 
sEVs, to regulate behavior of ECs and SMCs, thus promote endothelial-
ization and inhibit IH and calcification (Fig. 7). NK cells also play a role 
in vascular remodeling. BALB/c mice lack in NK functions display 
distinctly less IH occurrence [297], but approaches to regulate NK cell 
functions using bioactive scaffolds have not been available. Generally, 
the role of complements and cytokines in innate immune system are 
understood. However, the performance of adaptive immune system, 
including T cells, B cells and mast cells, is not that clear. For better 
modulation of immune functions, more studies on regulation of adaptive 
immune cell behavior are required. 

6. Conclusions and further perspectives 

The challenges for in situ endothelailization and long-term patency of 
small-diameter vascular grafts still exist. ECs form the inner 

endothelium layer, which play a crucial role in maintaining vascular 
hemostasis and lumen patency, but homing and capture of EPCs and ECs 
for conventional graft is poor. Naked graft surface without lined EC layer 
is easy to be deposited with blood cells, fibronectin, and platelets, thus 
inducing coagulation cascades and thrombogenesis. Furthermore, un-
controllable proliferation of SMCs migrating to intimal layer may result 
in IH, and inflammatory cells also play a role in regulating biological 
behavior of ECs, EPCs, and SMCs. 

Multiple strategies can be adopted for enhanced in situ endothelial-
ization and long-term patency of vascular grafts (Fig. 8). Strategies for in 
situ endothelialization promotion, thrombogenesis and IH prevention, 
and immunomodulation in vascular graft remodeling are summarized as 
following.  

(1) Strategies for enhanced in situ endothelialization:  
1) Homing of EPCs: Chemokines aimed at ligands like CXC family 

and integrin family on EPC surface can be utilized for EPC 
homing. 

2) Migration and adhesion of EPCs and ECs: Nanofibrous struc-
ture, biocompatible surface for more binding sites like gelatin and 
cell-capturing molecules on graft surface including antibodies, 
specific peptides and aptamers can be applied for better cell 
adhesion.  

3) Proliferation and activation of EPCs and ECs: Topography of 
scaffold can regulate cell orientation, like aligned nanofibers, 
surface micro-/nano-patterns, and RGD patterns on surface. 
Growth factors, microRNAs and therapeutic genes can modulate 
cell bioactivity.  

(2) Strategies for long-term patency:  
1) Preventing thrombogenesis: Surface modification with heparin 

or hydrophilic polymers can inhibit activation and adhesion of 
platelets, as well as activate AT III, thus reduce thrombogenesis.  

2) Preventing IH: Some drugs releasing like MK2i can inhibit IH via 
inhibiting proliferation of SMCs.  

3) The role of NO: NO also plays a crucial role in vascular graft 
remodeling. NO is potential in inhibiting activation of thrombin, 
platelets, immune cells and proliferation of SMCs, as well as 
promoting proliferation and activation of ECs.  

(3) Strategies for modulating immunomodulation: 

Immunomodulation: Some drugs like AT-RvD1, RSV and RM pro-
mote M2 polarization, and exert influences on behavior of ECs and 
SMCs. sEVs can be utilized for M2 polarization and prevent calcification. 

Fig. 7. Macrophage performance in vascularization. Drugs or sEVs are utilized to promote the transition of M1 into M2 and regulate inflammation reactions for 
endothelialization enhancement, anti-IH and anti-calcification. 
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Multiple strategies have been explored to promote in situ endothe-
lialization, inhibit thrombogenesis and IH, but the approaches are 
limited to experimental researches. More researches concerning 
toxicity, mechanical properties, degradation rate and delivery efficiency 
should be considered and conducted for further application in clinics. 
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Development of an immunomodulatory biomaterial: using resolvin D1 to 
modulate inflammation, Biomaterials 53 (2015) 566–573, https://doi.org/ 
10.1016/j.biomaterials.2015.02.120. 

[283] M.C.P. Sok, M.C. Tria, C.E. Olingy, C.L. San Emeterio, E.A. Botchwey, Aspirin- 
Triggered Resolvin D1-modified materials promote the accumulation of pro- 
regenerative immune cell subsets and enhance vascular remodeling, Acta 
Biomater. 53 (2017) 109–122, https://doi.org/10.1016/j.actbio.2017.02.020. 

[284] J. Shi, X. Zhang, L. Jiang, L. Zhang, Y. Dong, A.C. Midgley, D. Kong, S. Wang, 
Regulation of the inflammatory response by vascular grafts modified with 
Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration, Acta 
Biomater. 97 (2019) 360–373, https://doi.org/10.1016/j.actbio.2019.07.037. 

[285] S. Massena, G. Christoffersson, E. Vågesjö, C. Seignez, K. Gustafsson, F. Binet, 
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