
ARTICLE OPEN

Prediction of non-muscle invasive bladder cancer recurrence
using machine learning of quantitative nuclear features
Naoto Tokuyama1, Akira Saito2,3, Ryu Muraoka1, Shuya Matsubara1, Takeshi Hashimoto1, Naoya Satake1, Jun Matsubayashi4,
Toshitaka Nagao4, Aashiq H. Mirza3,5, Hans-Peter Graf6, Eric Cosatto6, Chin-Lee Wu7, Masahiko Kuroda 2,3✉ and Yoshio Ohno1

© The Author(s) 2021

Non-muscle invasive bladder cancer (NMIBC) generally has a good prognosis; however, recurrence after transurethral resection
(TUR), the standard primary treatment, is a major problem. Clinical management after TUR has been based on risk classification
using clinicopathological factors, but these classifications are not complete. In this study, we attempted to predict early recurrence
of NMIBC based on machine learning of quantitative morphological features. In general, structural, cellular, and nuclear atypia are
evaluated to determine cancer atypia. However, since it is difficult to accurately quantify structural atypia from TUR specimens, in
this study, we used only nuclear atypia and analyzed it using feature extraction followed by classification using Support Vector
Machine and Random Forest machine learning algorithms. For the analysis, 125 patients diagnosed with NMIBC were used; data
from 95 patients were randomly selected for the training set, and data from 30 patients were randomly selected for the test set. The
results showed that the support vector machine-based model predicted recurrence within 2 years after TUR with a probability of
90% and the random forest-based model with probability of 86.7%. In the future, the system can be used to objectively predict
NMIBC recurrence after TUR.
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INTRODUCTION
Bladder cancer is the ninth common malignant tumor worldwide1;
it is clinically classified into non-muscle invasive bladder cancer
(NMIBC) and muscle invasive bladder cancer (MIBC). Approximately
70% of bladder cancers are reported to be NMIBC at the time of
initial diagnosis2. An important point is that the treatment strategy
depends on the presence or absence of muscle layer invasion.
Generally, NMIBC is considered to have a favorable prognosis.
However, the rate of intravesical recurrence of NMIBC after
transurethral resection of the bladder tumor (TURBT) is still as high
as 30–50%3. To reduce the recurrence risk, bacillus Calmette-Guerin
(BCG) therapy is recommended for high- and intermediate-risk
categories. However, since BCG therapy is often associated with side
effects such as hematuria, fever, and pain, its indications must be
fully considered4. Thus, accurate evaluation of the recurrence risk is
the most important factor in the management of NMIBC.
The current risk classification system provided by the American

Urological Association is widely used. This classification system
comprises clinical and pathological findings, such as the number
of tumors, tumor size, recurrence history, depth of invasion,
presence of carcinoma in situ, and tumor grade5. Other risk
classification systems, including those defined by the European
Association of Urology6, National Comprehensive Cancer
Network7, and the Spanish Urological Club for Oncological

Treatment8, comprise similar factors. However, even after using
these risk classifications, previous reports have shown that a large
number of patients relapse within 2 years after initial TURBT9,10.
Conventional risk classifications are not complete to predict
recurrence. Therefore, a novel risk assessment system from a new
perspective is necessary.
In this study, we developed a novel system that uses artificial

intelligence (AI) to determine the risk of recurrence. In particular,
in developing this system, we focused on the characteristics of
pathological specimens collected via TURBT. In other words, the
T stage classification necessary for risk determination is deter-
mined by the presence or absence of muscle layers and the depth
of invasion. However, these findings may not reflect the true
lesion because they are affected by the sampling conditions11.
Therefore, we deliberately did not capture information on
structural atypia and invasive morphology of cells from patholo-
gical images obtained from TURBT specimens but used only
information on cell nuclei, which is not affected by sampling
conditions. As a result, we succeeded in constructing a system
with very high prognostic accuracy only by extracting nuclear
atypia. We believe that the results of this study will be a great
asset for the extraction of nuclear atypia by AI using pathological
images. Furthermore, it is expected that this system will be used
for clinical applications in the future.
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MATERIALS AND METHODS
Patients
We studied 162 patients who underwent TURBT between January 2012
and December 2019 at the Tokyo Medical University Hospital, with the
approval of the hospital IRB (Institutional Review Board) based on the
Declaration of Helsinki (approval number: SH3853). All cases were
diagnosed as having NMIBC. They were stratified using the American
Urological Association (AUA) risk criteria5. Regarding the AUA guideline,
the high-risk cases were defined as tumors with HG (high grade)-pT1, HG-
pTa with tumor size >3 cm or multifocal, or any CIS. Intermediate risk cases
were defined as solitary tumors with LG (low grade)-Ta and tumor size >3
cm, multifocal tumors with LG-Ta, HG-Ta with tumor size ≤3 cm, or LG-T1.
Initial and solitary tumors with LG-pTa and tumor size ≤3 cm were
considered low-risk tumors. We defined standard treatment as TUR and
adjuvant BCG or intravesical chemotherapy according to AUA risk criteria.
We excluded Tis (carcinoma in situ) cases in this study because of the
difficulty of complete tumor resection in the first transurethral resection
(TUR) and the difference that BCG is performed therapeutic, not recurrence
prevention. In addition, patients with variant histology, who were not
followed for 2 years, who were diagnosed with intravesical recurrence after
nephroureterectomy for upper urinary tract cancer, who had immediate
total cystectomy after the first TURBT, who immediately received radiation
therapy or systemic chemotherapy after initial TURBT were excluded. As a
result, a total of 125 patients were finally included in this study. Recurrence
was confirmed only when any of the lesions were pathologically confirmed
as bladder cancer. Tumor was graded according to the 2016 World Health
Organization classifications and was staged based on the UICC TNM
classification 8th edition12,13.

Follow-up and treatment
At our hospital, cystoscopy and urinary cytology were performed every
3 months for the first 2 years, every 6 months for the following 2 years, and
once a year thereafter. All patients received immediate mitomycin C
therapy within 24 h after TURBT. We performed repeated TUR for T1 cases.
In patients with intermediate-risk or high-risk tumors, BCG therapy was
considered. For BCG therapy, either 80 or 81mg BCG was administered
(Tokyo or Connaught strain) and repeated once a week for 6 or 8
consecutive weeks. No patient was treated with BCG maintenance therapy
in the present study.

Whole-slide scanning and image processing techniques
All hematoxylin and eosin-stained slides of the initial TURBT tissues were
scanned at ×20 magnification using a whole-slide imaging scanner
(Nanozoomer 2.0-HT slide scanner; Hamamatsu Corp., Hamamatsu,
Shizuoka, Japan). On the scanned images, areas with viable tumor cells,
high tumor cellularity, no necrosis, and no cautery effect are designated as
regions of interest (ROI). One whole slide image size is ~1 GB. We manually
selected ROIs from each whole slide image. ROIs were selected manually

by a pathologist to identify the entire TURBT tissue tumor area without
artifacts. The average number of ROIs for each case was seven; we selected
at least 5 ROIs even in cases of small tumors, while in cases of large tumors,
we selected a maximum of 15 ROIs to cover the cancerous area. Each ROI
image size was 2048 × 2048 pixels, corresponding to 1 mm2.

Quantitative nuclear feature extraction and ROI feature
measurement
A nuclear extraction process was performed for each ROI (Fig. 1). As a
preparation step, the non-tumor area was manually masked. The computer
automatically extracted nuclei from each ROI image. This process for
nuclear extraction was performed using the free software program “Ilastik”
(https://www.ilastik.org). Subsequently, we created masked images of
nuclei inside area to prepare for measurements. A key step is to separate
touching nuclei to ensure that feature measurements are performed on
pixels belonging to a single nucleus. We created additional nuclei
segmentation mask from detection model for individual nuclei using
trained YOLO v3, a deep learning system useful for object detection14. This
new nucleus mask image overlays the original extracted nuclear image
(Fig. 1f), and a separate nucleus image is obtained (Fig. 1g). The process of
this model is shown in Supplementary Fig 1. The first mask image using
Ilastik focused on tracking the original contour line of the nucleus, even if it
is connected. Additional mask using YOLOv3 focused on making a slit from
independence of the nucleus. This double masking effectively extracted
each nucleus.
Subsequently, “CellProfiler” (https://cellprofiler.org) was used to measure

nuclear morphologic and texture features for each segmented nucleus.
The following CellProfiler Modules were employed: MeasureObjectsSize-
Shape, MesureTexture, and MeasureObjectRadialDistribution. Details of the
morphological features in CellProfiler can be found here: http://cellprofiler-
manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html. In addition, we
employed a method called cell feature level co-occurrence matrix (CFLCM),
which we previously reported15. CFLCM provides a way to evaluate the
heterogeneity and pleomorphism of nuclei across an ROI image based on
morphological and textural features of each nucleus. CFLCM features are
derived from Haralick texture features based on the gray-level co-
occurrence matrix.

Machine learning (ML) methods, training, and model test
We selected support vector machine (SVM) and random forest (RF) as ML
algorithms. Data were analyzed using the statistical software package R
version 3.6.1 (R Project for Statistical Computing; https://www.r-project.org).
We employed the package “e1071” on R to perform the SVM, and the
package “randomForest” on R to perform the RF analysis. We used ROI
features based on nuclear morphological information for machine learning
and created a prediction model. The primary outcome was recurrence within
2 years. We randomly selected the test set to be 25% of the total patients.
We used the average recurrence probabilities from each ROI, which were

Fig. 1 Extraction of nuclear morphological features. a Original hematoxylin and eosin-stained slide image. b Annotated region of interest
(2048 × 2048 pixels). c Removal of no cancer cell area. d Automatic extraction of nuclei by “Ilastik.” e Creation of a masked image from (d). f Mask
showing the inside of the nuclei area for measurements. g Separation of touching nuclei to precisely measure features for each nucleus.
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outputted by SVM and RF, as the case prediction result. The cases of
equivalent probabilities were determined as undecidable. Finally, we checked
the accuracy of correct classification in the test validation of the SVM model
and the RF model. In the RF algorithm, we concurrently confirmed the out-of-
bag error to evaluate the prediction performance of RF model.

RESULTS
Patients characteristics and nuclear extraction
Patients’ characteristics from the 125 cases are summarized in
Table 1. The median observation period was 73 (range 24–192)
months. Among the patients, 45 relapsed within 2 years after TUR,
and 80 did not. A total of 216 whole slide images were acquired
from all cases. Then, a total of 877 ROI images of the tumor area
were acquired from those cases. We have indicated some
examples of actual ROI images of each group in Fig. 2. Image
processing was performed (see the “Methods” section for details)
to extract quantitative nuclear features, and a total of 1008,502
nuclei were delineated.

Characteristics of nuclear morphological features
Then, we extracted 79 quantitative morphological features of each
identified nucleus using CellProfiler (https://cellprofiler.org). This
morphological information can be classified into two major
categories (Fig. 3). The first group comprises 27 features related
to the shape of the nucleus, such as size, contour length, major
axis length, roundness, solidity, and eccentricity. The other group
consisted of 52 intranuclear texture-related features (second
angular moment, homogeneity, entropy, etc.) (Supplementary
Table 1). From these 79 nuclear features, we obtained ROI features
using CFLCM and acquired a total of 960 features for each ROI.

SVM model predict recurrence
To create a recurrence prediction model using ROI features, we
employed the SVM as ML algorithm. The data set was randomly

divided into 95 training and 30 test cases; this is shown in Fig. 4.
Training cases were used to optimize the model, and test cases
were used to check the accuracy of the classification. Classifica-
tion of the ROI of each case into recurrence within 2 years and
no recurrence within 2 years using the SVM model training
showed an accuracy of 100% (Table 2a). The SVM model
classifier was verified using test sets; the accuracy of the correct
classification of the ROIs was 83.8% (Table 2b). Aggregating the
results of each ROI to the cases resulted in 90% probability of
correct classification (Table 2c). There were three incorrect
discriminations (Supplementary Table 2, test cases 17, 22, and
23) in the model test. One case of Rec (−) was undecidable. Two
cases of Rec (−) were incorrectly discriminated as Rec (+).
Supplementary Table 3 shows the top 20 morphological features
with high contributions to recurrence and non-recurrence in the
SVM model. The features with high weights contribute the most
to the classification.

RF model predict recurrence
We also implemented an analysis using another basic ML
algorithm, RF to investigate which type of ML algorithm was
optimal in this study. RF model training indicated an accuracy of
100% (Table 3a). We performed RF model verification using test
sets; the accuracy of correct ROI-based classification was 74.9%
(Table 3b). By contrast, the out-of-bag estimate of error rate was
15.6%, which indicated the validity of the RF model performance
to ROI discrimination (Supplementary Table 4). Aggregated case-
based classification resulted in 86.7% accuracy of correct
classification for the test set (Table 3c). There were four errors
(Supplementary Table 2, test cases 11, 17, 22, and 23) in the RF
model test. Four cases of Rec (−) were incorrectly discriminated
as Rec (+).
In ROI image classification, the accuracy was lower than that of

the SVM model. However, for case prediction, we confirmed a
comparable accuracy between the two prediction models.

Fig. 2 Some examples of the actual region of interest images. a Recurrence within 2 years, b no recurrence within 2 years. Recurrence
period (M: months) is indicated in the lower-left corner of the recurrence images. It is not easy to distinguish the difference in nuclear
morphology by visual inspection between two groups of histological images: recurrence and no recurrence.
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DISCUSSION
Currently, AI based on digital pathology images is being used for
diagnosis, morphological classification, and prognosis prediction
of various cancers16–18. We have also developed prognostic
systems for several cancers using ML and deep learning and have
confirmed their usefulness19,20. Although it is very promising to
create objective and accurate predictions from digital imaging
data in various cancers, no previous studies have used AI on
digital pathology images to predict the prognosis of NMIBC. The
presumed reason is that many pathological specimens of
bladder cancer are collected by TUR; specimens collected by
TUR are different from surgical materials, and the tissue is
significantly degenerated at the time of collection. In addition,

the fragmented nature of the specimens makes it difficult to
determine the structural atypia of the tumor. Therefore, in this
study, we attempted to predict the prognosis of tumors using
only nuclear morphological and textural information as an
unprecedented method. As a result, we constructed a new
classification system that does not depend on other clinical
information. This acquisition of nuclear features is expected to
significantly contribute to AI pathology in other carcinomas and
diseases in the future.
In this study, two standard ML algorithms, SVM and RF, were

evaluated to predict prognosis using only nuclear information. SVM
and RF are well suited when the sample size is relatively small.
We carefully avoided overfitting situations by using out-of-bag

Fig. 4 Data sets were divided into training and test sets. We randomly selected the 30 test sets to be ~25% of total cases. The vertical axis
showed the percentage of each group, and the horizontal axis showed the rate of training and test sets. Recurrence within 2 years: Rec (+)
was indicated by red, no recurrence within 2 years, and Rec (−) by blue.

Fig. 3 Illustration of the nucleus morphological features measured in this study. a Nucleus shape-related features: A, from the nucleus
contour line (green), we obtained the nucleus area, perimeter, and roundness (4*π*Area/Perimeter2); B, long- and short-axis length and ratio
(another measure of roundness); C, solidity (area/bounding-box size); D, orientation (angle between the long axis and horizontal axis); E,
average radius. b Nuclear texture-related features (second angular moment, homogeneity, entropy, etc.) that indicate the texture of chromatin
measured using the gray level co-occurrence matrix method with Haralick texture features, from which our cell feature level co-occurrence
matrix features are derived.
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evaluation. We found that both SVM and RF models were able to
classify a test set as either recurring within 2 years or not recurring
within 2 years with significant accuracy. Interestingly, most of the
errors were misclassified by both SVM and RF models. The
misclassification was that a patient with Rec (−) was judged as
Rec (+) (Supplementary Table 2, test cases 11, 17, 22, and 23). In
fact, three of these patients had recurrence 3 years after TUR. In
addition, one case recurred at 41 months after the first TUR. These
results indicate that AI can accurately predict early recurrence by
using a large number of features, even with only morphological
and textural information of nuclear atypia. The fact that the SVM
and RF models yielded similar results suggests that the morpho-
logical information of nuclear atypia is highly discriminative.
This model will be a new minimally invasive prediction model

that provides information from the aspect of cancer morphol-
ogy, which is completely different from the conventional risk
classification (Supplementary Fig. 2). A weakness of the current
risk classification is the heterogeneity of tumors belonging to
intermediate-risk categories21. We believe that this analysis of
nuclear features can be used as an auxiliary tool to improve the
current risk classification. In the future, we need to investigate
how other morphological information can be processed to

improve the accuracy of AI-based prognostic prediction or how
the number of cases can be increased to improve the accuracy.
In addition, to avoid selection bias, it would be ideal to construct
an automatic acquisition of ROIs for total slide images.
As another limitation, to avoid bias, we did not include cases
that received BCG maintenance therapy which significantly
reduce recurrence rates. This might limit the generalizability of
the results. However, the results indicate reasonable accuracy
for recurrence prediction from the initial TUR tissue image.
Henceforth, this method is expected to be applied to predict
progression to muscle-invasive diseases, efficacy of intravesical
injection therapy, and long-term prognosis.
In conclusion, our study demonstrated the usefulness of

quantitative nuclear morphological information of cancer cells

Table 1. Patient characteristics.

Characteristics Total
N= 125

Recurrence
within 2-years
N= 45

Recurrence
free within
2-years N= 80

Age
(median, range)

71 (29–94) 73.5 (49–94) 70 (29–93)

Sex (male), n% 91 (73%) 37 (82%) 54 (68%)

Gradea

Low grade 51 14 37

High grade 74 31 43

T stage

a 65 22 43

1 60 23 37

Tumor number

1 75 24 51

2 21 7 14

>3 29 14 15

Tumor size (cm)

<3 103 38 65

>3 22 7 15

CIS

− 112 40 72

+ 13 5 8

Tumor shape

Papillary 115 41 74

Non-papillary 10 4 6

BCG

− 59 24 35

+ 66 21 45

AUA risk stratification

Low 31 10 21

Intermediate 29 9 20

High 65 26 39

CIS carcinoma in situ, BCG bacillus Calmette-Guerin, AUA American
Urological Association.
aWHO 2016 classifications.

Table 2. Results of support vector machine (SVM) model validation in
test cases.

Prediction

Rec (+) Rec (−) Total

(a) Trainig set result

Accuracy: 100%

Truth Rec (+) 328 0 328

Rec (−) 0 370 370

Total 328 370 698

(b) Test set prediction result (ROI based)

Accuracy: 83.8%

Truth Rec (+) 72 10 82

Rec (−) 19 78 97

Total 91 88 179

(c) Test set prediction result (case based)

Accuracy: 90%

Truth Rec (+) 12 0 12

Rec (−) 3 15 18

Total 15 15 30

Rec recurrence within 2-years, ROI region of interest.

Table 3. Results of random forest (RF) model validation in test cases.

Prediction

Rec (+) Rec (−) Total

(a) Trainig set result

Accuracy: 100%

Truth Rec (+) 328 0 328

Rec (−) 0 370 370

Total 328 370 698

(b) Test set prediction result (ROI based)

Accuracy: 74.9%

Truth Rec (+) 66 16 82

Rec (−) 29 68 97

Total 95 84 179

(c) Test set prediction result (case based)

Accuracy: 86.7%

Truth Rec (+) 12 0 12

Rec (−) 4 14 18

Total 16 14 30

Rec recurrence within 2-years, ROI region of interest.
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obtained using digital pathologic analysis in NMIBC patients,
which we used to develop a novel recurrence risk prediction
model. This model must contribute to the future development of
ML models in NMIBC.
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