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Abstract: Breathing frequency (fB) is an important vital sign that—if appropriately monitored—may
help to predict clinical adverse events. Inertial sensors open the door to the development of
low-cost, wearable, and easy-to-use breathing-monitoring systems. The present paper proposes
a new posture-independent processing algorithm for breath-by-breath extraction of breathing
temporal parameters from chest-wall inclination change signals measured using inertial measurement
units. An important step of the processing algorithm is dimension reduction (DR) that allows the
extraction of a single respiratory signal starting from 4-component quaternion data. Three different
DR methods are proposed and compared in terms of accuracy of breathing temporal parameter
estimation, in a group of healthy subjects, considering different breathing patterns and different
postures; optoelectronic plethysmography was used as reference system. In this study, we found
that the method based on PCA-fusion of the four quaternion components provided the best fB

estimation performance in terms of mean absolute errors (<2 breaths/min), correlation (r > 0.963)
and Bland–Altman Analysis, outperforming the other two methods, based on the selection of a
single quaternion component, identified on the basis of spectral analysis; particularly, in supine
position, results provided by PCA-based method were even better than those obtained with
the ideal quaternion component, determined a posteriori as the one providing the minimum
estimation error. The proposed algorithm and system were able to successfully reconstruct the
respiration-induced movement, and to accurately determine the respiratory rate in an automatic,
position-independent manner.

Keywords: principal component analysis; biomedical signal processing; wearable biomedical sensors;
wireless sensor network; respiratory monitoring; optoelectronic plethysmography

1. Introduction

Continuous monitoring of respiratory parameters such as breathing frequency (fB), inspiratory
time (TI) and expiratory time (TE) could foster early diagnosis of a wide range of respiratory disorders
and help to track a patient’s condition, discriminating between stable and at-risk patients [1,2].
Conditions of interest could be sleep breathing disorders, sudden infant death syndrome, chronic
obstructive pulmonary disease (COPD) and neuromuscular disorders. The current gold standard for
measuring fB is to count the number of breaths in one minute, through auscultation or observation [3,4].
Other methods for breathing function assessment currently used in clinical practice are spirometry or
pneumotachograph based on airflow measurement by using mouthpiece or facemask. In overnight
polysomnography, breathing activity is assessed both by measuring respiratory flow, through pressure
transducer or thermistors near the nostrils, and respiratory efforts (breathing-derived chest-wall
movements), by strain-gauge belts. Also, exhaled carbon dioxide sensors, transthoracic inductance and
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impedance plethysmography and ECG—or PPG—derived fB have been used to measure breathing
signal. Despite their accuracy, these methods are uncomfortable and intrusive, and are not suitable for
continuous monitoring in the clinical environment and at home. An emerging area of interest is to
use motion sensors to detect the small breathing-derived movements/orientation changes of the chest
wall. This method is particularly suitable for long-term breathing monitoring because it is unobtrusive,
tolerable, and low-cost. The principle was first presented with a single-axis accelerometer in animal
model (dog) using a pressure transducer in the trachea as reference [5]. Starting from this point,
a variety of studies demonstrated the feasibility of using one accelerometer placed on the chest wall to
derive respiratory signal and/or breathing frequency in different positions [6–14]. Morillo et al. [8]
combined a piezoelectric single-axis accelerometer and a polarized capacitive microphone placed on
the suprasternal notch to collect information of the cardiac, respiratory, and snoring activities for the
screening of patients affected by Sleep Apnea-Hypopnea Syndrome. Measurements were limited to the
supine position, that was selected to increase the sensitivity of the single-axis accelerometer, limiting
the generality of the findings. The analysis method was based on the estimation of breathing frequency
through the identification of the peak of the spectrum or autocorrelation; the main limitation of this
approach is that, when the breathing is irregular, a main peak may not exist, and individual breaths
must be identified and counted. Hung et al. [7] moved from single-axis to biaxial accelerometers.
The aim of their study was to evaluate the reliability of the device in terms of detection of the onsets of
expiration and expiration, and to assess the feasibility of differentiating between different breathing
patterns (normal breathing, apnea, deep breathing). The signals from both axes (anteroposterior and
longitudinal) of the accelerometer were summed, limiting the analysis to the sagittal plane, in sitting
and lying positions. An adaptive band-pass filter was applied with a variable passband centered at the
detected dominant breathing frequency.

As emerged by these studies, single or dual-axis accelerometers can be used to derive breathing
signal when appropriately aligned with the major axis of rotation, which changes when the subject
move from a posture to another. Contrarily, the use of a tri-axial accelerometer allows measuring
inclination changes due to breathing regardless of orientation. In this case, the problem lies in the
identification of the accelerometer axis to consider when posture changes. Bates et al. [13] proposed
a method to track the major axis of rotation as it changes, to continuously monitor angular motion
due to breathing also when subject change position/orientation. An alternative possibility to the
best axis selection is fusing the axes. Jin et al. [12] proposed a posture-independent signal processing
method based on three possible algorithms for accelerometer axes fusion. They demonstrated that
methods based on Principal Component Analysis (PCA) obtained the highest performance in terms of
Signal-to-Noise Ratio (SNR), but no results were provided about breathing rate estimation or validation
against a reference method.

With the entry of tri-axial accelerometers new opportunities opened for the monitoring of
breathing frequency using inertial sensors, but their use was still confined to static conditions since,
when the subject is moving, the degree of the movement-related signal would exceed that due to
breathing. One possible approach is to identify non-breathing motion, as proposed by Bates et al [13].
In a successive study, Mann et al. [11] furtherly developed the method proposed by Bates et al. [13],
by adding activity tracking, and allowing identification of asymmetric breaths, that was not possible
in the original method. An attempt to remove motion artifacts by using signal processing was made
by Liu et al. [14]. They proposed an elegant method based on PCA-fusion of the three axes of
an accelerometer and on filtering of the first principal component by using an adaptive filter that
varied according to the energy expenditure derived by the same accelerometer. To overcome the
problems of using a single accelerometer in dynamic conditions, a possibility is to fuse data from
accelerometers and from other sensors, such as gyroscopes. Yoon et al. [15] investigated the feasibility
of measuring breathing-related motions also during dynamic activities of the subject, by fusing data
from a tri-axial accelerometer and a gyroscope and applying Kalman filter. They found that, during
dynamic exercises, fusion of accelerometer and gyroscope data provided benefits in terms of reduction
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of estimation error. Gollee et al. used a more complex system, an inertial measurement unit (IMU)
fusing accelerometer, gyroscope and magnetometer but considered only static conditions [16]. Another
approach to overcome the problems related to motion artefacts is modularity. Lapi et al. [17] tried to
overcome limitations deriving from the use of a single accelerometer by proposing a system based on
a couple of 3-axis accelerometers placed bilaterally on the chest. Using two accelerometers permitted
to detect respiration-related chest-wall movements regardless of sensor positioning with respect to the
gravity vector; secondly, the breathing frequency can be obtained even when one of the two sensors is
silenced by postural constraints. Recently, Gaidhani at al. [18] proposed a method that uses two IMUs
composed by a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, placed on the
anterior and posterior side of the chest to decompose the motions experienced by the two IMUs into
trunk movements and breathing actions. This paper presents an automatic processing algorithm
to derive breathing frequency and other breathing temporal parameters from quaternion-based
orientation signals recorded simultaneously at thoracic and abdominal level by using a modular,
wireless, IMU-based device [19]. An important step of the processing algorithm is dimension reduction
(DR) that allows the extraction of a single respiratory signal starting from 4-component quaternion data.
Three different methods of DR are proposed and compared; two of them are based on the selection
of one quaternion component, the third one is based on PCA-fusion of the 4 quaternion components.
Results obtained using the IMU-based device, with the three different methods, are validated against
optoelectronic plethysmography, an already established method to evaluate ventilation through an
external measurement of the chest-wall surface motion [20–25].

2. Materials and Methods

2.1. Device Architecture and Hardware Description

The system used in this study is composed by three IMU-sensor units that communicate via
Bluetooth with a smartphone; here data are pre-processed and saved. Two of the three sensor units
(peripheral units) are dedicated to the recording of chest-wall respiratory-related movements and
are placed on the thorax and on the abdomen to record respiratory information about both the
compartments; the third sensor unit (reference central unit) is placed on a body area that is integral
with the chest wall, but not involved in respiratory movements (e.g., coccyx or anterior superior
iliac crest). The measurement of chest-wall movements, related to both abdominal and thoracic
compartments, allows the consideration of the two-degree-of-freedom (DoF) model of chest-wall
breathing movements [26], that considers abdomen and rib cage (thorax) as acting independently.
Moreover, the compartmental contribution to total chest-wall volume changes according to posture
and the breathing strategy adopted by each subject. Thus, the recording of chest-wall movements
at different levels provides on the one hand, a more accurate estimation of the breathing signal, and
on the other hand allows investigation of asynchronies between compartments, typical of different
pathological conditions. The reference central unit, in addition to performing a central role within the
Bluetooth piconet, can be used to discriminate between static and dynamic conditions and to map the
activity state of the subject. Moreover, it could be used to reduce movement information not linked to
breathing by means of frequency domain analysis or by referring orientation change experienced by
the peripheral units to the coordinate frame of the reference unit. Each unit is composed by a printed
circuit board equipped with a low-power microcontroller, a Bluetooth Low Energy (BLE) module,
a 9-DoF IMU (3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer) and lithium
polymer rechargeable battery. A voltage regulator circuit, and Li–Po battery recharge circuit with mini
USB port are also included in the design. Differently from the peripheral units, the reference central
unit is equipped with a different BLE module, able to support simultaneous central/peripheral role
and also brings a Micro Secure Digital (SD) Memory Card Connector for data logging. The dimensions of
each peripheral unit, comprehensive of the 3D-printed housing, are 41 mm × 33 mm× 19 mm (LWH),
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and the weight is 25 g, including the battery, while the reference central unit measures 45 mm× 45 mm×
15 mm (LWH), and weighs 35 g. A prototypal version of this device has been described in [19].

2.2. Quaternion-Based Orientation Estimation and Fusion Algorithm

The final goal is to derive breathing signal by measuring orientation changes during the respiratory
movements, both at thoracic and abdominal level. The IMUs provide 3D-acceleration, 3D-magnetic
field, and 3D-angular rate. These measures are combined to provide accurate 3D orientation data
aboard each unit. The orientation is represented with quaternions [27,28], that even though may suffer
from problems of interpretation in terms of meaningfully physical angles, are interesting mathematical
entities (four-dimensional complex number (q = [q0 q1 q2 q3]), since they require less computing time
and avoid the singularity problems (i.e., “gimbal lock”) typical of other orientation descriptors, e.g.,
Euler angles. The fusion of the data collected from the sensors is done by using the sensor fusion
algorithm proposed by Madgwick et al. [29], based on an analytically derived and optimized gradient
descent algorithm enabling levels of accuracy exceeding that of the Kalman-based algorithm, with
low computational (277 scalar arithmetic operations each filter update) load and low sampling rates
(e.g., 10 Hz); this orientation filter also provides an online magnetic distortion compensation algorithm
and gyroscope bias drift compensation. The sensors data were collected at 40 Hz and the fusion
algorithm was updated with the same rate, but due to limited buffer of the BLE module and to the
stricter timings used for the Bluetooth communication, just one quaternion out of 4 computed is
considered (10 Hz); nevertheless, the final sampling rate was considered appropriate given the relative
low frequency of the respiratory signal [0.1 ÷ 1 Hz]. Thus, the microprocessor of each unit, receives
data from accelerometer, gyroscope and magnetometer that are on board and implements Madgwick
fusion filter [29] to compute a quaternion representing the change of orientation of each unit relative to
the earth frame ( Th

Earthq̂, Ab
Earthq̂, Re f

Earthq̂), or more correctly the change of orientation of the earth relative
to each unit frame [29]. In fact, in quaternion form, an arbitrary orientation of a coordinate frame B
relative to coordinate frame A, achieved through a rotation of angle θ around an axis Ar (rx, ry, rz) defined
in frame A, is univocally represented through the normalized quaternion A

B q̂ defined by Equation (1):

A
B q̂ =

[
q0 q1 q2 q3

]
=

[
cos

θ

2
− rx sin

θ

2
− ry sin

θ

2
rz sin

θ

2

]
(1)

2.3. Quaternion-Derived Breathing Frequency

All the elaborations and computations needed to extract breathing parameters from data
collected by the device were performed offline using MATLAB, the processing took on average
1.027 ± 0.129 seconds for the analysis of signals of 1071 ± 270 samples. A signal processing procedure
was designed to extract the breathing frequency starting from quaternions representing the change
of orientation of each unit relative to the earth frame ( Th

Earthq̂, Ab
Earthq̂, Re f

Earthq̂). The block diagram of
the signal processing part is presented in Figure 1. The algorithm is divided into 4 main blocks:
(i) pre-processing, (ii) DR, (iii) spectrum analysis, and (iv) processing.

Pre-processing block includes the preliminary steps that leads to chest-wall respiratory-related
orientation change signals. The orientations changes of thoracic and abdominal units were referred to
the reference unit frame (that in turn represents orientation changes of trunk) applying Equations (2)
and (3) respectively:

Th
Re f q̂ = Th

Earth q̂
⊗ Re f

Earth q̂∗ = Th
Earth q̂

⊗ Earth
Re f q̂, (2)

Ab
Re f q̂ = Ab

Earthq̂
⊗ Re f

Earth q̂∗ = Ab
Earthq̂

⊗ Earth
Re f q̂, (3)

These two quaternions represent the outputs of the pre-processing block and the input of the
DR block.
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Figure 1. Block Diagram of the Analysis algorithm that allows derivation of breathing temporal
parameters (fB. TI, TE) from quaternion-based orientation change signals recorded on Thorax, Abdomen
and Reference point.

Dimension-reduction block takes the quaternions obtained from Equations (2) and (3), that
are composed by 4 components each, and provides as output 2 single-component signals (1 for the
abdomen and 1 for the thorax) representing chest-wall respiratory-related orientation change signals.
These two signals represent the input of the power spectrum block and of the processing block.
To reduce dimension from 4 components to 1, two possibilities were investigated as shown in Figure 2:

(i). Best quaternion component selection
(ii). PCA-based fusion of the quaternion components

To select the best component among the 4 components representing the orientation quaternion,
two different methods were proposed, both based on spectrum analysis. The idea was to choose the
component with the highest breathing information, computing the power spectral density estimate
(PSD) between 0.5–2 Hz for each component and selecting the component with: (1) maximum PSD
peak (“Peak” method) or (2) maximum area under the PSD (“Area” method). To assess the goodness
of these two methods in predicting the best quaternion component, the ideal component (“Ideal”) was
determined a posteriori, case by case, based on minimum breathing frequency estimation error (see
Section 2.5).

Since more than one quaternion component is supposed to convey breathing information, the
possibility to maximize this information fusing the 4 components of the quaternion by means of PCA
was investigated. PCA is a mathematical procedure that transforms an original set of correlated
variables into a (smaller) number of uncorrelated variables by determining a set of orthogonal vectors
called principal components, which are defined by a linear combination of the original variables [30,31].
To do this, the directions in the data with the most variation, i.e., the eigenvectors corresponding to
the largest eigenvalues of the covariance matrix, are computed and the data are projected onto these
directions. To compute the eigenvectors, data were arranged into a two-dimensional matrix X(m × n),
where m was the number of observations of the time series and n the number of variables (quaternion
components). Then, the univariate means were subtracted from the n columns, to center the data.
Singular Value Decomposition (SVD) was used to compute the eigenvectors (V = [v1, v2, v3, v4]) and
corresponding eigenvalues (λ1, λ2, λ3, λ4). Original data were finally projected in the new coordinate
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system (Y = XV) and the first principal component, accounting for the largest possible variance, was
selected and passed to other blocks [30,31].
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Figure 2. Dimension-reduction block in detail. Starting from the 4 components [q0, q1, q2, q3] of each
quaternion (Abdominal: Ab and Thoracic: Th), three methods are applied to obtain a single-component
signal: two methods based on best quaternion component selection (“Area” and “Peak”) and one
method based on the fusion of the 4 components through Principal Component Analysis (PCA). “Area”
method selects the quaternion component with the larger area under the Power Spectral Density
(PSD) estimate, while “Peak” method selects the quaternion component with the highest PSD’s peak.
PCA-fusion method selects the first principal component (PC_1) that accounts for the largest variance
in the data.

Spectrum Analysis block include a set of steps needed to optimize the subsequent processing
phase. The two signals representing chest-wall (abdominal and thoracic) respiratory-related orientation
obtained downstream of the dimension-reduction block underwent the following steps (Figure 1):

(i). A low-frequency threshold (fLOW) was determined based on a first estimate of the breathing
frequency (fB). The rough estimate of fB was done by identifying maxima points of the signal and
computing the fB, breath by breath, as reciprocal of the temporal distance between consecutive
maxima points. Then, the mean (fB_Rough) and the standard deviation (fB_Rough_SD) of the fB

over the entire trial were computed. To facilitate maxima points identification, signals were
at first band-bass filtered using a first-order infinite impulse response (IIR) Butterworth filter
[0.05 Hz–2 Hz] and smoothed with a third-order Savitzky–Golay [32] finite impulse response (FIR)
filter (fixed window length = 31 samples). Low thresholds fLOWAb and fLOWTh were determined
for the abdominal and thoracic signals respectively as difference fB_Rough − fB_Rough_SD. Then
the minimum value between fLOWAb and fLOWTh was chosen as final low-frequency threshold,
named fLOW, and it was used in the next step.

(ii). PSD estimate (Welch’s method, Hamming window size: 300 samples, overlapping: 50 samples)
was computed and the spectrum frequency corresponding to the breathing rate was identified,
both for the thorax (fpeak_T) and the abdomen (fpeak_A), by looking for the local peak of the PSD
within the window [fLOW ÷ 2 Hz]. The use of a low threshold, based on a rough estimate of the
breathing frequency, supports the selection of the PSD peak linked to breathing rate and avoid
selecting wrong peaks, often related to low-frequency oscillation artifacts.
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(iii). The breathing frequency derived by the spectrum was used to set an adaptive band-pass filter,
as proposed in a previous study [7], centered on fpeak frequency. For the abdomen, upper (fU) and
lower (fL) cut-off frequency points for the band-pass filter were defined, by applying Equations (4)
and (5) respectively [7]:

fU_A = fpeak_A + 0.04, (4)

fL_A = max (0.05, (fpeak_A − 0.04)), (5)

For the thorax, Equations (6) and (7) were applied:

fU_T = fpeak_T + 0.04, (6)

fL_T = max (0.05, (fpeak_T − 0.04)), (7)

Moreover, based on fpeak, a set of parameters was selected to optimize subsequent smoothing and
minima/maxima detection phases of the processing block.

Processing block includes all the steps needed to extract breathing frequency and temporal
parameters from the signals obtained downstream of the dimension-reduction block. Chest-wall
respiratory-related orientation change signals (abdominal and thoracic) underwent the following steps:

(i). Adaptive band-pass filter. The signals were band-pass filtered (first-order IIR Butterworth filter),
with fU and fL cut-off frequency points determined within the spectrum analysis block.

(ii). Smoothing. Filtered signals were furtherly smoothed (third-order Savitzky–Golay FIR filter)
to simplify subsequent identification of maxima and minima points. The level of smoothing
(window length) was automatically selected based on fpeak, i.e., increasing window length for
decreasing fpeak. Relation between optimal window length values and fpeak values has been
determined empirically.

(iii). Minima and maxima points detection. A set of optimized parameters (i.e., minimum peak
distance (MPD) and minimum prominence threshold (MPT)) was automatically selected based
on fpeak to optimize recognition of minima and maxima points of the smoothed signals. Optimal
MPD and MPT values depending on fpeak were experimentally determined.

(iv). Breathing frequency extraction. Breath by breath, inspiratory time (TI) was computed as the
temporal distance between a minimum point (mi) and the consecutive maximum point (Mi);
Expiratory time (TE) was computed as the temporal distance between the maximum point (Mi)
and the consecutive minimum point (mi + 1); total time (TTOT) was computed as TTOT = TI + TE

[s], duty cycle (DC) was computed as TI
TTOT
× 100 [%] and breathing frequency was computed

as 60
(TTOT)

[breaths/minute]. A mean value for each of the above-mentioned parameter was
computed for each trial (~3 min).

2.4. Experimental Setup

To evaluate the capability of the device and of the proposed methods to correctly estimate
breathing frequency (and temporal parameters) 8 healthy volunteers (4 males, 4 females) were enrolled.
All subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol (Project identification
code n◦ 534) was approved by the Ethics Committee of Scientific Institute IRCCS Medea (date of
approval: 25 January 2018). Chest-wall movements during breathing, in seated and supine position,
were measured using the proposed device and optoelectronic plethysmography (OEP) simultaneously.
OEP [21] is a technique based on a similar functioning principle of the proposed device; in fact, it allows
assessment of ventilatory and breathing pattern by measuring chest-wall movements related to
breathing, by using motion capture principles. The system is composed of eight infrared video cameras
working at a sampling rate of 60 Hz. It can compute the 3D coordinates of retro-reflective markers
positioned on the chest wall in specific anatomic points. From the three-dimensional coordinates of
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the markers, it is possible to obtain the volume enclosed by the chest-wall surface, by applying the
Gauss’s theorem. The chest wall is modelled by a bicompartmental model, composed of rib cage and
abdomen, and thus it is possible to investigate the contribution of both the compartments. This is
an advantage for the validation of the proposed device, in fact, using OEP as reference method it is
possible to compare the data recorded with the thoracic and abdominal units of the device with those
obtained by using OEP for the thoracic and abdominal compartments, respectively. OEP has been
widely validated against spirometer, in healthy subjects, in different conditions and positions, also
during submaximal and maximal exercise on cycle ergometer, obtaining discrepancies in tidal volume
measurements always <5% [22–24,33,34].

The subjects were prepared, placing the reflective markers according to the 89-marker protocol
(previously described in [24,35]) used for seated position and the 52-marker protocol (previously
described in [36,37]) used for supine position or, more generally, when a back support is present. Then
peripheral IMU-units were placed on the thorax and on the abdomen, while reference IMU-unit was
placed on the coccyx in seated position, and on the bed in supine position (Figure 3).
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Figure 3. Experimental setup. Retroreflective-marker configuration for optoelectronic plethysmography
(OEP) and IMU-unit (Ab: Abdomen, Th: Thorax, Ref: Reference) placement in supine (A and B panels)
and seated (C and D panels) positions. Panel E shows the experimental setup and the OEP Lab; Infrared
cameras of the motion capture system are also noticeable.

Subjects were then asked to seat or lie on a bed and were invited to perform a slow vital capacity
maneuver (SVC) and then to start breathing with the following patterns: (I) quiet breathing (QB), (II)
increasing fB but same tidal volume of QB (↑fB, VT=), (III) increasing fB and reducing tidal volume (↑fB,
VT↓), (IV) decreasing fB with the same tidal volume of QB (↓fB, VT=), (V) decreasing fB increasing tidal
volume of QB (↓fB, VT↑). QB trial was repeated two times, thus, each subject performed 6 trials of the
duration of 3 min each. The SVC maneuver was used to align OEP signal and device signals during
data analysis, since it is generally recognizable with respect to QB. In fact, SVC requires a maximal
inspiration followed by a complete expiration without forced or rapid effort.
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The subjects were asked to maintain the same breathing pattern (namely, QB, ↑fB, VT=, ↑fB, VT↓,
↓fB, VT=, ↓fB, VT↑) until the end of the trial; in case of fatigue they were asked to perform a second
SVC before returning to QB. This procedure was repeated in seated position and in supine position.

2.5. Statistical Analysis

For each trial, mean values of fB, TI, TE and DC were extracted from the best quaternion
components identified online by using “Area” and “Peak” methods, and from the signal obtained with
the PCA-based fusion method, both for the thoracic and abdominal tracings. Moreover, to evaluate
the performance of the selection methods (“Area” and “Peak”) and their ability to select the best
component, the same parameters were obtained for all the quaternion components (q0, q1, q2, q3) and
compared with those obtained by OEP, on the abdominal and thoracic compartment, respectively.
The “Ideal” quaternion component was identified a posteriori, trial by trial, as the one providing the
minimum estimation error of the breathing frequency. Obviously, the “Ideal” component cannot be
identified during online analysis, or when a reference method is not present. Thus, for each trial, 5 sets
of parameters were available:

• fB_OEP, TI_OEP, TE_OEP and DC_OEP

• fB_Peak, TI_Peak, TE_Peak and DC_Peak

• fB_Area, TI_Area, TE_Area and DC_Area

• fB_PCA, TI_PCA, TE_PCA and DC_PCA

• fB_Ideal, TI_Ideal, TE_Ideal and DC_Ideal

Among the entire set of trials, those with fB_OEP < 6 breaths/minute or fB_OEP > 60 breaths/minute
were discarded. Then, the absolute (Equation (8)) and relative (Equation (9)) errors of estimation in
static conditions (supine and seated position) were computed for each parameter:

Absolute Error (E) = |Device−OEP|, (8)

Relative Error (E%) =
|Device−OEP|

OEP
× 100 (9)

For all the dimension-reduction methods (“Area”, “Peak”, “PCA”), mean and standard deviation
(SD) were computed for E and E% considering all the subjects and all the trials, for the supine and seated
position and compared with those obtained considering the “Ideal” component. The error obtained
with the “Ideal” component, identified a posteriori, is thus the minimum error obtainable using a
single quaternion component, and represents the performance that the other methods (“Area”, “Peak”,
and PCA-fusion) should achieve or beat. For E% obtained in fB and DC estimation, non-parametric
alternative to the one-way Analysis of variance (ANOVA) with repeated measures (Friedman test) was
performed to assess if significant differences between methods (“Area”, “Peak”, “PCA”) and “Ideal”
component occurred, “Ideal”); post-hoc analysis was done performing Wilcoxon signed-rank tests on
the different combinations of related methods, applying the correction for multiple comparisons using
false discovery rate (FDR) method [38,39].

For fB, TI, TE, linear regression analysis and correlation analysis (Pearson’s product-moment
correlation rP, or Spearman’s rank-order correlation rS, if data were not normally distributed) were
performed between measurements obtained with the device and measurements obtained with the
OEP, for the supine and seated position, respectively.

To assess the agreement between measurements obtained with the device and with the OEP,
Bland–Altman analysis was performed plotting the difference of the two paired measurements
(device–OEP) against the mean of the two measurements [40–42]. Mean of the differences (d) and
limits of agreement (LOA: from d − (1.9 × SD) to d + (1.9 × SD)) were calculated. The presence
of heteroscedasticity was always examined to assess the presence of proportional biases and/or the
correlation between differences and mean values. As proposed by Brehm et al. [43], to determine if
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data were heteroscedastic a visual inspection of Bland–Altman plots was performed at first. If the
errors (y-axes: absolute differences) increased with increasing measured values (x-axes: mean), the
data were suspected of being heteroscedastic. Then Kendall’s tau (τ) correlation between the absolute
differences and the corresponding means was computed to assess the degree of heteroscedasticity.
Data were denoted heteroscedastic when a positive, significant correlation (τ > 0.1 and p-value < 0.05)
was found, for other cases data were considered homoscedastic [43].

When heteroscedasticity was present the “classical” 95% confidence and tolerance limits cannot
be constructed, thus the approach based on the construction of V-shaped limits was applied: the
regression line (ordinary least squares (OLS) best fit) was constructed for differences on mean values
and the V-shaped confidence limits (upper confidence limit: UCL, lower confidence limit: LCL) were
constructed modelling the variability in the SD of the differences directly as a function of the level of
the measurement, using a method based on absolute residuals from a fitted regression line [44,45].

3. Results

3.1. Breathing Patterns

Table 1 presents the mean and SD of breathing rate for each breathing pattern (QB1 e QB2, ↑fB,
VT=, ↑fB, VT↓, ↓fB, VT=, ↓fB, VT↑) estimated with OEP and device, using “PCA”, “Area”, and “Peak”
methods and the “Ideal” component, for all subjects, in supine and seated position. Sample size (n)
of each condition is reported in Table 1 for the breathing pattern ↑fB, VT↓, just one thoracic tracing
was available for seated position (n = 1). It can be noticed that each subject demonstrated a different
breathing frequency for each breathing pattern and SD in the forced breathing patterns is higher than
those obtained for QB, meaning that subjects interpreted the required speed differently.
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Table 1. Breathing frequencies for different breathing patterns.

Supine
QB 1 ↑fB, VT= ↓fB, VT= ↑fB, VT↓ ↓fB, VT↑ QB 2

AB (n = 8) TH (n = 7) AB (n = 8) TH (n = 8) AB (n = 6) TH (n = 6) AB (n = 3) TH (n = 2) AB (n = 5) TH (n = 6) AB (n = 8) TH (n = 8)

OEP 17.13 ± 2.23 17.62 ± 2.21 39.49 ± 10.26 39.48 ± 10.25 11.17 ± 2.64 11.14 ± 2.63 48.11 ± 13.29 47.66 ± 13.95 8.38 ± 2.40 8.61 ± 2.24 15.29 ± 4.34 15.24 ± 4.48

Device

Area 17.20 ± 2.15 18.53 ± 3.96 39.19 ± 10.84 38.16 ± 14.67 15.52 ± 8.14 19.29 ± 9.42 34.47 ± 34.58 30.01 ± 25.52 10.11 ± 3.91 10.62 ± 4.44 21.28 ± 8.14 16.55 ± 3.62

Peak 17.20 ± 2.15 16.63 ±2.29 38.92 ± 11.12 38.96 ± 13.01 15.52 ± 8.14 16.97 ± 9.59 34.47 ± 34.58 53.39 ± 7.55 10.11 ± 3.91 9.32 ± 2.12 21.25 ± 8.15 16.55 ± 3.62

PCA 17.23 ± 2.09 17.03 ± 1.98 40.06 ± 9.22 40.63 ± 8.45 11.51 ± 2.59 11.56 ± 3.04 48.61 ± 12.64 49.93 ± 11.94 8.61 ± 2.19 8.95 ± 2.06 15.11 ± 4.82 15.23 ± 3.79

Ideal 17.57 ± 2.52 16.34 ± 2.00 39.81 ± 10.50 40.94 ± 9.97 12.11 ± 1.99 13.60 ± 2.61 49.53 ± 12.31 48.12 ± 13.89 9.34 ± 3.33 8.83 ± 2.06 17.74 ± 4.70 15.37 ± 3.82

Seated
QB 1 ↑fB, VT= ↓fB, VT= ↑fB, VT↓ ↓fB, VT↑ QB 2

AB (n = 8) TH (n = 8) AB (n = 8) TH (n = 7) AB (n = 8) TH (n = 8) AB (n = 2) TH (n = 1) AB (n = 6) TH (n = 5) AB (n = 7) TH (n = 6)

OEP 16.99 ± 2.65 16.94 ± 2.77 42.74 ± 10.97 46.49 ± 7.58 14.57 ± 13.40 14.49 ± 13.41 33.20 ± 16.01 22.01 10.04 ± 3.56 10.05 ± 3.81 18.47 ± 4.32 18.47 ± 4.49

Device

Area 17.15 ± 2.86 15.78 ± 3.62 43.06 ± 11.22 40.71 ± 13.59 15.71 ± 13.52 17.06 ± 13.05 32.63 ± 12.87 27.62 10.83 ± 2.93 12.58 ± 4.08 19.80 ± 5.15 17.04 ± 2.09

Peak 16.48 ± 3.58 16.27 ± 3.76 43.06 ± 11.22 40.71 ± 13.59 16.53 ± 13.50 17.15 ± 12.99 32.63 ± 12.87 27.62 10.83 ± 2.93 12.58 ± 4.08 17.23 ± 2.19 16.54 ± 1.95

PCA 16.54 ± 3.01 16.58 ± 2.10 42.26 ± 11.38 45.31 ± 8.56 16.07 ± 13.07 14.91 ± 13.39 33.79 ± 14.50 27.27 10.76 ± 2.90 11.35 ± 3.73 16.59 ± 2.17 15.47 ± 1.69

Ideal 16.68 ± 2.59 16.61 ± 2.34 42.64 ± 11.21 45.42 ± 7.98 15.29 ± 13.33 11.07 ± 2.36 33.38 ± 13.92 24.53 10.40 ± 3.53 10.29 ± 3.66 19.06 ± 4.89 18.73 ± 5.04

Across subject mean ± SD of the breathing frequency (fB, [breaths/minute]) measurements with OEP and the device, using best component-selection methods (“Area” and “Peak”),
PCA-fusion method and “Ideal” component, for the requested patterns. Data are reported for the supine and seated positions, subdivided in abdominal and thoracic contributions.
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3.2. Accuracy Errors

Relative errors of estimation in supine and seated position computed for best component-selection
methods (“Peak”, “Area”), for PCA-fusion method and for the “Ideal” quaternion component for fB

and DC are presented in Figure 4. For what concerns fB estimation in supine position, relative errors
obtained using PCA were similar or even better than those provided by the “Ideal” component; on the
contrary, both component-selection methods, namely “Area” and “Peak”, provided errors higher
than 10%, both for the abdominal and the thoracic compartments. Errors obtained with PCA resulted
significantly lower than those obtained with the “Area” method, both for the abdominal (Wilcoxon
post-hoc test FDR-adjusted, p = 0.038) and thoracic compartment (Wilcoxon post-hoc test FDR-adjusted,
p = 0.015); also, PCA was significantly better than “Peak” method considering abdominal compartment
(Wilcoxon post-hoc test FDR-adjusted, p = 0.038). Errors obtained with “Ideal” component resulted
significantly lower than those obtained with the component-selection methods both for the abdominal
(Wilcoxon post-hoc test FDR-adjusted, Ideal vs. Area p = 0.038, Ideal vs. Peak p = 0.038) and thoracic
(Wilcoxon post-hoc test FDR-adjusted, Ideal vs. Area p = 0.000, Ideal vs. Peak p = 0.020) compartments.
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Figure 4. Relative errors (E%) of estimation of breathing frequency (a,b) and Duty Cycle (c,d) in
supine (a,c) and seated (b,d) positions, computed for each method (Peak, Area and PCA) and for the
“Ideal” component with respect to the reference (OEP). Errors are computed both for the Thoracic and
abdominal compartments. Horizontal blue lines indicate statistical significance of difference (post-hoc
analysis, Wilcoxon test FDR corrected).

In seated position, fB estimation errors obtained with component-selection methods were lower
on average than those obtained in supine position, while PCA performances declined. This led to a
sort of equalization effect, confirmed also by the statistical analysis: significant differences remained
only for comparisons “Ideal” vs. “Area” method (Wilcoxon post-hoc test FDR-adjusted, AB: p = 0.102,
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TH: p = 0.015) and “Ideal” vs. “Peak” method (Wilcoxon post-hoc test FDR-adjusted, AB: p = 0.006,
TH: p = 0.015).

Regarding duty cycle, relative errors of estimation obtained with the different methods are
comparable, with exception of those provided by “Ideal” component that are on average lower, both
in supine (Wilcoxon post-hoc test FDR-adjusted, AB: Ideal vs. Peak p = 0.042, Ideal vs. Area p = 0.042;
TH: Ideal vs. Area p = 0.006) and seated position (Wilcoxon post-hoc test FDR-adjusted, AB: Ideal vs.
Peak p = 0.015, Ideal vs. PCA p = 0.006; TH: Ideal vs. Area p = 0.015, Ideal vs. Peak p = 0.015, Ideal vs.
PCA p = 0.05).

Absolute estimation errors of fB, TI and TE obtained with the device using different methods
(Area, Peak, Ideal, PCA) relative to OEP are reported in Table 2.

Table 2. Absolute errors of breathing frequency (E_fB), Inspiratory time (E_TI) and expiratory time
(E_TE) obtained for the device with respect to OEP, using best component-selection methods (“Area”
and “Peak”), PCA-fusion method and “Ideal” component.

Area Peak PCA Ideal

E_fB
[breaths/minute]

supine AB 3.64 ± 7.46 3.64 ± 7.46 1.00 ± 1.24 1.39 ± 2.76
TH 5.46 ± 8.89 3.17 ± 4.92 1.55 ± 1.51 1.56 ± 1.96

seated
AB 2.19 ± 2.49 2.12 ± 2.74 1.71 ± 2.25 1.04 ± 1.24
TH 3.35 ± 5.68 3.31 ± 5.69 1.79 ± 2.04 0.96 ± 0.22

E_TI [s]

supine AB 0.48 ± 0.73 0.48 ± 0.73 0.33 ± 0.51 0.20 ± 0.38
TH 0.43 ± 0.52 0.41 ± 0.49 0.47 ± 0.67 0.17 ± 0.25

seated
AB 0.33 ± 0.58 0.36 ± 0.56 0.46 ± 0.71 0.16 ± 0.27
TH 0.43 ± 0.48 0.44 ± 0.49 0.42 ± 0.35 0.17 ± 0.25

E_TE [s]

supine AB 0.58 ± 0.82 0.58 ± 0.82 0.43 ± 0.58 0.29 ± 0.52
TH 0.79 ± 0.94 0.67 ± 0.92 0.46 ± 0.63 0.36 ± 0.71

seated
AB 0.43 ± 0.56 0.43 ± 0.56 0.43 ± 0.55 0.22 ± 0.31
TH 0.56 ± 0.66 0.56 ± 0.66 0.39 ± 0.41 0.24 ± 0.36

Data are reported as mean± SD, in supine and seated position for thoracic (TH) and abdominal (AB) compartments.

3.3. Linear Regression and Correlation Analysis

Scatter plots showing the relationship between measurements obtained with the OEP and with
the device, using “Area”, “Peak”, “Ideal” components, and PCA-fusion respectively are presented for
fB (Figure 5), TI (Figure 6) and TE (Figure 7). For each scatter plot the regression line is computed, both
for thorax and abdomen, and the relative equations are reported.

Correlation coefficients for the comparisons Device vs. OEP are reported in Table 3. Regarding the
main parameter, fB, results obtained with correlation analysis confirmed what emerged from estimation
error analysis: in supine position, PCA exhibited the best performances in terms of correlation with
OEP measurements both in terms of regression line and correlation coefficient. In seated position,
“Ideal” component was the one with the highest correlation with OEP measurements, followed by PCA.
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regression analysis, in supine (top panels) and seated (bottom panels) positions. For what concerns fB

measurements obtained with the IMU-device, three dimension-reduction methods were considered:
Area, Peak and PCA-fusion. The performance obtained by using these three methods is benchmarked
against that obtained with the Ideal quaternion component determined a posteriori based on the
minimum estimation error. The regression line between measurements done by OEP and the proposed
device is plotted, and the relative equation presented, both for the thorax and the abdomen.
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Figure 6. Comparisons of inspiratory time (TI expressed as seconds) measurements by using the
proposed device and by using Optoelectronic plethysmography (OEP) presented as regression analysis,
in supine (top panels) and seated (bottom panels) positions. For what concerns TI measurements
obtained with the IMU-device, three dimension-reduction methods were considered: Area, Peak
and PCA-fusion. The performance obtained by using these three methods is benchmarked against
that obtained with the Ideal quaternion component determined a posteriori based on the minimum
estimation error. The regression line between measurements done by OEP and the proposed device is
plotted, and the relative equation presented, both for the thorax and the abdomen.
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Figure 7. Comparisons of expiratory time (TE, expressed as seconds) measurements by using the
proposed device and by using Optoelectronic plethysmography (OEP) presented as regression analysis,
in supine (top panels) and seated (bottom panels) positions. Regarding TE measurements obtained with
the IMU-device, three dimension-reduction methods were considered. Area, Peak and PCA-fusion.
The performance obtained by using these three methods is benchmarked against that obtained with
the Ideal quaternion component determined a posteriori based on the minimum estimation error.
The regression line between measurements done by OEP and the proposed device is plotted, and the
relative equation presented, both for the thorax and the abdomen.

Table 3. Correlation outcomes across subjects and breathing patterns. Coefficient of correlation (r)
between measurements obtained using Device vs. OEP are reported for fB. TI. and TE using best
component-selection methods (“Area” and “Peak”), PCA-fusion method and “Ideal” component,
in supine (Thorax: n = 37. Abdomen: n = 37) and seated (Thorax: n = 35. Abdomen: n = 39) position.

Supine Seated

Thorax Abdomen Thorax Abdomen

fB

Area 0.580 $ 0.706 $ 0.748 $ 0.915 $

Peak 0.833 $ 0.706 $ 0.759 $ 0.861 $

PCA 0.963 $ 0.985 $ 0.953 $ 0.924 $

Ideal 0.935 $ 0.931 $ 0.974 $ 0.977 $

TI

Area 0.727 # 0.665 $ 0.812 # 0.812 #

Peak 0.785 # 0.659 $ 0.809 # 0.824 #

PCA 0.783 # 0.874 # 0.926 # 0.731 #

Ideal 0.943 # 0.862 $ 0.951 # 0.948 #

TE

Area 0.600 $ 0.713 # 0.682 # 0.818 #

Peak 0.687 $ 0.712 # 0.723 # 0.835 #

PCA 0.891 # 0.864 # 0.888 # 0.824 #

Ideal 0.874 # 0.966 $ 0.938 # 0.951 #

Correlations are all significant (p-value < 0.001). $ Spearman correlation coefficient; # Pearson correlation coefficient;
Bold: best correlation result.

With reference to TI estimation in supine position, “Ideal” component provided the best
performances, followed by PCA method; “Peak” and “Area” methods provided comparable, poor
performances. In seated position, measurements of TI provided by component-selection methods were
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on average more correlated with OEP measurements than measurements obtained using PCA-fusion
method. The “Ideal” component presented the best results, followed by “Area” and “Peak” methods;
PCA provided the worst performance considering the abdominal compartment, while correlation
between measurements obtained with the thoracic unit and OEP measurements was good.

Estimation of TE was on average more problematic. In terms of regression lines in fact, slope
values were far from the unity for all the considered methods, highlighting a proportional error leading
to an overestimation for low values of expiratory time and an underestimation at high expiratory
times, as shown in Figure 7. For what concerns supine position, correlation coefficients were good
both for “Ideal” component and PCA-fusion method; on the contrary, correlation coefficients were
low both for “Area” and “Peak” methods. Also, in seated position correlation coefficients provided
by “Ideal” and PCA-fusion method were higher than those provided by “Area” and “Peak” methods,
especially with respect to the thoracic compartment.

3.4. Bland–Altman Analysis

Bland–Altman plots representing the agreement between measurements obtained with the OEP
and with the device, using “Area”, “Peak”, “Ideal” components, and PCA-fusion respectively are
presented for fB (Figure 8), TI (Figure 9) and TE (Figure 10). In Bland–Altman plots, the difference
of the two paired measurements (device–OEP) is plotted against the mean of the two measurements
(device+OEP)⁄2. Results of agreement analysis, including evaluation of heteroscedasticity (Kendall’s
τ correlation and relative p-value) are reported in Table 4. As shown there, for homoscedastic data,
the mean of the differences representing the fixed bias, and LOAs were computed. On the other hand,
for heteroscedastic data, OLS line of best fit representing the proportional bias and upper and lower
95% V-shape confidence limits (UCL and LCL) are reported.
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Figure 8. Agreement analysis between OEP and the IMU-based device for breathing frequency
(fB, expressed as breaths/minuteute) measurements, in supine (top panels) and seated (bottom panels)
position. In each Bland–Altman plot the differences between measurements of fB obtained by using
the IMU-based device and by using OEP are plotted against the mean of the two measurements.
For homoscedastic data, the mean of the differences (bias: —) and limits of agreement (black dotted line)
from mean − 1.96 s to mean + 1.96 s are represented by lines parallel to the X axis. For heteroscedastic
data, the proportional bias (—) is represented by the ordinary least squares (OLS) line of best fit for
the difference on mean values; V-shaped upper and lower 95% confidence limits (- - -) are calculated
according to Bland [44].
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Figure 9. Agreement analysis between OEP and the IMU-based device for inspiratory time (TI, [s])
measurements, in supine (top panels) and seated (bottom panels) position. In each Bland–Altman plot
the differences between measurements of TI obtained by using the IMU-based device and by using
OEP are plotted against the mean of the two measurements. For homoscedastic data, the mean of the
differences (bias: —) and limits of agreement (- - -) from mean − 1.96 s to mean + 1.96 s are represented
by lines parallel to the X axis. For heteroscedastic data, the proportional bias (—) is represented by the
OLS line of best fit for differences on mean values; V-shaped upper and lower 95% confidence limits
(- - -) are calculated according to Bland [44].
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Figure 10. Agreement analysis between OEP and the IMU-based device for expiratory time (TE, [s])
measurements, in supine (top panels) and seated (bottom panels) position. In each Bland–Altman plot
the differences between measurements of TE obtained by using the IMU-based device and by using
OEP are plotted against the mean of the two measurements. For homoscedastic data, the mean of the
differences (bias: —) and limits of agreement (- - -) from mean − 1.96 s to mean + 1.96 s are represented
by lines parallel to the X axis. For heteroscedastic data, the proportional bias (—) is represented by the
OLS line of best fit for differences on mean values; V-shaped upper and lower 95% confidence limits
(- - -) are calculated according to Bland [44].
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Table 4. Agreement analysis outcomes across subjects and different breathing patterns. Bland and
Altman plot statistics for measurements of fB. TI. and TE using best component-selection methods
(“Area” and “Peak”), PCA-fusion method and “Ideal” component and, in supine (n = 74) and seated
(n = 74) position.

τ p-Value Heteroscedastic? Fixed Bias a/OLS LOA c/V-Shape Limits d

f B
su

pi
ne

Area 0.159 0.045 Yes y = −0.054x + 2.316 b UCL: y = 0.085x + 10.907 d

LCL: y = −0.192x − 6.275
Peak 0.142 0.074 No 1.380 a From −11.95 to 14.72 c

PCA 0.211 0.008 Yes y = 0.008x + 0.130 b UCL: y = 0.054x + 2.299 d

LCL: y = −0.038x − 2.039
Ideal 0.038 0.631 No 0.884 a From −4.171 to 5.940 c

f B
se

at
ed

Area 0.142 0.074 No 0.084 a From −9.635 to 9.803 c

Peak 0.132 0.096 No −0.121 a From −9.931 to 9.688 c

PCA 0.108 0.174 No −0.23 a From −5.474 to 5.010 c

Ideal 0.196 0.014 Yes y = −0.021x + 0.597 b UCL: y = 0.028x + 2.057 d

LCL: y = −0.071x − 0.864

T
I

su
pi

ne

Area 0.302 0.000 Yes y = 0.084x − 0.019 b UCL: y = 0.618x + 0.095 d

LCL: y = −0.450x − 0.132

Peak 0.334 0.000 Yes y = 0.104x − 0.021 b UCL: y = 0.638x + 0.093 d

LCL: y = −0.430x − 0.135

PCA 0.375 0.001 Yes y = 0.283x − 0.175 b UCL: y = 0.926x − 0.840 d

LCL: y = −0.390x + 0.354

Ideal 0.292 0.000 Yes y = −0.090x + 0.121 b UCL: y = 0.158x + 0.163 d

LCL: y = −0.338x + 0.078

T
I

se
at

ed

Area 0.430 0.000 Yes y = 0.1022x − 0.0141 b UCL: y = 0.834x + 0.112 d

LCL: y = −0.618x − 0.409

Peak 0.422 0.000 Yes y = 0.220x − 0.075 b UCL: y = 0.642x − 0.173 d

LCL: y = −0.438x + 0.197

PCA 0.489 0.000 Yes y = 0.171x − 0.0332 b UCL: y = 0.7182x − 0.226 d

LCL: y = −0.377x + 0.160

Ideal 0.313 0.000 Yes y = −0.059x + 0.129 b UCL: y = 0.211x + 0.069 d

LCL: y = −0.329x + 0.189

T
E

su
pi

ne

Area 0.421 0.000 Yes y = −0.170x + 0.166 b UCL: y = 0.508x + 0.358 d

LCL: y = −0.847x − 0.026

Peak 0.405 0.000 Yes y = −0.138x + 0.144 b UCL: y = 0.496x + 0.306 d

LCL: y = −0.771x − 0.017

PCA 0.522 0.000 Yes y = −0.209x + 0.328 b UCL: y = 0.667x + 0.037 d

LCL: y = −1.084x + 0.620

Ideal 0.484 0.000 Yes y = −0.153x + 0.148 b UCL: y = 0.3987x − 0.185 d

LCL: y = −0.705x + 0.481

T
E

se
at

ed

Area 0.384 0.000 Yes y = −0.216x + 0.364 b UCL: y = 0.303x + 0.532 d

LCL: y = −0.735x + 0.197

Peak 0.396 0.000 Yes y = −0.231x + 0.413 b UCL: y = 0.226x + 0.666 d

LCL: y = −0.657x + 0.101

PCA 0.422 0.000 Yes y = −0.127x + 0.320 b UCL: y = 0.284x + 0.498 d

LCL: y = −0.538x + 0.142

Ideal 0.316 0.000 Yes y = −0.058x + 0.054 b UCL: y = 0.383x + 0.337 d

LCL: y = −0.500x − 0.228

τ: Kendall’s τ correlation coefficient and relative p-value (heteroscedasticity test). a Fixed Bias. obtained as the mean
of differences (device – OEP). for homoscedastic data. b OLS: ordinary least squares line of best fit (proportional bias)
for heteroscedastic data. c LOA: limits of agreement. computed as mean difference ± 1.96SD (for homoscedastic
data). d V-shape limits: UCL and LCL 95% confidence limits. calculated according to Bland [44].

With respect to the main parameter (fB), agreement between OEP and the device is very strong
when the “Ideal” component or the PCA-fusion are used, both in supine and seated position. In relation
to time estimation, the agreement decreases for all the methods considered. In particular, for what
concerns inspiratory times, a significant relationship between errors and mean value emerged, with a
general increase of the difference (device–OEP) at higher time values (overestimation of the device),
both in supine and seated position. Also, for expiratory times absolute errors increased with increasing
time values, but in this case the device underestimated at high time values (negative slope of the OLS).
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3.5. Quaternion Component Selection

Considering the quaternion components selected by the “Area” and “Peak” methods as best
component or identified as “Ideal” component, a clear rule did not emerge. In fact, there was not a
quaternion component that was selected as best component with a considerable frequency. Relative
frequencies of quaternion component selection with the different methods are presented in Figure 11.
It is interesting to notice that quaternion component q0 was never selected by “Area” and “Peak”
methods, while the “Ideal” component was q0 in 14.86 % of cases (n = 74) in supine position and
6.76% of cases (n = 74) in seated position. In seated position, the component q1 was selected more
frequently as best component both by using “Area” (44.59) and “Peak” (39.19%) methods. In contrast,
in supine position, the components q2 (“Area” 51.35%, “Peak”: 41.89) and q3 (“Area”: 39.19% and
“Peak”: 40.54%) were selected more frequently.

Excluding q0 component, that was clearly less selected, the other quaternion components were
almost equally selected as “Ideal” component considering all the trials, both in supine position
(q0: 14.86%, q1: 22.97%, q2: 32.43%, q3: 29.73%), and seated position (q0: 6.76%, q1: 33.78, q2: 22.97%,
q3: 36.49%).

In regard to the ability of the two component-selection methods (“Area” and ”Peak”) to identify
the “Ideal” component, i.e., the component providing the minimum fB estimation error, in supine
position, the “Area” method was able to identify the “Ideal” component in 45.94% of the cases (relative
frequency for the event “the component selected by “Area” method and the “Ideal” component
corresponded”), the “Peak” method identified the “Ideal” component in 52.70% of the cases, while
for the 45.94% of the cases neither the “Area” method nor the “Peak” method were able to identify
the “Ideal” component. In 44.59% of cases, “Area” method and “Peak” method selected the same
quaternion component, that was also identified as “Ideal” component.

Sensors 2018, 18, x FOR PEER REVIEW  19 of 24 

 

what concerns inspiratory times, a significant relationship between errors and mean value emerged, 
with a general increase of the difference (device–OEP) at higher time values (overestimation of the 
device), both in supine and seated position. Also, for expiratory times absolute errors increased with 
increasing time values, but in this case the device underestimated at high time values (negative slope 
of the OLS). 

3.5. Quaternion Component Selection  

Considering the quaternion components selected by the “Area” and “Peak” methods as best 
component or identified as “Ideal” component, a clear rule did not emerge. In fact, there was not a 
quaternion component that was selected as best component with a considerable frequency. Relative 
frequencies of quaternion component selection with the different methods are presented in Figure 
11. It is interesting to notice that quaternion component q0 was never selected by “Area” and “Peak” 
methods, while the “Ideal” component was q0 in 14.86 % of cases (n = 74) in supine position and 6.76% 
of cases (n = 74) in seated position. In seated position, the component q1 was selected more frequently 
as best component both by using “Area” (44.59) and “Peak” (39.19%) methods. In contrast, in supine 
position, the components q2 (“Area” 51.35%, “Peak”: 41.89) and q3 (“Area”: 39.19% and “Peak”: 
40.54%) were selected more frequently.  

Excluding q0 component, that was clearly less selected, the other quaternion components were 
almost equally selected as “Ideal” component considering all the trials, both in supine position (q0: 
14.86%, q1: 22.97%, q2: 32.43%, q3: 29.73%), and seated position (q0: 6.76%, q1: 33.78, q2: 22.97%, q3: 
36.49%).  

In regard to the ability of the two component-selection methods (“Area” and ”Peak”) to identify 
the “Ideal” component, i.e., the component providing the minimum fB estimation error, in supine 
position, the “Area” method was able to identify the “Ideal” component in 45.94% of the cases 
(relative frequency for the event “the component selected by “Area” method and the “Ideal” 
component corresponded”), the “Peak” method identified the “Ideal” component in 52.70% of the 
cases, while for the 45.94% of the cases neither the “Area” method nor the “Peak” method were able 
to identify the “Ideal” component. In 44.59% of cases, “Area” method and “Peak” method selected 
the same quaternion component, that was also identified as “Ideal” component. 

 
Figure 11. Relative frequencies of quaternion component (q0, q1, q2, q3) selection using Area and Peak 
methods and of quaternion component selection as Ideal component, in supine and seated position. 
Each portion of the rings represents the ratio between the number of times that each quaternion 
component has been selected (by Area and Peak methods or as Ideal component respectively) and the 
total number of trials (n = 74). 

4. Discussion 

Figure 11. Relative frequencies of quaternion component (q0, q1, q2, q3) selection using Area and Peak
methods and of quaternion component selection as Ideal component, in supine and seated position.
Each portion of the rings represents the ratio between the number of times that each quaternion
component has been selected (by Area and Peak methods or as Ideal component respectively) and the
total number of trials (n = 74).

4. Discussion

In this study, we presented an automatic, position-independent processing algorithm to derive
breathing signal, and subsequently breathing temporal parameters, from chest-wall orientation changes
acquired using an IMU-based device previously developed by our group [19], composed of three
sensor units. Even if the modular configuration of the device was designed to reduce non-breathing
movements, the aim of this work was neither to demonstrate the effectiveness of this approach nor
to support the presence of the reference unit. On the contrary the focus is on the analysis algorithm,
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which uses quaternion form to represent orientation, avoiding singularity problem that affects Euler
representation; thus, thoracic and abdominal orientation change signals are 4-dimensional entities.
The proposed algorithm includes therefore a dimension-reduction block to obtain a 1-dimension signal
representing chest-wall orientation changes due to breathing activity.

Another aim of this study was, therefore, to compare three different dimension-reduction methods.
The first two methods (“Peak” and “Area”) are based on the selection of the quaternion component
with the highest breathing information. The third method is based on the fusion of the 4 components
of the quaternion using PCA.

The PCA-fusion method performed better than the best component-selection methods (“Peak”
and “Area”) as regards breathing frequency estimation, both in supine and seated position. In supine
position, it provided better results than “Ideal” component, while in seated position it provided
closer performances to those obtained by using the “Ideal” component with respect to “Area” and
“Peak” methods.

About estimation of other temporal parameters (TI, TE and duty cycle), “Ideal” component
provided the best results, while PCA-fusion method gave results comparable to the best
component-selection methods. Thus, a quaternion component providing the best performance exists,
the problem lies in its a priori identification. In fact, both “Area” and “Peak” methods failed to identify
it on the basis of spectral analysis (in 45.94% of the cases neither the “Area” method nor the “Peak”
method were able to identify the “Ideal” component), and no quaternion component emerged as the
most selected as “Ideal” component (supine q0:14.86%, q1: 22.97%, q2: 32.43%, q3: 29.73%; seated q0:
6.76%, q1: 33.78, q2: 22.97%, q3: 36.49%).

Geometrical or morphological considerations to determine which quaternion component is more
involved in breathing movement are problematic when considering quaternions, and are position- and
IMU-placement dependent, thus not suitable in dynamic conditions. On the contrary, PCA-fusion
method represents an interesting solution to this problem because it fuses the information of the four
quaternion components regardless the position of the subject or the IMUs placement, avoiding the
necessity to select a best component/axes, as reported in previous studies [7,11,13].

In this study, we found that PCA-fusion method provided the best fB estimation performance in
terms of mean absolute errors (<2 breaths/minute), correlation (r > 0.963) and agreement (see Table 4)
with the reference method. Comparing our results in terms of accuracy errors with those obtained
by previous studies is difficult because in most cases only relative errors were reported, but these
errors depend on the breathing frequency adopted. Liu et al. [14] reported a mean absolute error
of 15.45 breaths/minute (thus about 7 times higher than the error obtained in this study) during
quiet sitting. Bates et al. [13] obtained an RMS error of 0.38 breaths/minute and a peak error
of 3 breaths/minute in a postoperative patient during sleep. Considering comparable conditions
(abdominal compartment in supine position) we obtained an RMS error of 1.51 breaths/minute, using
PCA-fusion method, but in our study different, forced, breathing patterns were included, leading to
higher mean error.

Regarding correlation between fB measurements obtained with the proposed method and OEP,
our results are comparable to those obtained by Bates et al. [13] that reported a correlation coefficient
equal to 0.985 between measurements of fB obtained with the accelerometer and nasal cannula.
Mann et al. [11] obtained a correlation coefficient of 0.97 between measurements of fB obtained with
a tri-axial accelerometer and with a system based on oxygen consumption measurement (Oxycon
Mobile). In both cases [11,13], breath-by-breath analysis was not possible. Liu et al. [14] reported
correlation coefficients lower than 0.6 between fB computed with a 3-axis accelerometer and with the
reference (Airflow CO2 analysis).

There are few studies in the literature that performs Bland–Altman analysis to assess the
agreement between breathing frequency measurements obtained by using inertial sensors and other
validated methods. In the study from Morillo et al. [8] agreement analysis using Bland Altman plots
was done against PSG thermistor. The authors reported a mean difference (fixed bias) of 0.02 (SD = 1.09)
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breaths/minute and LOAs from −3.05 to +2.11 breaths/minute in the range ~12 ÷ 35 breaths/minute.
In that case, the use of a single-axis accelerometer, prevent the use of that method during postural
changes. Dehkrodi et al. [9] used a tri-axial accelerometer placed on the suprasternal notch extending
the validation presented in [8] to different sleeping positions and breathing conditions (Deep: 13.5± 4.3,
Normal: 16.5 ± 5.2 and Shallow: 39.7 ± 30.3 breath/minute). They reported a mean difference
(fixed bias) of 0.042 breaths/minute and LOAs from –0.65 to 0.74 breaths/minute. Lapi et al. [17]
performed agreement analysis with Bland Altman plots for measurements of breathing frequency
(range 12 ÷ 26 breaths/minute) obtained with the accelerometer and with the standard method
(counting breaths by visual inspection), in supine position. They reported a mean difference (fixed bias)
of 0.33 breaths/minute and LOA from −1.92 to 2.60 with 3.2% of data outside that range. For all the
above-mentioned studies heteroscedasticity of data was not considered or reported making it difficult
compare them directly with our results. In fact, taking into account heteroscedasticity of data, for fB in
supine position, we built Bland–Altman plot with proportional bias (OLS: y = 0.008x + 0.130, thus going
from 0.18 (at x = 6 breaths/minute) to 0.61 (at x = 60 breaths/minute) breaths/minute) and V-shaped
limits (LCL: y = −0.038x − 2.039 thus the lower limit goes from −2.26 (at x = 6 breaths/minute) to
−4.32 (at x = 60 breaths/minute) breath/minute; UCL: y = 0.054x + 2.299; thus the upper limit goes
form 2.62 (at x = 6 breaths/minute) to 5.539 (at x = 60 breaths/minute) breaths/minute) ). Thus,
considering comparable breathing frequency ranges our results are closer to those obtained by Morillo
et al. [8] and Lapi et al. [17]. On the contrary, Dehkrodi et al. [9] obtained better results; unfortunately,
the steps to obtain the acceleration derived respiratory (ADR) signal are not described in detail.

For the best of our knowledge, this is the first study that provides a detailed analysis of
respiratory timing measurements obtained by using inertial sensor systems, validating them against
an established method.

5. Conclusions

PCA-fusion method provided overall best performances with respect to selecting the best
quaternion component identified based on spectrum analysis. In supine position results obtained
fusing the 4 quaternion components were even better than those obtained with the “Ideal” component,
identified a posteriori considering the minimum breathing frequency estimation error. Performance
in seated position were worse than those obtained in supine position, probably because subjects
were seated without the back support and some oscillations of the trunk were more likely to occur.
This could particularly affect PCA-based method where the first principal component selected for
further analysis is the one with the largest variance, and thus more subject to larger body motions.
This must be taken into account in dynamic conditions; signal baseline removal prior to PCA-fusion
should be considered in this case.

The analysis algorithm proposed in this work, applying PCA-fusion as dimension-reduction
method, can be used to analyze further data. In fact, an extended validation of the proposed
device and method is needed also in dynamic conditions, during daily activities, considering not
only healthy subjects but also patients that could particularly take advantage of this system (e.g.,
COPD, neuromuscular patients, sleep apnea, etc.). This would also allow study of asynchronies
of thoraco-abdominal compartments taking advantage of the modular configuration of the device.
Another key step will be the adaptation of our method, currently implemented as an offline analysis,
to online monitoring, moving the computation process aboard the smartphone. This enhancement
could allow immediate computation of an average breathing frequency over a certain period (e.g., 60 s)
directly aboard the smartphone, fostering the use of the device in other applications such as sport and
fitness, exercise testing, breathing training to use different respiratory muscles, rehabilitation protocols
and treatment evaluation where respiratory assessment could be of great interest.
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6. Patents

The present work is partially described in the International Patent application n◦ PCT/IB2018/
054956, priority date 11 July 2017, title “A wearable device for the continuous monitoring of the
respiratory rate”. Inventors: Ambra Cesareo, Andrea Aliverti, Assignee: Politecnico di Milano.
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