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Abstract: We address the interplay of few lattice trapped bosons interacting with an impurity
atom in a box potential. For the ground state, a classification is performed based on the fidelity
allowing to quantify the susceptibility of the composite system to structural changes due to the
intercomponent coupling. We analyze the overall response at the many-body level and contrast
it to the single-particle level. By inspecting different entropy measures we capture the degree of
entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions
and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and
two-body density distributions showcasing that it accelerates the phase separation process or acts
against spatial localization for repulsive and attractive intercomponent interactions, respectively.
The many-body effects on the tunneling dynamics of the individual components, resulting from
their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the
value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our
work provides implications for engineering localized structures in correlated impurity settings using
species selective optical potentials.

Keywords: multi-layer multi-configuration time-dependent Hartree method (ML-MCTDHB); mix-
tures; impurity; fidelity; entanglement; von Neumann entropy; reduced densities; few-body dynamics

1. Introduction

Multicomponent quantum gases can be experimentally studied with a high degree
of controllability in the ultracold regime [1,2]. Specifically, two-component mixtures of
bosons or fermions can be trapped in various species selective external geometries [3,4].
Few-body ensembles can be realized in particular in one-dimension (1D) [5,6] while the
scattering lengths are tunable through Feshbach and confinement induced resonances [7,8].
In 1D bosonic mixtures the adjustability of the intercomponent interactions gives rise to
intriguing phenomena such as phase-separation processes [9,10] in the repulsive regime,
formation of bound states, e.g., droplet configurations [11,12] for attractive interactions as
well as quasiparticle-like states in highly particle imbalanced systems [13,14].

In this latter context, an impurity species is embedded in an environment of the
majority species called the medium. The presence of a finite impurity-medium coupling
leads to an effective picture where the impurity properties deviate from the bare particle
case exhibiting, for instance, an effective mass [15–18] and induced interactions [19–22]
mediated by the medium. The resultant states are often called polarons [23,24] and have
been experimentally realized mainly in higher-dimensions [25–29] and to a lesser extent
in 1D [13,30] using spectroscopic schemes. Since these settings consist of a few-body
subsystem they naturally show enhanced correlation properties, especially in 1D, rendering
their many-body treatment inevitable. In particular, the emergent impurity-medium
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entanglement can lead to spatial undulations of the medium. This mechanism is manifested,
for instance, as sound-wave emission [17,31] and collective excitations [32,33] of the host
or the formation of a bound state [34–36] between the impurity and atoms of the medium
for attractive interspecies interactions.

Another relevant ingredient is the external trapping geometry that the two compo-
nents experience. Indeed, for harmonically trapped and homogeneous systems remarkable
dynamical features of impurity physics include the spontaneous generation of localized
patterns [17,37–39], inelastic collisional aspects of driven impurities [40–42] with the sur-
rounding and their relaxation at long timescales [43–45]. On the other hand, when a lattice
potential is introduced the situation becomes more complicated giving rise, among others,
to doped insulator physics [46,47] and impurity transport [48–50]. Apparently, configuring
one component by manipulating its external trap while leaving the other intact, e.g., by
using a species selective external potential, it is possible to control the response of the
unperturbed component via the impurity-medium interaction [51,52]. For instance, oper-
ating in the lowest-band approximation it has been demonstrated that a lattice trapped
impurity interacting with a homogeneous host exhibits besides tunneling dynamics [53]
also self-trapping events [54,55] and can even undergo Bloch-oscillations [56]. The oppo-
site case, where the medium resides in the lattice, provides an experimental probe of the
impurity-medium collision parameters [57] and interaction strength [58].

In this work by considering an impurity in a box potential and a lattice trapped
few-body medium we examine how the latter affects the impurity’s spatial distribution
by means of (de-)localization for different lattice depths and intercomponent interactions.
Indeed, a lattice trapped medium can reside either in a superfluid or an insulating-like
phase [46], a fact that is expected to crucially impact the impurity’s configuration and
vice versa [59]. To address the ground state properties and quantum quench dynamics of
the above-discussed impurity setting we utilize the multi-layer multi-configuration time-
dependent Hartree method for atomic mixtures (ML-MCTDHX) [60–62]. This variational
method enables us to account for the relevant correlations of the mixture and operate
beyond the lowest-band approximation for the medium.

Focusing on the ground state of the system and in order to testify its overall response
for varying intercomponent interactions we determine the fidelity between the coupled
and decoupled composite system both at the many-body and the single-particle level. Note
that in impurity settings this observable is commonly termed residue [23,24] enabling
us to identify, e.g., the polaron formation, while the influence of the impurity-medium
entanglement in this observable is still an open issue. It is demonstrated that despite the
fact that the total entangled state may strongly deviate from its decoupled configuration,
this effect is arguably less pronounced or even diminished at the single-particle level.
Furthermore, we showcase that the build-up of impurity-medium entanglement is sensi-
tive to the interplay between the intercomponent interactions and the lattice depth [46].
Interestingly, stronger interactions do not necessarily lead to a larger amount of entangle-
ment, whereas the state of the majority species may undergo substantial structural changes,
which remain invisible at the single-particle level. Moreover, we identify the imprint of
the background on the impurities and vice versa by relying on one- and two-body density
distributions evincing a rich spatial structure of the components with respect to the lattice
depth as well as the inter- and intracomponent interactions. In particular, it is argued that
for repulsive (attractive) interactions the impurity delocalizes (localizes) around the central
lattice site. The delocalization of the impurity is accompanied by its phase-separation
with the majority component [63], where the impurity tends to the edges of the box for a
superfluid background or exhibits a multi-hump structure for an insulating medium. We
further analyze how much the intercomponent correlations are actually involved in the
structural changes observed in the spatial probability distributions. To this end we compare
density distributions of the numerically exact ground state to the corresponding ones of
an approximate non-entangled ground state. We identify that the entanglement-induced
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corrections accelerate phase-separation at repulsive couplings and generally slow down
spatial localization at attractive interactions.

Finally, we monitor the non-equilibrium dynamics of the mixture. We prepare the
system in a phase-separated, i.e., disentangled configuration, and quench the intercom-
ponent interactions to smaller values resulting in the counterflow of the components and
thus triggering their tunneling dynamics and the consequent build-up of entanglement.
The majority component plays the role of a material barrier for the impurity [50,64] which
performs tunneling oscillations whose period depends strongly on the impurity-medium
interaction. The many-body nature of the tunneling process of the components is testified
by invoking the individual natural orbitals constituting the time-evolved many-body state.

Our presentation is structured as follows. In Section 2, we introduce the impurity
setting and in Section 3 we discuss our many-body treatment to tackle its ground state
and dynamics. The ground state properties of the delocalized impurity and the lattice
trapped medium are addressed in Section 4. We analyze the fidelity between perturbed
and unperturbed (reduced) density operators, quantify the degree of entanglement and
visualize its impact on single- and two-body density distributions of each species for
different intra- and intercomponent interactions and lattice depths. The non-equilibrium
dynamics of the mixture following a quench of the impurity-medium coupling to smaller
values is discussed in Section 5. We provide a summary of our results and elaborate on
future perspectives in Section 6.

2. Setup and Hamiltonian

We consider a single impurity particle immersed in a few-body system of ultracold
bosons. Both components reside in a quasi-1D geometry ensured by a strong transversal
confinement [13]. Along the longitudinal direction the NA majority species atoms of mass
mA are trapped inside a lattice of depth V with l sites and length L with hard-wall boundary
conditions. The impurity atom of mass mB is subject to a box potential of the same length.
The species-dependent trapping has been successfully demonstrated experimentally [3,4].
The inter-particle interactions are of s-wave contact type with gAA denoting the majority-
majority interaction strength and gAB the majority-impurity coupling. Both may be tuned
independently by a combination of Feshbach and confinement induced resonances [7,8].
Furthermore, we assume equal masses mA = mB, which corresponds to a mixture of
the same isotope with the particles being distinguishable due to two different hyperfine
states [65–70]. By introducing R∗ = L and E∗ = h̄2/(mL2) as length and energy scales we
arrive at the following rescaled many-body Hamiltonian:

H = −1
2

∂2

∂y2 −
NA

∑
i

(
1
2

∂2

∂x2
i
+ V sin2(πlxi)

)
+ gAA

NA

∑
i<j

δ(xi − xj) + gAB

NA

∑
i

δ(xi − y), (1)

where y and xi denote the spatial coordinates of the impurity and ith majority
atom, respectively.

In this work we primarily focus on the ground state properties of the above many-body
Hamiltonian Equation (1) with l = 5 lattice sites and NA = 5 majority particles. In particu-
lar, we are interested in the susceptibility of the composite system to structural changes
and the amount of inter-particle correlations it may hold. We cover a parameter space
from moderately attractive to repulsive interaction strengths, i.e., gAA ∈ [−3.0, 3.0]E∗R∗

and gAB ∈ [−5.0, 5.0]E∗R∗, for a range of lattice depths from shallow to deep, namely
V ∈ [100, 1000]E∗. In the following, we will refer to a lattice as being shallow (V < 200),
moderately deep (V ≈ 500) and very deep (V > 800). We remark that in recoil units
the above parameters translate to gAA ∈ [−0.38, 0.38]Erecxrec, gAB ∈ [−0.64, 0.64]Erecxrec
and V ∈ [0.81, 8.1]Erec. Additionally, we demonstrate how an initially disentangled state
prepared in the immiscible regime acquires dynamically a finite amount of entanglement
after quenching the intercomponent coupling gAB, thus triggering a counter-flow tunneling
process of the two components.
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3. Variational Approach

In order to account for effects stemming from inter-particle correlations we rely on
the Multi-Layer Multi-Configurational Time-Dependent Hartree Method for atomic mix-
tures (ML-MCTDHX), for short ML-X [60–62]. This ab-initio method has been successfully
applied to solve the time-dependent Schrödinger equation of various experimentally ac-
cessible and extensively studied systems. The core idea of this method lies in expanding
the many-body wave-function in terms of product states of time-dependent single-particle
functions [71,72]. This becomes beneficial, when the number of basis configurations with
considerable contribution to the state fluctuates weakly during the time propagation,
whereas the configurations themselves do change. Taking a variationally optimal ba-
sis at each time-step allows us to cover the high-dimensional Hilbert space at a lower
computational cost compared to a time-independent basis.

The wave function ansatz for a given system is decomposed in multiple layers. On
the first layer, called top layer, we separate the degrees of freedom of the binary mixture
into product states of majority and impurity species functions |Ψσ

i (t)〉 with σ ∈ {A, B} and
i ∈ {1, . . . , S}:

|Ψ(t)〉 =
S

∑
i=1

√
λi(t) |ΨA

i (t)〉 ⊗ |ΨB
i (t)〉 . (2)

Here, the time-dependent coefficients λi(t), normalized as ∑S
i=1 λi(t) = 1, determine

the degree of entanglement between the components [73]. The choice of S = 1 results in
the so-called species mean-field (SMF) approximation, meaning that no entanglement is
assumed between the components [15]. In that case the intercomponent correlations, if
present, are neglected and every component is effectively subject to an additional one-body
potential induced by the fellow species [50,63]. In this work, we put a special emphasis on
the impact of the entanglement on several one- and two-body quantities by comparing the
numerically exact ground state to the corresponding SMF approximation.

On the second layer, called species layer, each species function |Ψσ
i (t)〉 is expanded

in terms of species-dependent symmetrized product states of single-particle functions
(SPFs) |ϕσ

j (t)〉 with j ∈ {1, . . . , sσ}, accounting for the bosonic nature of our particles and
abbreviated as |~nσ〉 = |nσ

1 , . . . , nσ
sσ
〉:

|Ψσ
i (t)〉 = ∑

~nσ |Nσ

Ci,~nσ (t) |~nσ(t)〉 . (3)

In this expression, the sum is performed over all configurations ~nσ|Nσ obeying the
particle-number constraint ∑sσ

i=1 nσ
i = Nσ. On the third and final layer, called primitive

layer, each SPF is represented on a one-dimensional time-independent grid [74].
The Dirac-Frenkel variational principle [75] is subsequently applied to the above

ansatz in order to derive the coupled equations of motion for the expansion coefficients
λi(t), Ci,~nσ (t) and the SPFs |ϕσ

j (t)〉. Finally, performing imaginary time-evolution one
arrives at the ground state wave-function (4), whereas the real time-propagation allows
to study the non-equilibrium dynamics of an arbitrary initial state (5). The results to be
presented below have been obtained by using (S, sA, sB) = (4, 5, 4) functions/SPFs on the
top/species layers as well as 225 grid points on the primitive layer. We have carefully
checked the convergence behavior of our results by comparing to simulations with a larger
number of orbitals (S, sA, sB) = (6, 8, 6) and found no significant changes for the quantities
of interest.

In the following we will often refer to the reduced j-body density operators ρ̂σ
j of

species σ and the intercomponent reduced (j + k)-body density operator ρ̂σσ̄
j+k obtained

from the many-body density operator ρ̂ = |Ψ〉 〈Ψ|:

ρ̂σ
j = trNσ\j{trNσ̄

{ρ̂}}, (4)

ρ̂σσ̄
j+k = trNσ\j{trNσ̄\k

{ρ̂}}, (5)
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where Nσ \ j stands for integrating out Nσ − j coordinates of component σ and σ̄ 6= σ. Of
particular interest are the reduced one-body density operators ρ̂A

1 and ρ̂B
1 as well as the

reduced two-body intra- and intercomponent density operators ρ̂A
2 and ρ̂AB

2 , respectively,
since they determine the expectation values of various experimentally accessible local one-
and two-body observables, such as the average particle position, the inter-atomic distance
or the wave-packet width.

4. Impact of Intercomponent Coupling on Ground State Properties

In Section 4.1, we analyze to which extent the many-body wave-function as well as
the reduced one-body density operators are modified by the intercomponent interaction.
To this end we analyze the fidelity between the interacting and non-interacting (reduced)
density operators, which is a measure of their closeness. We find that with increasing
absolute value of the interaction strength the system is more robust w.r.t. changes on the
one-body as compared to the many-body level. Moreover, each component is affected
differently depending on the lattice depth and majority interaction strength.

Subsequently, in Section 4.2 we quantify the degree of entanglement by means of
the von Neumann entropy and identify parameter regions with substantial inter-particle
correlations. Interestingly, increasing the absolute value of the intercomponent coupling
does not always result in stronger entanglement. In fact, there are parameter regions where
a strongly interacting ground state becomes almost orthogonal to the non-interacting one
and the components remain to a good approximation disentangled.

Finally, we combine insights from Sections 4.1 and 4.2 to identify interesting param-
eter regimes and perform an in-depth analysis of the underlying physical phenomena
in Section 4.3. In particular, we inspect how the spatial representation of density operators
is altered and compare those to the corresponding SMF results. The latter allows us to
spatially resolve the corrections to the SMF densities induced by the entanglement and
interpret its impact as acceleration or deceleration of the undergoing processes, e.g., the
phase separation or localization.

4.1. Fidelity for Quantifying the Impact of the Intercomponent Interaction

First, we aim to analyze how the intercomponent coupling gAB impacts the ground
state of non-interacting species (NIS) at gAB = 0. For this purpose, we evaluate the
fidelity [76] of two density operators ρ̂ and σ̂ defined as:

F(ρ̂, σ̂) =

(
tr
√√

ρ̂σ̂
√

ρ̂

)2
= F(σ̂, ρ̂). (6)

We start with the fidelity between a NIS many-body density ρ̂0 = |Ψ0〉 〈Ψ0| and a
many-body density ρ̂g = |Ψg〉 〈Ψg| for some finite coupling gAB (Figure 1). Since both
density operators describe pure states, Equation (6) reduces to Fmb = | 〈Ψ0|Ψg〉 |2. This
measure, Fmb, is also known as the polaron residue studied in the context of phonon
dressing of an impurity particle immersed in a bath of majority atoms [23,24].

For a weakly interacting (gAA = 0.5) majority component Figure 1a we observe
that the many-body fidelity at a fixed lattice depth decreases monotonously with the
modulus of the coupling strength gAB. At deep lattices the rate of its reduction is larger, a
behavior which is even more pronounced at strong negative gAB, where the interacting
state becomes almost orthogonal to the non-interacting one (gAB = −5 and V = 1000).
The black dashed line encircles a parameter region of instability where the SMF ansatz
collapses to a configuration with broken parity symmetry. For a moderately interacting
(gAA = 3.0) majority component Figure 1b the many-body fidelity becomes much more
stable. Contrarily to Figure 1a the rate of reduction with gAB is larger at shallow lattices
instead. Finally, for a moderately deep (V = 500) lattice Figure 1c we observe a peculiar
fast decay around gAA ≈ −1 starting at gAB < −2. Additionally, at gAA ≈ −1 and positive
gAB there is a small pronounced decay region (black dashed circle), which is absent in the
SMF approximation.
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Figure 1. Fidelity | 〈Ψ0|Ψg〉 |2 between a many-body state |Ψ0〉 at gAB = 0 and a many-body one |Ψg〉
at finite gAB, for (a) gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 as a function of the majority-impurity
coupling gAB and the lattice depth V (a,b) or the interaction strength of the majority atoms gAA (c).
All quantities are given in box units with characteristic length R∗ = L and energy E∗ = h̄2/(mL2)

with L denoting the extension of the box trap. Regions encircled by black dashed lines indicate
parameter regions with substantial qualitative differences to the SMF ansatz.

Next, we analyze the fidelity between a free impurity described by a pure state
|Φ0〉 〈Φ0| and an entangled one ρ̂B

1 , in general being a mixed state Figure 2. Equation (6)
then simplifies to FB

1 = | 〈Φ0| ρ̂B
1 |Φ0〉 |2. This measure allows to judge to which extent the

impurity atom is still a "free" particle of mass mB. We emphasize that it should not be con-
fused with a polaron quasi-particle having a renormalized effective mass. We observe that
FB

1 follows overall a similar pattern as the many-body fidelity Fmb, but with a significantly
slower decay rate. Though there are some strong qualitative differences, see in particular
Figure 2c. Namely, the abrupt decay of Fmb around gAA ≈ −1 at negative gAB Figure 1c is
absent in FB

1 along with the small decay region at positive gAB (black dashed circle). From
this we anticipate that the majority component is responsible for these features in Fmb.

For the above reason, we now investigate the complementary fidelity FA
1 = F(ρ̂A

1 (gAB =
0), ρ̂A

1 ), i.e., between mixed states characterizing a majority particle in the NIS state
ρ̂A

1 (gAB = 0) and in the interacting state ρ̂A
1 Figure 3. This quantity captures to which extent

a majority particle is still in a mixed state induced solely by the intraspecies interaction
strength gAA. In case of a weak gAA Figure 3a FA

1 is notably affected only at deep lattices
V > 600 and strong negative coupling gAB < −4. For large gAA Figure 3b we observe that
the intercomponent correlations are not strong enough to overcome the intraspecies ones,
thus barely affecting the mixedness of the NIS majority state, since FA

1 ≈ 1 in the whole
range −2 < gAB < 5 and 100 < V < 700. In Figure 3c we find evidence that the majority
component is indeed responsible for the particular decay patterns observed in the many-
body fidelity Fmb, which were absent in FB

1 . Overall, the majority component demonstrates
a higher level of robustness at the single-particle level as compared to the impurity.

Figure 2. Fidelity FB
1 = | 〈Φ0| ρ̂B

1 |Φ0〉 |2 between a free impurity particle |Φ0〉 at gAB = 0 and an
entangled one ρ̂B

1 at finite gAB, for (a) gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 and varying
majority-impurity coupling gAB and the lattice depth V or the interaction strength of the majority
atoms gAA. All quantities are expressed in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L is the extension of the box trap.
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Figure 3. Fidelity FA
1 = F(ρ̂A

1 , ρ̂A
1 (gAB = 0)) between mixed states characterizing a majority particle

when the medium is disentangled ρ̂A
1 (gAB = 0) and entangled ρ̂A

1 with the impurity atom, for (a)
gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 as a function of the majority-impurity coupling gAB and
the lattice depth V (a,b) or the interaction strength of the majority atoms gAA (c). All quantities are
provided in box units of characteristic length R∗ = L and energy E∗ = h̄2/(mL2) with L being the
extension of the box trap.

4.2. Entropy Measures for Quantifying the Degree of Correlations

As we have seen in the previous section, an initially disentangled composite system
may be drastically influenced by the intercomponent coupling. However, it is far from
obvious to which extent the correlations are actually involved when the ground state
undergoes structural changes [77]. For instance, a strongly interacting ground state may
in fact just represent a different disentangled state or a state seemingly unaffected by the
coupling may feature substantial correlations which guarantee its robustness. To investigate
these intriguing possibilities we perform a further classification based on the degree of
inter-particle correlations.

To quantify the degree of correlations in our impurity system we use the von Neu-
mann entropy of the reduced density operators [78]. Here, we distinguish between the
entanglement entropy SvN of the reduced density operator ρ̂σ of species σ [9,46] and
the fragmentation entropy Sσ

vN of the reduced one-body density operator ρ̂σ
1 of species

σ [52,79,80]. The former, ρ̂σ, is obtained by tracing the density operator ρ̂ of the composite
many-body system over one of the species, while the latter, ρ̂σ

1 , by additionally tracing
ρ̂σ over all of the particles of the remaining component except one. In the presence of
correlations the resulting reduced density operator will describe a mixed state. The en-
tanglement entropy is caused by intercomponent correlations whereas the fragmentation
entropy is primarily a signature of intracomponent ones, though it can be greatly impacted
once the intercomponent correlations become dominant. Explicitly, the entanglement and
fragmentation entropies are given as:

SvN = − tr(ρ̂σ ln ρ̂σ) = −
S

∑
i=1

λi ln λi with ρ̂σ = trσ̄(ρ̂) =
S

∑
i=1

λi |Ψσ
i 〉 〈Ψσ

i | , (7)

Sσ
vN = − tr(ρ̂σ

1 ln ρ̂σ
1 ) = −

sσ

∑
i=1

nσ
i ln nσ

i with ρ̂σ
1 = trNσ−1(ρ̂

σ) =
sσ

∑
i=1

nσ
i |Φσ

i 〉 〈Φσ
i | . (8)

In these expressions, λi and |Ψσ
i 〉 denote the natural populations and natural orbitals

of the spectrally decomposed ρ̂σ, while nσ
i and |Φσ

i 〉 are the natural populations and natural
orbitals of the spectrally decomposed ρ̂σ

1 [60,72]. Furthermore, S and sσ are the number of
species orbitals and single-particle functions, respectively, Nσ is the number of σ component
particles and σ 6= σ̄.

In the following, we display the species entanglement SvN from Equation (7)
Figure 4 and the majority fragmentation SA

vN from Equation (8) Figure 5 as a function
of the majority-impurity coupling gAB and the lattice depth V or the interaction strength
of the majority atoms gAA. In case the entanglement entropy SvN is close to zero, the
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corresponding subsystems are to a very good approximation disentangled. Thus, making a
SMF ansatz in Equation (2) would greatly facilitate numerical calculations while providing
quantitatively good results for physical observables. On the other hand, already moderate
values of entanglement may have an impact on some physical quantities with measurable
differences to the SMF approximation, whereas local peaks may indicate phase transi-
tions [10,81,82]. Regarding the fragmentation entropy of interacting majority atoms SA

vN it
is highly non-trivial to predict how their intrinsic mixedness, caused by the intra-particle
interactions gAA, can be changed by the intercomponent coupling gAB.

4.2.1. Weakly Repulsive Interacting Majority Component

For a weakly interacting majority component with gAA = 0.5, the entanglement
entropy SvN Figure 4a displays two different behaviors depending on the sign of the
coupling strength. For positive gAB it increases gradually with increasing coupling strength
gAB, with the build-up being faster for a deeper lattice [52]. This is related to the onset
of phase separation taking place sooner for a deeper lattice with increasing gAB (see also
the discussion in Section 4.3). Turning to negative gAB the entanglement entropy first
grows gradually with decreasing coupling strength gAB, but then, for larger V below some
threshold value, the entanglement reduces to almost zero (gAB < −4 and V > 600). Apart
from the above mentioned pattern the overall behavior of SvN in Figure 4a is very similar
to the one observed in the corresponding many-body fidelity Figure 1a.

Figure 4. Entanglement entropy SvN , see Equation (7), for (a) gAA = 0.5, (b) gAA = 3.0 and
(c) V = 500 with varying majority-impurity coupling gAB and the lattice depth V (a,b) or the interac-
tion strength of the majority atoms gAA (c). All quantities are given in box units with characteristic
length R∗ = L and energy E∗ = h̄2/(mL2) with L denoting the extension of the box trap.

The fragmentation entropy of the majority component SA
vN Figure 5a at gAB = 0 is

larger for a deeper lattice. The reason is that the ratio of the intraspecies interaction energy
and the single-particle energy of the majority component increases with a larger V or gAA.
In the limit of an infinitely deep lattice or an infinitely strong intraspecies repulsion we
expect full fermionization, meaning that the one-body density operator becomes a mixed
state with a uniform distribution of natural orbitals and the fragmentation entropy of the
majority component reaches the value ln(NA) ≈ 1.6. However, we observe that we are
operating far away from that limit, since max SA

vN < 0.4.
At positive gAB, as the entanglement entropy SvN builds up Figure 4a, the fragmenta-

tion entropy SA
vN of the majority component at gAB = 0 is more robust to variations of gAB

at deeper lattice depths compared to shallow lattices Figure 5a. Once the entanglement
becomes strong enough to overcome intracomponent correlations, the fragmentation en-
tropy of the majority atoms starts to increase with a fast rate (e.g., V = 1000, gAB > 4). At
negative gAB, if the medium features a small fragmentation entropy at gAB = 0 (V < 900),
then SA

vN rises first with decreasing gAB, reaches a local maximum and finally drops to very
small values at a sufficiently strong coupling strength. In contrast, if the fragmentation
entropy of the decoupled majority component has already reached a moderate magnitude
(V > 900), then the initial fragmentation is gradually reduced with decreasing gAB, until fi-
nally both entropies become negligibly small (gAB < −4). Once that happens, the resulting
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many-body state becomes to a good approximation a disentangled composite state with a
condensed majority component.

Figure 5. Fragmentation entropy SA
vN , see Equation (8), for (a) gAA = 0.5, (b) gAA = 3.0 and

(c) V = 500 with respect to the majority-impurity coupling gAB and the lattice depth V (a,b) or the
interaction strength of the majority atoms gAA (c). All quantities are provided in terms of box units
with characteristic length R∗ = L and energy E∗ = h̄2/(mL2) while L denotes the extension of the
box trap.

4.2.2. Moderately Repulsive Interacting Majority Component

The entanglement entropy SvN of a moderately interacting majority medium at
gAA = 3.0 in Figure 4b displays the same qualitative behavior as the many-body fidelity
Fmb shown in Figure 1b. Contrary to gAA = 0.5 the entanglement is overall less pronounced
and builds up faster at shallow lattice depths instead. Such a comparatively weak entan-
glement leaves only a minor imprint on the fragmentation of the majority component SA

vN ,
see Figure 5b, manifested as a weak dependence on the coupling gAB. The fragmentation
of the majority species is substantial compared to gAA = 0.5 Figure 5a at the same lattice
depth. Nevertheless, the fermionization limit is not yet reached, since max SA

vN ≈ 0.8. The
intercomponent correlations are not strong enough to overcome the intraspecies ones in
accordance with the robustness of the majority component observed on the one-body level
in Figure 3b. From this we expect a rather small impact of entanglement on observables,
which depend solely on the majority particle distribution.

4.2.3. Attractively Interacting Majority Component

Finally, we analyze the dependence of the above-described entropy measures on
the intraspecies interaction strength gAA for a moderately deep lattice depth V = 500
Figures 4c and 5c. Since repulsive interactions have been already amply covered, we here
concentrate on negative gAA and gAB.

As it can be readily seen, there is a parameter sector at gAB < 0 and gAA > −1 contain-
ing high values for the entanglement entropy SvN Figure 4c. This sector displays a similar
behavior to SvN in Figure 4a at negative couplings, namely starting from the decoupled
regime, the entanglement grows with decreasing gAB, only to drastically decrease below
some negative threshold value of gAB. This threshold for gAB lies at lower values the
higher the intracomponent interaction strength gAA is. We find that this abrupt decay of
SvN coincides with the one observed in the many-body fidelity Fmb Figure 1c. This suggests
that the disappearance of intercomponent correlations leads to an increased susceptibility
of the system to gAB variation. The other decay region, present in Fmb at gAA ≈ −1 and
negative gAB, is missing in the entanglement entropy SvN . Form this we infer that it can be
understood within the SMF picture. Additionally, there is also another much smaller sector
characterized by a high entanglement entropy at gAB > 0 and gAA ≈ −1. It is directly
related to structural changes observed in Fmb and FA

1 at the same values Figures 1c and 3c,
which would have been absent in the SMF picture. Apart from that, below gAA < −1 the
entanglement entropy among the components is either absent or of minor relevance.

Previously, we have mentioned that an isolated majority species, which interacts
repulsively (gAA > 0), features a higher degree of fragmentation the larger gAA is. In
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the case of attractive interactions (gAA < 0), however, the situation is different. Namely,
starting from gAA = 0 the fragmentation entropy tends first to increase with decreasing
gAA, but then decreases up to the point of describing approximately a condensed state
again see Figure 5c at gAB = 0. Regarding the impact of the intercomponent coupling
gAB on SA

vN we observe overall very similar patterns as for the entanglement entropy SvN
Figure 4c. Regions where both entropic measures SvN and SA

vN are of small magnitude
remind of the corresponding sectors in Figures 4a and 5a at V > 800 and gAB < −4.

4.3. Single- and Two-Particle Density Distributions

The measures of fidelity and entropy discussed in the previous sections are very useful
in identifying parameter regions being substantially impacted and/or highly correlated
indicating regimes of high interest for further investigation. However, they do not provide
insights into the actually undergoing processes. To get a better understanding we ask
for the impact on measurable quantities such as the one-body and two-body density
distribution functions, which can be accessed by fluorescence imaging with a quantum gas
microscope [83–87].

In the following, ρσ
1 (z) describes the probability density to find a single particle of

species σ at position z, while ρσσ̄
2 (z1, z2) denotes the probability density to simultaneously

measure one particle of species σ at position z1 and another one of the same or different
species σ̄ at position z2. The expectation value of any local observable depending on up
to two degrees of freedom can be evaluated as an overlap integral with the appropriate
probability density. Since many local observables often depend only on the distance
between the particles, i.e., O(z1, z2) = O(z1 − z2), we replace ρσσ̄

2 (z1, z2) by the probability
density ρσσ̄

r (r) to measure two particles belonging to the same or different species at a
relative distance r independent of their individual positions. To this end we perform a
coordinate transformation R = (z1 + z2)/2 and r = z1 − z2 giving the following identity:∫

ρσσ̄
2 (z1, z2) dz1 dz2 =

∫
ρσσ̄

2 (r, R) dr dR. (9)

Then we define:

ρσσ̄
r (r) =

∫
ρσσ̄

2 (r, R) dR. (10)

Our first goal here is to investigate how the above mentioned quantities are affected
in parameter sectors displaying strong susceptibility to structural changes identified in
Section 4.1 and, in particular, whether the density distributions are capable to capture the
undergoing changes in the many-body state.

Our second goal is to extract the impact of the entanglement. To this end we compare
the above density distributions obtained from the variational ML-X calculations to the
ones where the SMF ansatz is assumed. The latter will be distinguished by a tilde sign
placed on top of the corresponding quantities. In the following, we shall evince that a large
entanglement entropy identified in Section 4.2 has indeed a notable impact, but not always
on all of the above mentioned density distributions. Thus, it may enhance or impede the
effects coming from the induced SMF potential, such as phase separation and localization,
or affect the bunching properties of the majority component.

4.3.1. Weakly Repulsive Interacting Majority Component

For a shallow lattice (V = 100) we observe in Figure 6 that the majority component
(panel a1) at gAB = 0 occupies mainly the central site (at z = 0) and the two intermediate
ones (at z = ±0.2), while ρAA

r (panel c1) features an almost Gaussian shape due to weak
intraspecies correlations. At moderate positive couplings (gAB > 3) both quantities are only
slightly affected in accordance with the robustness of FA

1 in this interaction regime Figure 3a.
At moderate negative couplings (gAB < −3) both ρA

1 and ρAA
r shrink with decreasing gAB

indicating an increased bunching tendency of the majority atoms towards the central lattice
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site. The impact of entanglement here is moderate. It leads to an increased probability for
the majority component to occupy the two intermediate sites, while disfavoring the central
site (panel a2). Thus, it acts as an inhibitor of localization at negative gAB and counteracts
changes induced by the SMF potential at positive gAB. Furthermore, entanglement favors
bunching of the majority particles independent of the sign of the coupling (panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 6. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x − y) (see Equation (10)) at gAA = 0.5, V = 100 and for various values of gAB (see legend). Lower

panels: difference between probability densities obtained from the variational ML-X simulations and the SMF ansatz, the
latter distinguished by a tilde sign. All quantities are given in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) with L being the extension of the box trap.

The decoupled impurity particle (panel b1) occupies the ground state of the box
potential. At moderate positive couplings it develops two humps and forms a shell around
the majority component density, a signature of phase separation [46,63] further confirmed
by the appearance of two humps in ρAB

r (panel d1). At negative couplings ρB
1 and ρAB

r shrink
with decreasing gAB accumulating around the trap center. The entanglement favors the
process of phase separation at positive couplings and bunching between the two species at
negative couplings (panel d2), while slowing down the shrinking of ρB

1 at negative coupling
(panel b2). We also remark that upon reaching a certain threshold value of gAB > 4, the
SMF solution experiences breaking of parity symmetry, causing substantial differences to
the many-body symmetry-preserving solution (not shown).

For a deep lattice (V = 1000) in Figure 7 the majority component (panel a1) at gAB = 0
displays an almost uniform distribution over all the lattice sites, while ρAA

r (panel c1)
features a multi-hump structure due to stronger intraspecies correlations cf. Figure 5a). At
moderate positive couplings (gAB > 3) the width of ρA

1 and ρAA
r is only slightly increased,

again in accordance with the robustness of FA
1 Figure 3a. Thus, the majority component,

experiencing the presence of a repelling impurity atom, shows a slight enhancement
of the already present delocalization over the lattice. At moderate negative couplings
(gAB < −3) both ρA

1 and ρAA
r shrink with decreasing gAB to the extent where all atoms

occupy predominantly only the central site (gAB < −4). Such a large difference to the
non-interacting ground state is in accordance with the observations made in FA

1 Figure 3a.
The impact of entanglement is structurally different compared to a shallow lattice

(panels a2 and c2). At positive couplings, the entanglement greatly increases the probability
for the majority atoms to be found at the central site, while decreasing the probability at
outer sites (z = ±0.4) and being indifferent to the intermediate sites (panel a2). Additionally,
it favors the bunching of the majority particles at the same or neighboring sites and
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disfavors them being more than two sites apart (panel c2). At negative couplings, it acts
in a similar way as in the case of shallow lattices, except that for a sufficiently strong
coupling strength (gAB < −4), where both entropy measures are of small magnitude see
Figures 4a and 5a, the SMF ansatz is in good accordance with the many-body solution.

a1

a2

b1

b2

c1 d1

d2c2

Figure 7. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distri-
butions ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = 0.5, V = 1000 and for various values of gAB (see legend).

Lower panels: difference between probability densities obtained from many-body ML-X calculations and SMF ansatz, the
latter distinguished by a tilde sign. All quantities are given in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) with L denoting the extension of the box trap.

The impurity particle (panel b1) at positive couplings (gAB > 3) first develops two
humps, but then as the coupling increases, the relative distance between those peaks
grows, while the humps themselves become flatter. There is a strong signature of an
onset of a four-peak structure at gAB = 5. This is in accordance with the increasing
relative distance between the species (panel d1) and the fact that the majority atoms are
distributed uniformly over all the lattice sites in contrast to gAA = 0.5, where the majority
component was occupying mainly the central and the intermediate sites. At negative
couplings (gAB < −3) ρB

1 and ρAB
r shrink with decreasing gAB.

The entanglement favors the process where the impurity atom moves from the box
center to its boundaries independently of the sign of the coupling (panel b2). At gAB < −4.0
it plays only a minor role, the same as for the majority component. Regarding ρAB

r , at
positive couplings the entanglement favors the process of phase separation by pushing the
impurity particle more than two sites apart from a majority atom (panel d2). At negative
couplings it enhances the bunching between the two species, even when the entanglement
entropy is very small (e.g., at gAB = −5.0).

4.3.2. Moderately Repulsive Interacting Majority Component

Considering our findings regarding fidelity and entropy measures we investigate
here only shallow lattices at positive couplings Figure 8, where the structural changes
caused by the coupling and the entanglement entropy SvN may have a sizable impact on
density distributions. The decoupled density of the majority component (panel a1) has
three pronounced humps at the central (z = 0) and intermediate sites (z = ±0.2). The
profile is overall more spread compared to a weakly interacting majority (cf. Figure 6 panel
a1). Indeed, it is most beneficial for two particles to occupy neighboring sites (see the
two humps in panel c1). The majority component gets only a weak feedback from the
presence of a repulsive impurity atom, even at coupling strengths comparable to gAA in
accordance with the robustness of FA

1 in Figure 3b. The role of the entanglement is also
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rather weak, though qualitatively different to gAA = 0.5 in Figure 6. Thus, it increases the
probability for the majority particle to be found at the region enclosed between the two
intermediate sites, while decreasing the probability to be detected outside of that region
(panel a2). Furthermore, it favors particle distances of a half lattice constant (al = 0.2R∗)
(panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 8. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = 3.0, V = 100 and for different values of gAB (see legend). Lower

panels: difference between probability densities obtained from the many-body ML-X calculations and SMF ansatz, the latter
distinguished by a tilde sign. All quantities are provide in terms of box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L is the extension of the box trap.

The impurity particle (panel b1) experiences phase separation similar to Figure 6
(panel b1), i.e., upon increasing gAB it develops two humps with a minimum at the trap
center. Then, those humps separate and flatten, until finally they would form a four-
hump structure with three local minima located at the position of the three peaks in the
majority component density (compare to panel a1). The separation between the species is
again clearly manifested as two humps in ρAB

r with favored distance of a lattice constant
(al = 0.2R∗) (panel d1). The entanglement affects the impurity atom in quite an opposite
way when compared to the majority component (panel b2), i.e., it decreases the probability
for the impurity atom to be found at the region enclosed between the two intermediate
sites, while increasing the probability to lie outside of that region. Additionally, similar to
the behavior at weaker gAA (cf. Figure 6 panel d2), the entanglement accelerates the phase
separation process (panel d2).

4.3.3. Attractively Interacting Majority Component

Finally, we concentrate on negative intraspecies interactions gAA, namely a weak
negative gAA = −0.4 at negative gAB Figure 9, contained in the parameter sector with
substantial entanglement entropy Figure 4c.

In Figure 9, a decoupled majority atom where gAB = 0 is localized at the central
(z = 0) and intermediate (z = ±0.2) wells (panel a1). Even though the majority atoms are
attracted to each other, the probability to be one or even two wells apart is still sizable
(panel c1). With decreasing gAB both ρA

1 and ρAA
r shrink to a Gaussian. The impact of

entanglement is quite different compared to the previously considered cases. Thus, at
gAB > −4.8 the entanglement slows down the process of ρA

1 localization at the central well
(panel a2). The strongest impact is reached around gAB ≈ −2.4, where the entanglement
entropy is largest for the given value of intracomponent interaction gAA = −0.4 Figure 4c.
Below gAB < −4.8, as the entanglement entropy suddenly drops, so does the difference to
the SMF ansatz. The intercomponent correlations favor clustering of the majority atoms at
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−2.4 < gAB < 0 and gAB < −4.2, whereas at −4.2 < gAB < −2.4, where the entanglement
entropy is largest, they inhibit the clustering (panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 9. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = −0.4, V = 500 and for various values of gAB (see legend). Lower

panels: difference between probability densities obtained from the variational ML-X simulations and SMF ansatz, the
latter distinguished by a tilde sign. All quantities are expressed in box units of characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L being the extension of the box trap.

The impurity density ρB
1 shows a similar behavior as the majority component density

(panel b1), also in terms of the role of the entanglement (panel b2). The width of ρAB
r

shrinks with decreasing gAB (panel d1), while the entanglement enhances the bunching
between the two species (panel d2).

5. Quench Induced Tunneling Dynamics

Having analyzed in detail the ground state properties of our system, we subsequently
study the dynamical response of a single impurity coupled to a lattice trapped species upon
quenching the interspecies interaction strength gAB. To this end we prepare the system in its
ground state for V = 500, gAB = 6.0 and gAA = 0.5, leading to the formation of a two-fold
degeneracy in the ground state and the two species phase separate [46]. In this sense, the
ground state one-body density is given by a superposition state of two parity-symmetry
broken configurations, where the density of the first one is depicted in Figure 10a and the
second one corresponds to its parity-symmetric (with respect to x = 0) counterpart. It is
possible to remove this degeneracy in order to select any of the states in the respective
degenerate manifold. Technically, this is done by applying a small asymmetry, e.g., a tilt, to
the lattice potential, thereby breaking the parity symmetry and energetically favoring one
of the above-mentioned states [50].

To trigger the dynamics starting from the initial state configuration illustrated in
Figure 10a we quench the interspecies interaction strength to a smaller value. As a rep-
resentative example of the emergent tunneling dynamics of each species we present the
temporal evolution of the corresponding one-body densities in Figure 10c,d following a
quench to gAB = 4.5, while keeping fixed V = 500 and gAA = 0.5. In this case the impurity
performs an oscillatory motion which is reminiscent of the tunneling of a particle in a
double-well. This can be attributed to the lifting of the degeneracy for smaller interspecies
interaction strengths. For a post-quench value of gAB = 4.5 the initially prepared state has
a substantial overlap with the post-quench ground state and the first excited state such
that in the course of the dynamics the system will oscillate between those two. This is
similar to a single particle in a double-well which is prepared as a superposition of the
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first doublet and undergoes a tunneling between the sites. Correspondingly, the majority
species will undergo a collective tunneling in the lattice geometry [50,53]. Thus, the prob-
ability distribution of a single majority species particle will oscillate between the initial
distribution Figure 10a and its parity-symmetric counterpart. Due to the repulsive nature
of the interspecies coupling the two species move in opposite directions such that they end
up in phase-separated configurations after half a period. Note that the oscillation period,
being the energy gap between the two energetically lowest eigenstates of the post-quench
Hamiltonian (not shown here), depends on the post-quench gAB. This can be easily verified
by monitoring the temporal evolution of the averaged position of the impurity [13] which
is defined as

〈X̂B〉 =
∫ L/2

−L/2
dxρB

1 (x)x. (11)

Figure 10. (a) One-body density ρσ
1 (x) of the initial state configuration for V = 500, gAA = 0.5 and gAB = 6.0 at t = 0.

Temporal evolution of (b) the averaged position of the impurity 〈X̂B〉 (see Equation (11)), (c) the one-body density of the
majority species and (d) the one-body density of the impurity upon quenching the interspecies interaction strength to
gAB = 4.5.

For various post-quench gAB we find that the impurity will occupy its parity-symmetric
counterpart, reflected in the decrease of 〈X̂B〉 towards negative values, while the oscillation
decreases with smaller gAB Figure 10b.

In order to gain insight into beyond mean-field effects we investigate the natural
populations nσ

j (see Equation (8)) which indicate the degree of fragmentation of the sub-
system [9,71]. For simplicity here we present the populations of the first two dominantly
populated natural orbitals while using six orbitals in the actual calculations. The initial
depletion of both subsystems is rather small, i.e., nA

1 ≈ 0.996 and nB
1 ≈ 0.99, such that any

decrease of these populations upon quenching gAB is due to dynamical many-body effects.
We find that for both subsystems dominantly two natural orbitals contribute during the
dynamics Figure 11c,d, while the ones of the medium are less impacted by the quench. For
the natural populations of the impurity signatures of an oscillation can be observed, where
nB

1 initially decreases and revives back towards nB
1 ≈ 0.99, while nB

2 initially increases and
afterwards drops back to nearly zero. In order to attribute the occupation of the additional
natural orbital to physical processes, we analyze the spatial distribution of the natural
orbitals ΦB

j (x, t) (see Equation (8)) themselves focusing on the impurity Figure 11a,b. In
Figure 11a we observe that the first natural orbital corresponds to the oscillatory behav-
ior of the one-body density of the impurity, but lacking the smooth transition between
the phase-separated configurations (see Figure 10d). The first natural orbital dominates
during the dynamics and we can interpret its behavior as corresponding to the presence
of the phase-separated density configurations. Consequently, the second natural orbital
Figure 11b, resembling the mirror image of the first one, contributes to deviations from
this solution. Due to its structure we can deduce that it is responsible for initiating the
transport of the impurity, thereby allowing for the counterflow of the two species. Note
that the presence of more than one natural orbital during the dynamics is a clear signature
that mean-field theory would not provide an accurate description of the system dynamics.
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Hence, the fact that |ΦB
2 〉 is occupied is a manifestation of many-body effects, influencing

the motion of both species.

Figure 11. Temporal evolution of the density of (a) the first and (b) the second natural orbital ΦB
j (x, t) (see Equation (8))

of the impurity and (c), (d) the natural populations nσ
j of both subsystems upon quenching the interspecies interaction

strength gAB of the ground state in Figure 10a to gAB = 4.5.

6. Summary and Outlook

In this work we analyze the static and dynamical properties of a few-body particle-
imbalanced bosonic mixture at zero temperature. Importantly, the components are exposed
to different one-dimensional external traps where the majority species is subject to a finite
lattice potential while the single impurity is trapped in a box of the same extension as the
lattice. We study the response of the composite system upon the variation of majority-
impurity coupling gAB and majority component internal parameters being either the lattice
depth V or the majority-majority interaction strength gAA.

To quantify the response of static properties we employ the fidelity between two
density operators describing ground states at zero and a finite intercomponent interaction
gAB. We contrast the response at the many-body to the single-particle level. We observe
that the composite system is quite robust to the variation of the intercomponent interaction
at strongly repulsive gAA, while being fragile at strongly attractive gAB and deep lattices V
as well as when gAA is weakly attractive and gAB is strongly attractive. Upon comparison
to the fidelities between the corresponding reduced one-body density operators of each
component, we not only observe that each species is affected to a much smaller degree,
but they also respond differently. Thus, for the impurity atom the deviation from the box
ground state increases smoothly with increasing absolute value of gAB, while the reduced
density of the majority component remains very robust to gAB variations except for the
above mentioned parameter regions where the many-body fidelity exhibits significant
structural changes in the ground state.

Next, we have been performing a further classification of our system based on entropy
measures. Namely, we quantify the amount of entanglement and intraspecies correlations
deposited in the binary mixture by evaluating the von Neumann entropy of the respective
subsystems. Interestingly, we find that our composite system is only weakly entangled
for parameter regions which undergo substantial structural changes. Additionally, we
observe that while the entanglement entropy continuously grows with increasing repulsive
gAB, it does not behave the same for attractive gAB, where it reaches a local maximum at a
finite value of gAB < 0. Another peculiar observation is that the fragmentation entropy
of the majority component undergoes a strong variation for parameter regions, where
the fidelity measure does not show any evidence of majority particles being affected by
the intercomponent interaction. Even though the mixed character of the reduced density
of the medium suffers from substantial changes, it remains un-observable on the single-
particle level.

To visualize our observations stemming from the fidelity measure we show the one-
body density distributions of each component along with the probability distributions
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for two particles of the same or different species to be measured at a relative distance
from each other. These quantities are usually accessible in state-of-the-art ultracold atom
experiments and determine the expectation values of local one- and two-body observables.
Indeed, strong deviations appearing in the fidelity at the single-particle level are also
clearly visible in the corresponding one-body density. At positive couplings we observe an
interspecies phase separation where the impurity is pushed to the box edges, while leaving
the majority component intact. At negative couplings both components tend to increase
their localization at the central well.

To further quantify our conclusions stemming from the entanglement measure we rely
on the difference between the above probability distributions and the corresponding ones
when assuming a disentangled state in our calculations. Again, we find strong deviations
for parameters displaying high entanglement entropy values. Thus, at positive couplings
the entanglement favors the process of phase separation, while at negative couplings it
generally, but not always, counteracts the localization of both species.

Quenching the interspecies interaction strength we are able to induce a dynamical
process which for the impurity is reminiscent of the tunneling of a single particle in a
double well potential. This can be attributed to the lifting of the degeneracy for the
corresponding post-quench Hamiltonian as well as the substantial overlap of the initial
state configuration with the post-quench ground state and the first excited state. Due to
the repulsive interspecies interaction also the majority species will undergo a tunneling
in the lattice geometry such that the two species move in opposite directions, ending up
in phase-separated configurations after half a period. We identify the presence of two
dominant natural orbitals for the impurity species during the dynamics, where the first one
corresponds to phase-separated configurations in the respective one-body density, while
the second one resembles the mirror image of the first one. The presence of an additional
natural orbital emphasizes the many-body character of the dynamics, thereby influencing
the motion of the impurity.

There are various promising research directions that are worth pursuing in the fu-
ture. Indeed, the generalization of our findings for an increasing particle number in the
medium or larger lattice potentials as well as the role of the lattice filling factor is desir-
able. Furthermore, a more elaborated analysis on the possibly emerging impurity-medium
bound states or the engineering of droplet-like configurations in such settings at strong
intercomponent attractions would be important. Furthermore, it would be intriguing to
study the persistence and possible alterations of the identified spatial configurations in the
presence of finite temperature which will impact the coherence of the lattice bosons [88–90].
Another perspective is to investigate the relevant radiofrequency spectrum [31,43] in order
to capture the emergent polaron properties including their lifetime, residue and effective
mass especially in the attractive interaction regimes of bound state formation.
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