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Genome-Wide Association Analysis of Imputed Rare Variants:
Application to Seven Common Complex Diseases

Reedik Mägi,1 Jennifer L. Asimit,2 Aaron G. Day-Williams,2 Eleftheria Zeggini,2 and Andrew P. Morris3∗

1Estonian Genome Centre, University of Tartu, Tartu, Estonia
2Wellcome Trust Sanger Institute, Hinxton, United Kingdom

3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human
traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which
together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component
of complex traits can thus be attributed to rare variation. However, genome-wide association study genotyping chips have
been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants.
Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome-wide genotype data
up to high-density reference panels has the potential to identify rare variant associations with complex traits, without the
need for costly re-sequencing experiments. By application of this approach to genome-wide association studies of seven
common complex diseases, imputed up to publicly available reference panels, we identify genome-wide significant evidence
of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility
complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome-wide association studies have the
potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to
substantial advancements in our understanding of the genetic architecture underlying complex human traits. Genet. Epidemiol.
36:785–796, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

There has been much recent debate as to the role of rare ge-
netic variation, defined here to have a minor allele frequency
(MAF) of less than 1%, in explaining the ‘missing heritabil-
ity’ of complex traits [Dickson et al., 2010; Frazer et al., 2009;
Yang et al., 2010]. Rare variants are likely to have originated
from founder effects in the last 20 generations, and thus are
more likely to be population specific [Bodmer and Bonilla,
2008]. They are also likely to have larger effects on complex
traits than common variants, consistent with the expecta-
tion that they will have been subject to purifying selection
after recent expansion of the human population [Pritchard,
2001]. However, these effects are unlikely to be sufficiently
large to be detected through association testing with indi-
vidual rare variants. Statistical methods have thus focussed
on the aggregation of the effects of all rare variants within
the same exon, gene or pathway, potentially weighting ac-
cording to annotation or MAF [Han and Pan, 2010; Hoffman
et al., 2010; Li et al., 2010; Li and Leal, 2008; Madsen and
Browning, 2009; Morgenthaler and Thilly, 2007; Morris and

Zeggini, 2010; Neale et al., 2011; Price et al., 2010; Wu et al.,
2011; Zawistowski et al., 2010]. Using these methods, mul-
tiple rare variants have been demonstrated to be associated
with a variety of complex traits including low- and high-
density lipoprotein [Cohen et al., 2006; Romeo et al., 2007],
body mass index [Ahituv et al., 2007] and blood pressure [Ji
et al., 2008].

The most comprehensive approach to characterising the
contribution of rare variants to the genetic component
of complex traits is through large-scale, next-generation
re-sequencing studies [Metzker, 2010]. Despite improve-
ments in the throughput and efficiency of these technolo-
gies, rare variant re-sequencing efforts on the scale of the
whole genome still represent an infeasible financial un-
dertaking for most research groups. Consequently, most
rare variant studies have focussed on candidate genes,
or more recently, the exome [Ng et al., 2010]. However,
high-density reference panels obtained from whole-genome
re-sequencing data are being released through the 1000
Genomes Project, providing a comprehensive catalogue
of variation with MAF as low as 0.5%, as well as many
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rarer variants, across a wide range of populations from
different ethnic groups [The 1000 Genomes Project Con-
sortium, 2010]. Such reference panels could be utilised to
select rare variants for large-scale genotyping with custom
designed arrays, potentially with priority given to variants
with likely functional consequences in an effort to reduce
costs, such as the Illumina Infinium HumanExome Bead-
Chip. Conversely, genome-wide association study (GWAS)
genotyping products have been designed primarily to cap-
ture common genetic variation, and thus offer poor cover-
age of rare variants [Barrett and Cardon, 2006]. However,
if samples have already been assayed by means of such a
GWAS chip, imputation techniques [Marchini and Howie,
2010] can make use of this existing scaffold to predict geno-
types at variants present on the higher density reference
panel, incurring no additional cost, other than computation,
although this is far from trivial.

Here, we formulate methodology for the detection of
complex trait association with accumulations of minor alle-
les within genes, or some other functional unit, using data
from directly typed and/or imputed rare variants. We re-
port the results of simulations to investigate the power of
alternative design strategies for assaying and characterising
rare genetic variation to detect association with a quantita-
tive trait in a 50 kb gene. Our study considers a simple model
of rare variant association with the trait, and assesses the im-
pact on power of the number of individuals present in the
reference panel. We also present results of an application
of our methodology to rare variant association analysis of
seven common complex diseases undertaken by the Well-
come Trust Case Control Consortium (WTCCC) [The Well-
come Trust Case Control Consortium, 2007], using GWAS
data imputed up to the Phase I 1000 Genomes Project refer-
ence panel (June 2011 interim release) [The 1000 Genomes
Project Consortium, 2010].

METHODS

MODEL FORMULATION
We test for association of a complex trait with accumula-

tions of minor alleles at N rare variants, here defined to have
MAF less than 1%, within the same exon, gene or some other
functional unit, in a sample of unrelated individuals. Let ni
denote the number of rare variants at which the ith individ-
ual has been successfully genotyped in the functional unit.
Furthermore, let Gij denote the genotype of this individual
at the jth rare variant, coded as 0 for the common homozy-
gote, and 1 otherwise. We can model the phenotype, yi, of
this individual in a generalised linear regression framework
as a function of the proportion of rare variants at which they
carry at least one minor allele [Morris and Zeggini, 2010],
given by

�i =
N∑

j=1

Gi j/ni .

Specifically, E(yi ) = g−1(� + ��i ), where g is the link func-
tion and � is the expected increase in the phenotype for an
individual carrying a full complement of minor alleles at
rare variants in the functional unit compared to an individ-
ual carry none. It follows that �/N is the increase in the
expected phenotype of an individual for each rare variant
at which they carry a minor allele. The likelihood contribu-

tion of the ith individual, f (yi |�, �, �i ), is weighted by ni
to allow for differential call rates between samples. We can
thus construct a likelihood ratio test by comparing the max-
imised weighted likelihoods of two models via analysis of
deviance: (i) the null model where � = 0; and (ii) the alterna-
tive model for which � is unconstrained. The resulting test
statistic has an approximate � 2 distribution with one degree
of freedom. The flexibility of the generalised linear regres-
sion framework allows for generalisation of this approach
to take account of non-genetic risk factors as covariates.

It is straightforward to accommodate imputed rare vari-
ants in the functional unit within the generalised linear
regression framework by considering the posterior distri-
bution of genotype calls. Specifically, we replace missing
genotypes (at typed variants, or at untyped variants in the
imputation reference panel) by their expectation, E(Gij) =
1 – hij, where hij is the posterior probability of a common
homozygote call in the ith individual at the jth rare vari-
ant. The posterior probabilities, hij, of imputed genotype
calls are easily recovered from standard imputation soft-
ware such as IMPUTEv2 [Howie et al., 2009] and BEAGLE
[Browning and Browning, 2009].

The methodology described above has been implemented
in the GRANVIL software, and is freely available for down-
load (http://www.well.ox.ac.uk/GRANVIL). The open-
source software has been designed to efficiently handle
analysis of directly genotyped and imputed rare variants
on a genome-wide scale, and can accommodate both quan-
titative traits and binary phenotypes in a generalised linear
modelling framework, as described above. The user sup-
plies a file containing the boundaries of each functional
unit to be analysed, together with SNPTEST format sam-
ple and genotype files, and specifies the rare variant MAF
threshold. GRANVIL is distributed with scripts to generate
graphical summaries of GWAS rare variant analysis results,
including quantile-quantile and Manhattan plots.

SIMULATION STUDY
We have performed simulations to evaluate the relative

performance of different design strategies to identify quan-
titative trait association with rare variants in a 50 kb gene.
We have considered an analysis cohort of 2,000 individuals,
and a reference panel ascertained from the same population.
We have compared the power of GRANVIL in the following
scenarios: (i) direct re-sequencing of the analysis cohort; (ii)
direct genotyping of the analysis cohort for all rare variants
present in the reference panel; (iii) direct genotyping of the
analysis cohort for variants on a GWAS chip with the same
characteristics as the Illumina Human660W-Quad BeadAr-
ray in terms of density and MAF; and (iv) direct genotyping
of the analysis cohort for variants on the GWAS chip, sup-
plemented with imputation of untyped variants present in
the reference panel using IMPUTEv2 [Howie et al., 2009].

We have considered a simple underlying model for the
association of the trait with multiple rare causal variants
within the same gene. We assumed that the expected trait
value of each individual is increased by the presence of
a minor allele at any causal variant. The trait association
model was then parameterised in terms of: (i) the maxi-
mum MAF, �, of any individual causal variant; (ii) the total
MAF, Q, of all causal variants in the region; and (iii) their
joint contribution to the overall trait variance, expressed
as 100�%. Here, we considered reference panels of R =
120, R = 500 and R = 4,000 individuals. The number of

Genet. Epidemiol.



Analysis of Imputed Rare Variants 787

individuals was chosen to represent a range of reference
panels incorporating those available from the 1000 Genomes
Project (pilot release), through to those we might expect
from future large-scale deep re-sequencing efforts, such as
the UK10K initiative (http://www.uk10k.org/). For each
model, we generated 500 replicates of data as follows.

(1) Generate an ancestral recombination graph [Griffiths
and Marjoram, 2007] for a population of 40,000 haplo-
types from a realisation of the coalescent process with
recombination, obtained using the MS software [Hud-
son, 2002]. We assumed a mutation rate of 10−8 per base
(in each generation) and a uniform recombination rate
of 1 cM per Mb, for an effective population size of 10,000
individuals. In total, we simulated a region of 1,050 kb,
including a 50 kb gene and 500 kb up- and down-stream
to allow for an imputation buffer to improve accuracy
by avoiding edge effects and taking advantage of the
expected long-range linkage disequilibrium (LD) with
rare variants [The International HapMap Consortium,
2007].

(2) Calculate the MAF at each variant across the 50 kb gene
in the population of 40,000 chromosomes, denoted by
qj for the jth variant. Select a variant as causal from
amongst those with MAF qj < �, at random. Continue
selecting causal variants in this way, without replace-
ment, until the total MAF of all causal variants is Q.

(3) Select a random sample of 4,000 chromosomes from the
population, paired together to form the analysis cohort.
Determine the number of minor alleles carried by the ith
individual across all causal variants in the 50 kb gene,
denoted by mi. The phenotype, yi, of the ith individual
is then simulated from a Gaussian N(�i,	) distribution,
where 	 is determined by the spectrum of causal vari-
ants and their joint contribution, �, to the overall trait
variance, and �i = 1 if mi > 0, and 0 otherwise. Full
details of the derivation of the residual trait variance,
	2, are provided in the Appendix.

(4) Select a random sample of 2R chromosomes from the
remainder of the population to be haplotypes in the
reference panel. Assuming no genotyping or phasing
errors in the reference panel, record the haplotype of
each of these chromosomes across all variants in the
1,050 kb region.

(5) Begin by considering the strategy in which the analysis
cohort has been directly re-sequenced in the 50 kb gene.
Assuming no sequencing errors, record the genotype of
each individual at each variant with MAF < 1% in the
analysis cohort. Test for association of the quantitative
trait with an accumulation of minor alleles at these vari-
ants using GRANVIL, and record the P-value, denoted
by pSEQ.

(6) Then consider the scenario in which the analysis cohort
has been directly genotyped for all variants in the 50
kb gene which are present in the reference panel. As-
suming no genotyping errors, record the genotype of
each individual at each variant present in the reference
panel with MAF < 1% in the analysis cohort. Test for
association of the quantitative trait with an accumula-
tion of minor alleles at these variants using GRANVIL,
and record the P-value, denoted by pGEN.

(7) Next consider the scenario in which the analysis co-
hort has been directly genotyped only for variants on
a GWAS chip. Select a random 1,050 kb region of the
genome, and determine the number of variants, nGWAS,

present on the Illumina Human660W-Quad BeadArray
in that interval. Select nGWAS variants at random and
without replacement, with ascertainment probability

j = 4q j (1 − q j )/T , as present on the chip, where T =∑

j q j (1 − q j ). This probability density incorporates the
strong bias towards common variants on GWAS chips,
generating an approximately uniform distribution of
MAF [Anderson et al., 2008]. Assuming no genotyping
errors, record the genotype of each individual at each
variant within the 50 kb gene with MAF < 1% in the
analysis cohort. Test for association of the quantitative
trait with an accumulation of minor alleles at these vari-
ants using GRANVIL, and record the P-value, denoted
by pGWAS.

(8) Finally, consider the scenario in which the analysis co-
hort has been directly genotyped only for variants on
the GWAS chip, but are subsequently supplemented
with imputation of untyped variants present in the ref-
erence panel. Assuming no genotyping errors, record
the genotype of each individual at each variant across
the 1,050 kb region, irrespective of MAF. Impute the
genotype of each individual in the analysis cohort at
each variant present in the reference panel in the 50 kb
gene using IMPUTEv2 [Howie et al., 2009], assuming
an effective population size of 10,000 individuals and a
buffer region of 500 kb. Test for association of the quan-
titative trait with an accumulation of minor alleles at
directly genotyped and imputed variants within the 50
kb gene with MAF < 1% in the analysis cohort and ‘info
score’ greater than 0.4 using GRANVIL, and record the
P-value, denoted by pIMP.

Over all simulated data sets, we calculated the power
of each design strategy at a nominal 5% significance level
as the proportion of replicates for which the correspond-
ing P-value is less than 0.05. We also calculated the mean
numbers of rare variants in the 50 kb gene: (i) in the popu-
lation of 40,000 chromosomes; (ii) identified through direct
re-sequencing of the analysis cohort; (iii) present on the ref-
erence panel and identified through direct genotyping of the
analysis cohort; (iv) present on the GWAS chip; (v) present
on the reference panel and well imputed (info score greater
than 0.4) in the analysis cohort.

One potential limitation of our simulation study is the
assumption of no sequencing errors, perfect phasing of the
reference panel, and no missing or miscalled genotypes.
These errors might be expected to be most detrimental to our
proposed imputation strategy since this process requires
an accurate GWAS scaffold and phased reference panel. To
address this issue, we have also performed simulations to
assess the robustness of our results to re-sequencing errors
and missing or miscalled genotypes. We introduced a sim-
ple model of errors [Hao et al., 2004] by randomly swapping
the base call (ancestral or mutant) of each individual at each
variant with probability ε. Here, we considered ε = 0% (no
errors), ε = 0.1% (error rate of ∼0.2% in genotype calls)
and ε = 0.2% (error rate of ∼0.4% in genotype calls). We
evaluated the impact of call rate by removing genotypes,
at random, with probability �, where here we considered
� = 0% (no missing genotype data) and � = 1%. Errors
were introduced first into the reference panel (Step 4), and
then into the analysis cohort (Steps 5, 6, 7 and 8). Missing
genotype data were then introduced at random (Steps 6,
7 and 8).
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788 Mägi et al.

APPLICATION TO IMPUTED RARE VARIANT
GWAS OF SEVEN COMMON COMPLEX
DISEASES

We considered 14,000 cases of seven common complex
diseases (bipolar disorder, coronary artery disease, Crohn’s
disease, hypertension, rheumatoid arthritis, type 1 diabetes
and type 2 diabetes) and 3,000 shared controls from the
WTCCC [The Wellcome Trust Case Control Consortium,
2007]. Samples were ascertained from the United King-
dom and genotyped using the Affymetrix GeneChip 500K
Mapping Array Set, which incorporates 500,568 single nu-
cleotide polymorphisms (SNPs) genome-wide. We utilised
the same quality control (QC) filters employed by the
WTCCC to exclude samples and SNPs from the analysis,
full details of which are presented in the description of the
experiment [The Wellcome Trust Case Control Consortium,
2007]. In brief, samples were excluded on the basis of low
call rate, outlying genome-wide heterozygosity, discrepan-
cies in WTCCC and external identifying information, non-
European ancestry, duplication and apparent relatedness.
SNPs were excluded on the basis of low call rate, extreme
deviation from Hardy-Weinberg equilibrium (HWE), dif-
ferential allele or genotype frequencies between the two
control cohorts and manual visual inspection of genotype
calls in cluster plots.

To allow for fine-scale population structure, which may
have greater impact on rare variant association signals than
common SNPs because of recent founder effects [Bodmer
and Bonilla, 2008], we constructed principal components to
represent axes of genetic variation within the UK. We ap-
plied EIGENSTRAT [Price et al., 2006] to a subset of high-
quality LD-pruned SNPs (r2 < 0.2) with MAF of at least 5%,
and projected samples onto principal components demon-
strating clear separation between 12 UK regions of residence
[The Wellcome Trust Case Control Consortium, 2007].

We imputed the high-quality samples up to the Phase I
1000 Genomes Project reference panel (June 2011 interim
release) consisting of 1,094 phased individuals from mul-
tiple ancestry groups [The 1000 Genomes Project Consor-
tium, 2010]. We removed SNPs with MAF < 1% from
the GWAS scaffold, prior to imputation, since we expect
these variants are likely to be subject to higher geno-
typing errors, which may impact the downstream analy-
sis. We performed imputation using IMPUTEv2 [Howie
et al., 2009] with default parameter settings and sample
pre-phasing, allowing a buffer region of 500 kb. Subse-
quently, we tested for association of each disease with ‘high-
quality’ rare variants (MAF less than 1%, and IMPUTEv2
info score greater than 0.4) within genes using GRANVIL,
adjusting for principal components as covariates to account
for fine-scale UK population structure. Gene boundaries
were defined from the UCSC human genome database
(build 37).

RESULTS

SIMULATION STUDY
Figure 1 presents the power, at a nominal significance

level of P < 0.05, to detect association with a quantitative
trait, for each of the design strategies for assaying rare ge-
netic variation in the gene. For these results, we assumed
that multiple rare causal variants in the gene jointly con-

tribute to 5% of the overall trait variation. The panels cor-
respond to two specific trait association models: (A) the
maximum MAF of any individual causal variant is 1%,
and the total MAF of all causal variants is 5%; and (B)
the maximum MAF of any individual causal variant is
0.5%, and the total MAF of all causal variants is 2%. Un-
der the second of these models, we expect fewer rare vari-
ants within the gene to be causal, since the total MAF is
lower. A higher proportion of non-causal variants within
the gene would be expected to reduce power overall, ir-
respective of the design strategy and/or the number of
individuals in the reference panel [Morris and Zeggini,
2010].

Our results highlight a number of general conclusions
across these trait association models. As expected, the most
powerful strategy to detect rare variant association is to re-
sequence the analysis cohort. In the absence of sequencing
errors, this ‘gold-standard’ strategy provides complete cov-
erage of rare genetic variation in the gene within the analysis
cohort. Nevertheless, genotyping the analysis cohort for all
rare variants present in the reference panel generally results
in a relatively small reduction of power, particularly for R
= 4,000. We expect most of the rare variation in the analysis
cohort to be captured by such large reference panels (Sup-
porting Information Figure S1). Rare variants not captured
by the reference panel (e.g., private mutations) are less likely
to have a major impact on the joint contribution of causal
variation in the gene under our simulation model, and thus
would not be expected to lead to a dramatic reduction in
power.

As previously reported [Morris and Zeggini, 2010], geno-
typing of the analysis cohort with the GWAS chip alone
has minimal power to detect association because very few
rare variants within the gene are assayed directly (Support-
ing Information Figure S1). However, imputation into this
GWAS scaffold in the analysis cohort up to the density of
the reference panel can lead to substantial gains in power to
detect rare variant association within the gene. The extent
of the increase in power depends crucially on the number of
individuals in the reference panel, although the gains from R
= 500 to R = 4,000 are not as great as from R = 120 to R = 500,
particularly for an association model incorporating causal
variants with MAF up to 1% (Figure 1). Reference panels
with more individuals provide more comprehensive cover-
age of rare variation in the region (Supporting Information
Figure S1), higher quality imputation, and thus greater im-
provements in power. Note that the relative power of im-
putation appears lower under trait association model (A),
where the maximum MAF of any causal variant is lower
than under model (B). This is not unexpected since the dis-
tribution of causal allele frequencies will be more skewed
to the rarest variants under this model, which we anticipate
to be most difficult to impute, irrespective of the size of the
reference panel.

We also considered the impact of sequencing errors
and missing and/or miscalled genotypes on the power
of the four alternative strategies. As expected, the power
of all strategies is decreased as the error rates and
the frequency of missing genotypes increase (Support-
ing Information Figure S2). However, we are still able
to recover much of the power of the gold-standard re-
sequencing strategy through imputation of the analysis
cohort from the GWAS scaffold, and we maintain con-
siderable advantages over genotyping of the GWAS chip
alone.
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Fig. 1. Power, at a nominal significance level of P < 0.05, to detect association of an accumulation of minor alleles with a quantitative trait,
for different strategies for assaying rare genetic variation in a 50 kb gene, as a function of the size of the reference panel. Multiple causal
variants in the gene contribute jointly to 5% of the overall trait variation. The panels correspond to two specific trait association models:
(A) the maximum MAF of any individual causal variant is 1%, and the total MAF of all causal variants is 5%; and (B) the maximum MAF
of any individual causal variant is 0.5%, and the total MAF of all causal variants is 2%.

APPLICATION TO IMPUTED RARE VARIANT
GWAS OF SEVEN COMMON COMPLEX
DISEASES

A total of 13,241 cases and 2,938 controls from the WTCCC
experiment passed sample QC filters (Supporting Infor-
mation Table S1). Of the autosomal variants on the array,
456,868 passed SNP QC filters. We then applied EIGEN-
STRAT to an LD-pruned (r2 > 0.2) set of 27,770 high-quality
autosomal SNPs with MAF > 5% to construct 10 axes of
genetic variation of UK population structure. By projecting
samples onto the corresponding principal components, we
observed that the first three axes of genetic variation were
strongly associated with the region of residence of sam-
ples (Figure 2). The first principal component separated
London and Scotland from the remainder of the United
Kingdom, whilst the second and third principal compo-
nents separated regions within the United Kingdom on a

North-West to South-East axis. These three principal com-
ponents were thus selected for adjustment of downstream
association analyses to allow for fine-scale UK population
structure.

After removal of variants with MAF < 1%, a total of
391,060 high-quality SNPs remained in the GWAS scaffold.
A total of 8,239,134 rare variants were successfully imputed
up to the Phase I 1000 Genomes Project reference panel
(June 2011 interim release) [The 1000 Genomes Project Con-
sortium, 2010] and were polymorphic in the WTCCC exper-
iment. Of these, 5,383,228 (65.3%) had IMPUTEv2 info score
of at least 0.4. Amongst these ‘well-imputed’ rare variants,
the mean info score was 0.618, and 17.3% had info score
greater than 0.8.

Figure 3 presents Manhattan plots to summarise the asso-
ciation of each disease with accumulations of minor alleles
at well-imputed rare variants within genes, after correction
for the three axes of genetic variation as covariates in the
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Fig. 2. Principal components representing axes of genetic variation demonstrating clear separation between 12 UK regions of residence.
Each point represents the mean projection of samples from each UK region onto the first three axes of genetic variation.

logistic regression model. In these Manhattan plots, each
point represents a gene (as defined by the UCSC human
genome database), and those achieving genome-wide sig-
nificance (Bonferroni correction for 30,000 genes, P < 1.7 ×
10−6) are highlighted in red. There was no evidence of resid-
ual population structure, not accounted for by the three axes
of genetic variation, with genomic control inflation factors
[Devlin and Roeder, 1999] less than one for all seven diseases
(Supporting Information Figure S3).

We observed genome-wide significant evidence of asso-
ciation of coronary artery disease with rare variants in the
gene PRDM10 (P = 4.9 × 10–8). The gene contained 122 well-
imputed rare variants with mean MAF of 0.23%. Accumula-
tions of minor alleles across these variants were associated
with decreased risk of disease: odds ratio 0.828 (0.774–0.886)
per minor allele. We also observed 10 genes with genome-
wide significant evidence of rare variant association with
type 1 diabetes, all located within the major histocompati-
bility complex (MHC) (Table I and Figure 4). The strongest
signal of association was observed for HLA-DRA (P = 2.0 ×
10−13), which has been previously implicated in susceptibil-
ity to type 1 diabetes [Nejentsev et al., 2007]. Accumulations
of minor alleles at rare variants in nine of the MHC genes
were associated with reduced risk of type 1 diabetes (Table
I). The only gene demonstrating evidence of association of
accumulations of minor alleles with increased risk of type 1
diabetes was TNXA, with odds ratio 2.346 (1.772–3.107) per
minor allele.

Common SNPs in the MHC have been previously associ-
ated with the disease [Barrett et al., 2009; The Wellcome Trust
Case Control Consortium, 2007], although fine-mapping of

the underlying causal variant(s) has been hindered by the
extensive LD across the region. We thus repeated our anal-
yses in this region, testing for association of type 1 diabetes
with rare variants within MHC genes after adjustment for
the lead GWAS SNP (rs9268645) [Barrett et al., 2009], with
genotypes coded by the number of minor alleles, included
as an additional covariate in the logistic regression model
(Table I and Figure 4). The common SNP could not fully ex-
plain rare variant associations of type 1 diabetes with any of
the MHC genes, but dramatically reduced significance with
TNXA (P = 2.6 × 10−9 before adjustment; P = 2.4 × 10−4

after adjustment). After adjustment, three additional MHC
genes achieved genome-wide significant evidence of rare
variant association with type 1 diabetes: HLA-DMA (P =
1.1 × 10−7), SKIV2L (P = 2.6 × 10−7) and TNXB (P = 4.1 ×
10−7).

DISCUSSION

GWAS has been extremely successful in identifying ge-
netic loci contributing effects to a wide range of complex
human traits [Hindorff et al., 2009] including diseases such
as type 2 diabetes [Voight et al., 2010] and Crohn’s disease
[Franke et al., 2010], and quantitative phenotypes such as
body mass index [Speliotes et al., 2010] and height [Lango
Allen et al., 2010]. However, despite the success of this ap-
proach, much of the genetic component of these traits re-
mains, as yet, unexplained [Manolio et al., 2009]. Most of
the confirmed associations within these loci are with com-
mon variants, of modest effect, which well-designed GWAS

Genet. Epidemiol.
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Fig. 3. Manhattan plots summarising association of seven diseases from the WTCCC experiment with accumulations of well-imputed
rare variants (MAF < 1% and info score of at least 0.4) within genes (as defined by the UCSC human genome database). Each point
represents a gene, plotted according to the observed −log10 P-value of association (y-axis) and the physical position of the midpoint of
the transcript (x-axis), with those achieving genome-wide significance (P < 1.7 × 10−6) highlighted in red.

is adequately powered to detect. It has thus been suggested
that much of the ‘missing heritability’ of complex human
traits can be attributed to rare genetic variation [Bansal et al.,
2010], which is not well captured by GWAS genotyping
products. The most comprehensive approach to assaying

rare genetic variation is through large-scale next-generation
re-sequencing experiments. However, despite advances in
the cost-effectiveness of these technologies, whole-genome
re-sequencing of the large cohorts of individuals re-
quired to detect rare variant association with complex traits,
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ment for most research groups.
We demonstrate here, by simulation, that imputation

from an existing scaffold of GWAS genotype data using pub-
licly available high-density reference panels, such as those
made available through the 1000 Genomes Project [The 1000
Genomes Project Consortium, 2010], has the potential to
identify rare variant associations with complex traits, with-
out the need for costly re-sequencing experiments. These re-
sults are entirely consistent with other published simulation
studies investigating the performance of rare variant asso-
ciation methodology using imputation up to re-sequencing
data, either from an external reference panel [Li et al., 2010],
or from a subset of the analysis cohort [Zawistowski et al.,
2010]. Overall, our results suggest that a reference panel of
4,000 individuals offers noticeable gains in power over 500
individuals only when the spectrum of causal variants is
loaded with rarer variants (i.e. in our simulations, when the
maximum MAF of any individual causal variant is 0.5%,
rather than 1%). In this scenario, imputation of the anal-
ysis cohort from the GWAS scaffold can achieve much of
the power to detect rare variant association obtained by the
gold-standard re-sequencing strategy. Our simulations as-
sumed a GWAS scaffold with the same characteristics, in
terms of allele frequency profile and density, as the Illu-
mina Human660W-Quad BeadArray. We would expect the
quality of imputed rare variants to be improved with more
dense GWAS scaffolds, such as the Illumina HumanOmni5-
Quad, although this evaluation is beyond the scope of this
study.

We have considered a relatively simple underlying model
for the association of the trait with multiple rare variants
within the gene. More complex models might incorporate
selection and/or different directions of effect of the causal
variants on the trait. However, at present, we do not fully
appreciate the likely effect of rare variants within a gene
or pathway on complex human traits, although it is clear
that the true underlying association model will impact the
power of GRANVIL. Nevertheless, it is less obvious that
the underlying association model will impact the relative
performance of GRANVIL applied to rare variation derived
from imputation as compared to that assayed through re-
sequencing.

Our simulation study assumes that the analysis co-
hort and reference panel are ascertained from the same
population, and thus are perfectly matched in terms of their
rare variant profile. However, with publicly available refer-
ence panels, this is unlikely to be the case. Indeed, the Phase
I 1000 Genomes Project reference panel (June 2011 interim
release) consists of phased individuals from multiple pop-
ulations that together incorporate a wide range of ancestry
groups [The 1000 Genomes Project Consortium, 2010]. One
cost-efficient approach to address this issue is to consider
re-sequencing a small number of individuals from the anal-
ysis cohort to supplement the reference panel. This strategy
has been successfully applied in identifying association of
a population-specific imputed rare variant with sick sinus
syndrome in Iceland [Holm et al., 2011].

Our simulation study also assumes that all rare causal
variants in the gene have the same impact on the trait, for
example, that they all result in loss-of-function of the gene
product. The GRANVIL software makes the same under-
lying assumption, and hence power to detect rare variant
association will be maximised. Under alternative models of
rare variant association with the trait, which consider causal
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Fig. 4. Regional plots summarising association of type 1 diabetes with accumulations of well-imputed rare variants (MAF < 1% and
info score of at least 0.4) within MHC genes (as defined by the UCSC human genome database). Each point represents a gene, and those
achieving genome-wide significance (P < 1.7 × 10−6) are highlighted in red. The panels correspond to analyses (A) before and (B) after
adjustment for the lead common GWAS SNP (rs9268645) in the region.

variants within the gene to result in both loss- and gain-
of-function of the gene product, the power of GRANVIL
will be reduced for all design strategies. For these models,
powerful methods exist for detecting association with rare
genetic variation [Asimit et al., 2012; Neale et al., 2011; Wu
et al., 2011]. Many of these methods, such as C-alpha [Neale
et al., 2011], require direct genotype calls. These approaches
could make use of ‘best guess’ genotypes from imputation,
although further development is required to appropriately
allow for the posterior distribution of calls for imputed
variants.

The encouraging results of our simulation study
prompted us to re-assess the evidence of rare variant as-
sociation with seven diseases from the WTCCC experi-
ment [The Wellcome Trust Case Control Consortium, 2007].
We were able to recover genotypes at more than 5 mil-
lion ‘high-quality’ imputed rare variants, even with the
Affymetrix GeneChip 500K Mapping Array Set as a scaf-
fold, which would not be expected to capture variation as
well as more recent higher density genotyping products.
Principal components analysis identified three axes of ge-
netic variation that capture fine-scale population structure

within the United Kingdom. After adjustment for these
three components as covariates in our logistic regression
modelling, there was no discernable residual inflation in
rare variant association statistics, indicating that any ad-
ditional fine-scale population structure had no impact on
our analysis. We identified association of coronary artery
disease with accumulations of minor alleles at rare vari-
ants in PRDM10 at genome-wide significance. This gene
has not been previously implicated in susceptibility to coro-
nary artery disease or related cardio-metabolic phenotypes,
and this association signals warrant follow-up in indepen-
dent cohorts, either through genotyping of rare variants in
the gene or re-sequencing. We also identified genome-wide
significant evidence of association of type 1 diabetes with
accumulations of minor alleles at rare variants in multiple
genes from the MHC. This region has been previously asso-
ciated with type 1 diabetes, both through common variant
GWAS and analysis of classical human leukocyte antigen
(HLA) haplotypes. Further work is required to dissect the
complex genetic contribution of common and rare variation
in this region to susceptibility to type 1 diabetes and other
autoimmune disorders.
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The results of our analyses presented here have major im-
plications for the design and analysis of genome-wide rare
variant association studies of complex human traits. Our
results clearly highlight the potential for the detection of
rare variant associations by using existing GWAS genotype
data, supplemented with imputation from publicly avail-
able high-density reference panels, without the need for
costly whole-genome re-sequencing experiments. Although
imputation can never replace the gold-standard approach of
whole-genome re-sequencing, it provides a powerful, cost-
effective alternative that only requires a scaffold of GWAS
genotype data, which may already be available. This mes-
sage will bring encouragement to research groups who do
not have sufficient funding to consider whole-genome, or
even whole-exome sequencing as a financially viable ap-
proach to assaying rare genetic variation. It is clear that
GWAS still have the potential to offer an exciting opportu-
nity for gene discovery, conceivably leading to substantial
advancements in our understanding of the genetic architec-
ture underlying complex human traits.
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Jula A, Kajantie E, Kilpeläinen TO, Koiranen M, Kolcic I, Koskinen
S, Kovacs P, Laitinen J, Liu J, Lokki ML, Marusic A, Maschio A,
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Greenawalt DM, Groves CJ, Gudnason V, Guiducci C, Hartikainen
AL, Hassanali N, Hall AS, Havulinna AS, Hayward C, Heath AC,
Hengstenberg C, Hicks AA, Hinney A, Hofman A, Homuth G, Hui
J, Igl W, Iribarren C, Isomaa B, Jacobs KB, Jarick I, Jewell E, John U,
Jørgensen T, Jousilahti P, Jula A, Kaakinen M, Kajantie E, Kaplan LM,

Genet. Epidemiol.
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APPENDIX: CALCULATION OF THE
RESIDUAL TRAIT VARIANCE

Determine the number of minor alleles carried by the
ith individual in the analysis cohort across all causal
variants in the 50 kb gene, denoted mi. The expected trait
value for the ith individual, denoted by �i, takes the value
1 if mi > 0, and 0 otherwise. Assuming an analysis co-
hort of N individuals, the mean expected trait value is
given by

M =
N∑

i=1

�i

N

with corresponding genetic variance given by

VG =
N∑

i=1

(�i − M)2

N
.

Assuming that the rare causal variants explain 100�% of
the overall trait variance, it follows that the residual variance
is given by

	2 = VG
(1 − �)

�
.
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