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Abstract
Natural products have served human life as medications for centuries. During the outbreak of COVID-19, a number of
naturally derived compounds and extracts have been tested or used as potential remedies against COVID-19. Tetradenia
riparia extract is one of the plant extracts that have been deployed and claimed to manage and control COVID-19 by
some communities in Tanzania and other African countries. The active compounds isolated from T. riparia are known
to possess various biological properties including antimalarial and antiviral. However, the underlying mechanism of the
active compounds against SARS-CoV-2 remains unknown. Results in the present work have been interpreted from the
view point of computational methods including molecular dynamics, free energy methods, and metadynamics to establish
the related mechanism of action. Among the constituents of T. riparia studied, luteolin inhibited viral cell entry and was
thermodynamically stable. The title compound exhibit residence time and unbinding kinetics of 68.86 ms and 0.014 /ms,
respectively. The findings suggest that luteolin could be potent blocker of SARS-CoV-2 cell entry. The study shades lights
towards identification of bioactive constituents from T. riparia against COVID-19, and thus bioassay can be carried out to
further validate such observations.

Keywords COVID-19 · Docking · Luteolin · Metadynamics · SARS-CoV-2

Introduction

Traditionally, drug design and development is quite lengthy,
costly, and a challenging process. On average, it takes
about 12–15 years, costing $2.6 billion for a new drug to
the approval stage [1]. The approval rate of new drugs to
enter clinical market is only 12% [1]; unfortunately, some
drugs are banned from clinical uses due to undesirable
pharmacokinetic profiles. Lack of new chemical entities
entering the pharmaceutical companies in recent years and
high costs associated with traditional drug design suggest
drug repurposing alogside searching for and predicting new
drugs entries aided by computational approaches [2, 3].
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The recent outbreak of coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) continues to pose a public
health threat. The disease was declared by the World Health
Organization (WHO) as a global health emergency, causing
more deaths than SARS and MERS [4, 5]. Efforts to find
drugs and vaccines to treat the disease are ongoing around
the globe, yet there is no single approved drug to treat
the disease. Hospitalized patients are generally managed
based on the developing symptoms. Many countries have
employed different approaches to combat and control the
outbreak. The use of plant derived extracts is among many
strategies employed by Tanzanian communities to fight
COVID-19 outbreak. As an example, Tetradenia riparia
(Hochst.) Codd. (Lamiaceae) is among the sources of plant
extracts in use for the control and management of the
COVID-19 in Tanzania. Based on the local prevalence
of the disease, the extract seems to be effective. The
previously isolated compounds from the plant were reported
to exhibit several potential biological activities including
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antimalaria, antioxidant, antimicrobial [6], antiinflamatory
[7], and antiviral activities [8]. Following the impact of
the plant extract in Tanzania during COVID-19 pandemic,
it can be hypothesized that the compounds therein could
be potential inhibitors for SARS-CoV-2. However, the
underlying molecular mechanism of action of the active
compounds against SARS-CoV-2 (whether acting on the
virus itself or on the human immune system and blocking
viral cell entry) remains unknown and is a subject for
investigations reported in this paper.

Recent advances in computational power and methods
have accelerated the process of drug design, discovery,
and development, by studying pharmacological, biological,
and pharmacokinetic properties of lead molecules before
entering pre-clinical or clinical trials [9–12]. Computa-
tional approaches help in identifying molecules demonstrat-
ing both drug-like and undesirable properties at an early
stage, hence reducing both time and cost related to drug
development. Computational methods such as molecular
docking, molecular dynamics (MD), and enhanced sam-
pling approaches provide a deeper understanding on the
molecular mechanisms of small molecules and have been
widely used in drug design, discovery, and development
[10, 12–18]. Drugs such as antiviral protease inhibitors have
been identified through computational methods and are now
available for clinical administration [19].

Owing to the advantage of computational methods
in drug design, the present study employed different
computational approaches, viz. relaxed complex scheme
(RCS), molecular dynamics (MD), and metadynamics
simulation to investigate the probable mechanism of
action and the binding/unbinding processes of the most
active compound. Nine previously isolated compounds
(displayed in Fig. 1) from T. riparia were screened through
computational methods. The work identified luteolin as a

blocker of SARS-CoV-2 viral fusion. Coincidentally, the
molecule was also previously reported to inhibit viral fusion
of the old SARS-CoV, and recently suggested as dietary
supplement againt COVID-19 [7].

Computational methods

Ensemble-based docking screening

Accommodating protein flexibility in docking calculation
is a challenge in drug design; many docking tools can
treat ligand as flexible and protein as rigid. Some of
the tools like Autodock [20] allow side chain residue
fluctuations, however, not the entire protein. In this study,
an ensemble structure of the protein from MD simulation
was used in order to perform flexible protein-ligand docking
screening. The apo protein was subjected to MD simulation
as described in next subsection. From the equilibrated
structure, a total of 40 snapshots were extracted and
subjected to docking calculations. Docking calculations
were performed on two structures, i.e, crystal structure
and ensemble structures. For crystal structure, five docking
runs were performed to investigate the effects of ligand
flexibility; the lowest binding energies were selected from
each run and averaged. For ensemble structures, the
ligands were docked to all generated snapshots to reflect
protein flexibility. Ligand and protein preparations, as well
as docking screening calculations, were performed using
AutoDock Vina [20]. It is important to highlight that
our docking calculations were validated using a set of
experimental data reported in our recent developed protocol
[3, 21] as well as comparison to root mean square deviation
(RMSD) values of the redocked molecule which gave an
acceptable value of 2.5 Å (Fig. S1).

Fig. 1 Chemical structures of natural product isolated from Tetradenia riparia
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Here, we present a brief description of the protocol.
The ligands displayed in Fig. 1 were obtained from the
literature [6, 22, 23]. Avogadro package [24] was used
to generate the 3D geometries then brought to minimum
conformational energy using universal force field (UFF)
available within the code, hydrogen were added at a pH
= 7.4. Minimized structures were saved in pdb file format
and then converted to pdbqt file format using OpenBabel
tool [25]. The protein structures were obtained from the
RSCB protein data bank (PDB) with the following PDB
IDs: spike RBD-ACE2 (6LZG), 3C-like protease (3CLpro)
(6LU7), native human ACE2 (1R42), RdRp (6M71),
PLpro (6W9C), Nsp9 RNA-binding protein (6W4B), and
nucleocapsid N-terminal RNA-binding protein (6M3M).
Missing hydrogen at pH 7.4 and gasteiger charges were
added to all protein structures and were converted to pdbqt
format. Screening against spike RBD-hACE2 and other
protein structures was performed using our customized shell
script.

Molecular dynamics simulation

The configuration with the lowest binding free energy from
an ensemble-based docking experiment was used as the
initial structure for MD simulation. Molecular dynamics
for apo and holo proteins was performed using Gromacs
2016 employing OPLS-AA force field [26, 27]. Details
on MD simulation are reported in our recent work [21];
here, a brief description is provided. The system was
energy minimized using the steepest descent algorithm,
followed by equilibration at NVT (constant number of
particles, volume, and temperature) ensemble for 500 ps and
NPT (constant pressure) ensemble for 1 ns, with position
restraints. The equilibrated system was then subjected to
MD production run for 100 ns. During the equilibration
stage, both temperature and pressure were maintained
using Berendsen method [28]. For the production stage,
Parinello-Rahman and v-rescale were used for pressure
and temperature coupling at 1 bar and 300 K, respectively
[29, 30]. Periodic boundary conditions (PBC) were applied
in all directions. Particle Mesh Ewald (PME) was used
to treat long-range electrostatic interactions with a cutoff
distance on 11 Å for both electrostatic and van der Waals
interactions, while covalent bonds were constrained using
the LINCS algorithm [31, 32]; a time step of 2 fs was
used for all calculations. The MD configuration was used
for analysis and as the initial structure for metadynamics
simulation to investigate drug kinetics and residence time.

MM-PBSA binding free energy calculations

Molecular mechanics Poisson-Boltzmann (MM-PBSA) was
calculated using g mmpbsa tool [33]. The binding free

energy (ΔGbind) for protein-ligand interaction is expressed
as

ΔGbind = Gcomplex − (
Gprotein + Gligand

)
(1)

where Gcomplex represents the total free energy of the
protein-ligand complex while Gprotein and Gligand are the
total free energies of the isolated protein and ligand in
solvent, respectively. Furthermore, the free energy for each
individual entity were derived from

Gx = 〈EMM〉 + 〈Gsol〉 − T ΔS (2)

where x stands for the protein or ligand or protein-ligand
complex, T and S denote the temperature and entropy,
respectively, and T ΔS refers to the entropic contribution
to the free energy in a vacuum. The average molecular
mechanics (MM) energy in vacuum is denoted as 〈EMM〉;
this term includes bonded and non-bonded interactions.
〈EMM〉 is calculated based on MM force-field parameters as
follows

〈EMM〉 = 〈Ebonded〉 + 〈Enonbonded〉 = 〈Ebonded〉
+(EvdW + Eelec) (3)

where Ebonded are bonded interactions consisting of bond,
angle, dihedral, and improper interactions. The nonbonded
interactions Enonbonded include both electrostatic (Eelec)
and van der Waals (EvdW) interactions and are modeled
using a Coulomb and Lennard-Jones (LJ) potential function,
respectively. The free energy of solvation 〈Gsol〉 includes
Gpolar and Gnon−polar and can be calculated as

〈Gsol〉 = Gpolar + Gnon−polar = Gpolar + (γ × SASA + b) (4)

where γ is a coefficient related to surface tension, SASA
stands for solvent accessible surface area and b is the
fitting parameter, and T ΔS is the entropic contributions to
free energy. In g mmpbsa, an entropic contribution is not
considered [33]. The binding free energy was calculated
using a single trajectory, where a total of 200 snapshots were
evenly extracted at a predetermined time from the first 40
ns and last 40 ns of the trajectory. The solvent and solute
dielectric constants were 80 and 2, respectively, and γ was
0.0227; the PB equation was solved by using the linear
PBsolver.

Previous studies have suggested that binding free energy
and per-residue energy decomposition are important to
establish the underlying mechanism and biological activities
of the molecules in protein-ligand or protein-protein
interaction [34]. In this study, the per-residue decomposition
was performed to provide further insights on the mechanism
of ligand under investigation.
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Linear interaction energy (LIE)

Linear interaction energy (LIE) is an efficient end-point
method suitable in calculating the binding affinity of
drugs to receptors with large pockets and conformational
flexibility [35]. In order to evaluate the binding affinity of
the selected drugs to their active site, LIE was performed. In
this approach, the binding free energy (ΔGbind) is calculated
by averaging the ligand surrounding potentials (van der
Waals and electrostatic contributions) when the ligand is
in bound state 〈Ul-s〉b and when it is free (unbound state)
〈Ul-s〉f as follows:

ΔGbind = αΔ
〈
Uvdw

l-s

〉
+ βΔ

〈
U elec

l-s

〉
+ γ (5)

A generalized LIE can be written as shown in Eq. 6

ΔGbind = (α
〈
Uvdw

l-s

〉

b
−

〈
Uvdw

l-s

〉

f
) + (β

〈
U elec

l-s

〉

b
−

〈
U elec

l-s

〉

f
) + γ (6)

where the notation 〈〉 represents an ensemble average
obtained from MD simulation. α, β are empirical parame-
ters for Coulomb and Lennard-Jones component of energies
and were selected as 0.18 and 0.5, respectively. Such val-
ues have successfully reproduced experimental results [35,
36]. The offset parameter γ is related to hydrophobicity of
the active site and is empirically determined [35, 36]. In this
study, LIE was calculated using the lie module embedded
in GROMACS.

Well-temperedmetadynamics (WT-MetaD)

Drug unbinding kinetics and residence time were investi-
gated using well-tempered metadynamics simulation [16].
In metadynamics (Eq. 7) [17, 37], a history-dependent bias
potential, V , constructed along the selected reaction coordi-
nate �s(q), called collective variables (CVs), is built as a sum
of Gaussian kernels (height (W ) and width (δ)) deposited
along the trajectory in the CVs space:

V (s, t) =
∑

kτ<t

W(kτ) exp

(

−
d∑

i=1

(Si − si(q(kτ)))2

2δ2
i

)

(7)

where t is the deposition time and τ is the time interval
where Gaussian potential with height is added on the
position si (q(kτ )) of the biased molecules.

In WT-MetaD, the Gaussian height decreases with
simulation time as shown in Eq. 8.

W(kτ) = W0 exp

(
−V (s(q(kτ)), kτ )

kBΔT

)
(8)

where W0 is the initial Gaussian height, kB is the Boltzmann
constant, and ΔT is the input parameter with the dimension
of temperature that controls how the W reduces as the well
is filled. To obtain best efficiency, the parameters W0 and

ΔT are chosen, and the free energy is computed using Eq. 9.

F(s) = −T + ΔT

ΔT
V (s, t → ∞) (9)

where T is the temperature of the system. During well-
tempered metadynamics, the bias factor γ is defined as the
ratio between the temperature of the CVs (T + ΔT ) as
indicated in Eq. 10.

γ = T + ΔT

T
(10)

The choice of collective variables

In the metadynamics simulation, the choice of collective
variables (CVs) is not a trivial process. In this work, to
better describe luteolin unbinding processes and residence
time, the selected set of CVs were employed. Such CVs
have also been used in other studies to investigate the ligand
unbinding process [38, 39] (Table 1).

CV 4 = S(r) =
1 −

(
r
r0

)6

1 −
(

r
r0

)10
(11)

During WT-MetaD, the biasfactor and Gaussian height
were set to 15 and 0.6 kJ/mol, respectively, the sigma values
were obtained from short unbiased MD simulation, and
the value of 0.05 nm for distance and 1 for coordination
number yielded good results. All WT-MetaD and free
energy analysis were performed using the plumed plugin for
MD simulation version 2.4 [40].

Results and discussion

Relaxed complex scheme improves binding affinity
and suggests luteolin as a blocker of SARS-CoV-2
viral fusion

Inhibiting viral cell entry is among the strategies in treating
viral diseases. Cell entry inhibitors block the virus’ fusion
to host cells and provides an important option for treating
viral-related diseases. Compounds designed to block viral
cell entry, for example, enfuvirtide [41] and maraviroc

Table 1 Set of CVs used to describe the residence time, kinetics, and
unbinding process of luteolin

CV Description

CV1 Heavy atoms distances between ligand and residue

CV2 Protein-protein separation distance

CV3 Center of mass (COM) distance between ligand
and interface residues

CV4 Coordination number defined in Eq. 11
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[42], are now available for the treatment of HIV which
antagonize the interaction between cellular receptors and
the viral surface glycoprotein thereby preventing cell entry.
SARS-CoV-2 enters human cells by strongly interacting
and attaching to the human angiotension-converting enzyme
2 (hACE2) [43]. The interactions of SARS-CoV-2 and
hACE2 are now well studied; as an example, in Fig. 2a,
we show that the virus uses anchoring amino acids such
as TYR453, TYR500, and TYR505 to strongly bind with
HIS34, ARG393, and LYS353 from hACE2. Targetting
inhibition and blocking viral recognition is a promising
approach towards the identification of drugs to treat
COVID-19. To provide molecular insights on whether
compounds isolated from Tetradenia riparia [6] could
work as viral cell entry inhibitors, an ensemble-based
virtual screening of nine active compounds was carried
out. Figure 2b shows the binding free energies for both
ensemble and crystal structure docking of the compounds
isolated from the plant. For all compounds 1–9 (Fig. 1),
the ensemble structure demonstrates more negative energies
when compared to crystal structure. Thus, this observation
suggests the improvement of the docking score to an
ensemble structure compared to the crystal structure.

Close examination on the binding affinity and mode
revealed that ligand 8 (luteolin) bound strongly exhibiting
binding energy of about −36.82 kJ/mol at the interface
interacting with residues TYR453, TYR505, and GLY496,
and HIS34, LYS353, ASP38, GLN35 from spike RBD,
and hACE2 (Fig. 4a). Interaction with these residues is
important for weakening the viral spike RBD affinity toward
hACE2, hence blocking viral cell entry. The ligands 2,
3, and 9 exhibit comparable crystal structure binding free
energies while ligand 7 shows the least binding free energy
value.

Accommodating protein flexibility plays an important
role in drug design. In this work, a RSC was performed
to access whether it could improve the docking scores and
eliminate false positive binders. The results suggest that
luteolin selectively binds at the interface with high affinity

by blocking viral cell entry. The ability of both luteolin
and other ligands to bind different SARS-CoV-2 target
proteins was investigated as well (see Fig. S1). Similarly,
luteolin shows higher affinity with hACE2 (Fig. S2). It was
observed that when luteolin was docked to an ensemble
structure its binding free energy decreased to −33.05 kJ/mol
compared to −38.49 kJ/mol of the crystal structure (see
Fig. 2). Small binding free energy for ensemble structure is
attributed to large hACE2 pocket volume which allows the
global flexibility of the residues. The dynamical stability,
unbinding kinetics, and residence time of luteolin was
investigated by classical MD and metadynamics simulation
as discussed in the following section.

Classical MD simulation

Ligand dynamics and stability at spike RBD-hACE2 interface

Docking algorithms are powerful in discriminating good
and bad binders; however, they suffer from dynamical
and stability issues. To address such challenges, classical
MD simulation was performed to understand the dynamics
and stability of the ligand at the interface. Root mean
square deviation (RMSD) and ligand-protein distances were
analyzed to provide insight on the stability and dynamics
of the ligand, respectively. Ligand RMSD (distance RMSD
and least square fit RMSD) displayed in Figs. 3 and S6
suggest ligand dynamics at the interface. Ligand distance
RMSD measures how the ligand changed from its initial
docking pose. During the first 5 ns, the ligand remained to
its initial docking pose, then changed to second pose where
it remained until 38 ns, then it exhibited transition poses
until 65 ns. From 65–80 ns, it returned to the second pose
and then moved to the third pose where the ligand remained
for 5 ns and returned to the second pose where remained
stable until the end of the simulation time. The measured
RMSD after least square fit indicated two conformation
states. First, during the first 30 ns, the ligand remained
stable, and then exhibited transition conformation states

Fig. 2 Relaxed complex scheme improves the binding affinity of luteolin. (a) Residues at the interface involved in SARS-CoV-2 host cell fusion;
(b) ensemble and crystal structure docking of the compounds isolated from the plant
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Fig. 3 Ligand dynamics at the ACE2-RBD interface. (a) Ligand distance RMSD and (b) Ligand RMSD obtained after least square fit

during 35–50 ns where the RMSD raised from 0.09 to
0.15 nm and remained until 90 ns where it decreased to
0.09 nm. These two RMSD indicate that luteolin exhibited
two conformation state; the RMSD of ≤ 0.3 Å obtained after
least square fit suggests stability.

Detailed analysis on the dynamics of the ligand at the
interface was performed, Fig. 4a shows residues-ligand
heavy atom distances and hACE2 spike RBD distance
measured for different residues. Furthermore, the snapshots
during simulation period are extracted and shown, as
indicated from the RMSD profile. It was observed that,
luteolin remained in its docking pose with only few
fluctuations until 38 ns. Then, two major transitions were
observed between 38 and 60 ns before attaining the second
pose. The dynamic and binding pose changes of luteolin
suggest strong affinity of the anchoring residues between
the virus and host cells, which pushes luteolin to another
pose. It is interesting to note that luteolin showed stability
at the interface which disrupts the recognition between the
two proteins as indicated in Fig. 4b. Within the limitation
of classical MD simulation, the presented probability
distribution suggests that luteolin can disrupt the recognition
of the two proteins as discussed in “Metadynamics” section.

Free energy calculations by MM-PBSA and LIE suggest
higher binding preference of luteolin to hACE2

Since docking calculation cannot precisely estimate the
ligand’s binding affinity to its pocket, end-point free energy
methods based on MM-PBSA and LIE which are effective
in estimating the binding free energies were performed
to evaluate the binding affinity of luteolin. The binding
free energy based on MM-PBSA is presented on Table 2.
The findings show that van der Waals and electrostatic
energy terms contributed significantly to the binding free
energy, while polar energy terms unfavorably contributed to
the binding free energy. This is attributed to hydrophobic

interactions between the residues at the interface and
luteolin. Energy decomposition and contribution of each
residue (Table 3) suggest residues from hACE2 to have
higher affinity with luteolin than those from spike RBD
except TYR505. Energy decomposition showed six residues
from hACE2 at the interface highly contributed to ligand
binding free energy as compared to the two residues
from the spike RBD. The total energy contributions to
binding free energy (in kJ/mol) of each residue follows the
trend; HIS34(−5.21) > ASP38(−5.03) > ARG393(−4.94)
> ASN33(−3.13) from hACE2 and TYR505(−6.50) >

ARG404(−2.88) from spike RBD (Table 3). From these
observations, one may conclude that luteolin exhibits higher
affinity with hACE2 residues which weakens the critical
node recognition at the interface.

Further analysis of the affinity of luteolin at the interface
was performed through LIE calculation. The obtained
results are as presented in Table 4. The interaction energies
were calculated for ligand in bound and free form, the
binding free energy obtained from LIE was −64.16 kJ/mol,
suggesting moderate inhibition. Both binding free energies
from MM-PBSA and LIE suggest that luteolin possesses
inhibitory effect by disrupting critical node recognition at
the interface.

Water dynamics at the interface and its role on
protein-protein and protein-ligand recognition

Interfacial water at protein-protein or protein-ligand plays
an important role in mediating and stabilization of the
interaction. In protein-ligand interactions, water is known
to improve the ligand’s recognition and binding affinity
[44, 45]. To account for the role of water in the discovery
of SARS-CoV-2 cell entry inhibitors, we report water
dynamics at the interface and its influence on the binding
nature and stability of the ligand. Here, we demonstrate
that the ligand binding has a potential role in disrupting
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Fig. 4 Ligand and protein dynamics. (a) Residues-ligand heavy atom distances. (b) hACE2 spike RBD distance measured for different residues
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Table 2 MM-PBSA calculation results (kJ/mol)

System EvdW Eele Epolar Enon−polar ΔGbind

Complex 1 −105.54 −50.65 99.19 −32.93 −89.94

this nature of interactions and establish a new interaction
pattern. First, the concentration of water in the hydration
shells of the anchoring residues with lower binding
free energy was analyzed by radial distribution function
(RDF) for the bound complex as shown in Fig. 5a-
b. One can see that water is peculiarly interacting with
amino acid, some residues, for example, LYS353 shows
distinct hydration shell as compared to HIS34 and TRY453
(Fig. 5b). This interactions, prompted us to investigate the
dynamics of water at the hACE2-spike RBD interface. A
recent computational work showed that bridging water at
the hACE2-spike RBD interface stabilizes the interaction
through formation of hydrogen bonds [46]. It was shown
that on average for the apo protein, there are about 20
bridging water at the interface forming hydrogen bonds
between the two proteins. We show that the binding of
the ligand disrupt the established water networks. To that
end, the number of bridging water molecules for the holo
protein within 3.5 Å was calculated. It is observed that, as
shown in Fig. 6a, the number of water ranges from 8–17 for
different residues; in Fig. 6b, we show that water molecule
(W2) stabilizes the interaction by mediating the interaction
between ligand and TYR453 by forming hydrogen bonds.
To gain insights on the dynamics of the bridging water,
the survival probability and water residence time near the
residues hydration shells were calculated.

The survival probability of water at interface and near the
residues indicates different dynamical behavior upon ligand
binding. The number of water molecules near HIS34 and
TYR505 within the same hydration shell is different. For
example, in the first hydration shell, the number of water

Table 3 The calculated per-residue energy contributions (kJ/mol); in parenthesis is standard deviation

Residue MM Polar Non-polar ΔGbind

hACE2

ASN33 −6.16(0.19) 3.94(0.18) −0.92(0.03) −3.13(0.12)

HIS34 −10.35(0.20) 6.92(0.17) −1.79(0.04) −5.21(0.17)

GLU37 −8.79(0.70) 6.6(0.44) −0.39(0.03) −2.55(0.36)

ASP38 −6.43(0.44) 1.56(0.32) −0.17(0.01) −5.03(0.22)

PRO389 −2.81(0.07) 0.5(0.02) −0.45(0.04) −2.77(0.11)

ARG393 −7.65(0.35) 3.16(0.22) −0.46(0.02) −4.94(0.23)

spike RBD

ARG403 −11.37(0.51) 10.56(0.43) −2.08(0.05) −2.88(0.24)

TYR505 −7.29(0.23) 2.18(0.11) −1.41(0.04) −6.50(0.22)

Table 4 Linear interaction energies results (kJ/mol)

System
〈
V vdW

〉
b

〈
V elec

〉
b

〈
V vdW

〉
f

〈
V elec

〉
f

ΔGbind

Complex 1 −88.46 −93.73 −236.47 −60.14 −64.16

for HIS34 from hACE2 is nearly half to TYR505 from
spike RBD. To extract information on water residence time
near the residues, the survival probability is fitted to an
exponential function as [47].

S(t) = a · exp
(−(t/τs)

γ
) + b · exp (−(t/τ2))

+c · exp (−(t/τ3)) + np (12)

where np is the number of water present at the residue
throughout the simulation time; τs is the residence time
for the decay of the stretched exponential. τ2 and τ3 is
the residence time for slow biexponential decay for the
first and second component, respectively. γ represents a
quantitative measure of the deviation of the relaxation curve
from classical exponential function. The value of γ = 1
for classical exponential function; large value indicates
presence of system temporal disorders [47]. In the present
work, residence time of hydration water is defined as the
time during which a specific water molecules continuously
remain within the volume of 3.5 Å around the residue.
The best fit parameters in Fig. 5c and d are presented in
Table 5. Here, the average residence time of the stretched
exponential is obtained using the expression [47].

〈τs〉 = τs

γ
Γ

(
1

γ

)
(13)

where Γ is the gamma function
As shown in Fig. 5 and Table 5, the residence time

and number of water remaining near the surface of each
residue is different within the same hydration shell. The
residence time of water for HIS34 is higher than TYR505
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Fig. 5 The role of water in mediating luteolin-residue interaction. (a)
Interaction of water with both luteolin and residues at the interface; (b)
the radial distribution function (rdf) for water near different residues.

Water survival probability at residues for different hydration shells, (c)
first hydration shell (0.28 nm), and (d) second hydration shell (0.35
nm)

for the second hydration shell. HIS34 shows a slow dynamic
(higher value of residence time/longer residence time)
of water around the residue surface compared to water
dynamics near TYR505. The difference in residence time is

attributed to the nature of the surface residues, while HIS
is polar residue; TYR is an amphipathic due to possession
of both polar and non-polar characteristics. The three
components residence time for the second hydration shell

Fig. 6 Bridging water molecules. (a) The number of water remaining near HIS34 and TYR505 during the first 50 ns. (b) Water mediating the
interaction of luteolin and protein residues
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Table 5 Residence time of water near residues calculated by fitting the survival probability

ResID/cutoff a 〈τs〉 γ b τ2 c τ3 np

HIS34 (2.8 Å) 3.10283 131.581 0.31992 1.72165 7.06034 2.38106 23.6876 0.04441

TYR505 (2.8 Å) 2.98469 170.691 0.29819 6.03916 5.33047 2.79085 23.354 0.04169

HIS34 (3.5 Å) 4.19358 162.704 0.41879 1.87162 7.1286 4.33655 30.3072 0.12886

TYR505 (3.5 Å) 4.19099 134.351 0.41927 8.21212 5.3176 6.3524 23.1262 0.86089

for HIS34 was observed to be 162.70, 7.12, and 30.30 ps,
higher than that of TYR505 which was 134.35, 5.31, and
23.12 ps. The observed slow dynamic could be attributed
to the hydrogen bond between the residue surface and
water molecules for HIS34 unlikely for the counterpart.
The slow dynamics of water near polar/hydrophilic residues
has also been reported in other studies [47]. On the other
hand, we observe that the number of water remaining
near the surface of TYR is 0.86 higher than 0.12 for
HIS34, linking the free energy decomposition (Table 3)
and the amount of water remaining near the surface, one
can infer that, water near TYR505 mediated the interaction
by improving the binding free energy. Furthermore,
as observed for WT-MetaD (“Metadynamics” section),
simulation the unbinding processes proceeded via TYR505
suggesting strong interaction of luteolin and residue.
Although there is lack of experimental finding, our
observations are in accordance with other computational
work [47], where water molecules near polar/hydrophilic
were characterized to have slow dynamics.

Metadynamics

Classical MD simulation and binding free energy calcu-
lations are able to describe structural dynamics and the
major driving forces in complexes at equilibrium. Enhanced
sampling methods such as metadynamics are effective
and powerful in sampling configuration along the reaction
coordinates. In this work, WT-MetaD, a variant of meta-
dynamics which provides better control on convergence
and sampling errors, was employed to study the ligand
kinetics as well as protein-protein dissociation along the
selected CVs.

Ligand unbinding kinetics and residence time

The unbinding processes were obtained from three indepen-
dent WT-MetaD simulations runs of 80 ns, each starting
from the initial configuration obtained from MD simulation.
The convergence of each WT-MetaD run is presented in the
supporting information which shows all system converged
well (Fig. S3-4). It is good to mention that in all simula-
tions, luteolin was observed to exit at the spike RBD vicinity
near TYR505 and showed similar unbinding process. This

section, therefore, focuses on describing the first unbind-
ing process of luteolin from its native complex state. The
unbinding process indicates three binding stages as shown
in Fig. 7. The three stages reflects, native complex (bind-
ing), pre-complex and unbound states along the selected
CV with values of 0−0.8, 0.8−1.7, and ≥ 1.7 nm. As indi-
cated in Fig. 7a, the native complex is explored for about
18 ns, followed by 6 ns in the pre-complex state. The
bound and pre-complex states are separated by the energy
barrier of 49.4 kJ/mol as shown in Fig. 7b. To provide
further insights into the unbinding process of luteolin, the
coordination number was used as another CV. Figure 7c
shows a deep minimum at coordinates (0.4,30) for CV3 and
CV4 suggesting higher interaction of luteolin with hotspot
residues. However, at a distance ≥ 1 nm (pre-complex), the
coordination number decreases.

The representative snapshots taken at (0.4,30), (1.3,5)
and (1.8,1) are presented in Fig. 7d, to aid the discussion. At
the beginning of the metadynamics simulation, luteolin is in
its bound state (Fig. 7d(i)), interacting with the anchoring
residues shown in Fig. 2a at the interface. At t = 20 ns, the
unbinding proceeds near TYR505, at this stage the ligand
is interacting with both LYS353 and TYR505 before it
unbound and become full solvated.

To provide details on the disruptive nature of luteolin
to spike RBD-hACE2 recognition, as an example, the
free energy for the distance between two hotspot residues
TYR505 and LYS353 is monitored. Figure 8a and b shows
the 1D free energy surface for the spike RBD-hACE2 as
well as residue-ligand distances. One can note that the
distance between the two residues without luteolin at the
interface shows a minimum free energy at 0.5 nm; however,
upon binding of luteolin, the distance increases and shows
a minimum free energy at 1 nm. This suggests that the
binding of luteolin has a role in weakening the interaction
and recognition of the two proteins resulting in low affinity
(Fig. 8d) and hence failure to penetrate the human cells. On
the other hand, the distance between luteolin with residues
from hACE2 and spike RBD shows the minimum free
energy at 0.45 nm for two simulations (Fig. 8b).

To gain further insights into the unbinding progress,
the 2D free energy surface is presented in Fig. 8e which
suggests the existence of three states. The deep minimum
(state A) indicates strong affinity of the luteolin at the
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Fig. 7 Three binding states characterize first unbinding processes of
luteolin. (a) The time taken for luteolin to unbind before it comes again
to the native state, (b) the 1D free energy of the first unbinding process,

(c) 2D free energy surface showing a distinct state of luteolin, and (d)
representative snapshots of the unbinding process of luteolin

interface with anchoring residues from virus and hACE2
along with the selected CVs. It is further observed that
as the ligand unbind the protein-protein distance decreases
as indicated in state B. At state C, luteolin is in unbound
state and complete solvation, at this state, protein-protein
distance is observed to return to its original distance of
0.5 nm. Generally, the presented free energy shows that,
the unbinding pathway of luteolin proceeds through three
conformational states from state A via B to state C.

Drug residence time is known to predict in vivo
bioactivity [48]; in this study, residence time was calculated
using Eq. 14 to quantify how long does luteolin resides at
the interface.

τAB = τex · exp(−βΔF) (14)

where β = (kBT )−1, B is the Boltzmann constant, and T

is temperature. ΔF is the free energy difference between
the transition state (T S) and the bound state (FA), as shown
in Fig. 7b, the free energy difference between T S and
FA is 49.4 kJ/mol, the τex is as an average time taken
from bound state to unbound state, in our case τex was

found to be ∼450 ps . The calculated τAB and koff values
are 68.86 ms and 0.014/ms, respectively. Although, there
is no experimental data at the moment to confirm our
observations on the kinetics and inhibition of SARS-CoV-
2 cell entry with the studied ligand, the presented residence
time and unbinding rates suggest moderate inhibition and
hotspot recognition disruption.

Luteolin pharmacological properties

Luteolin, a dietary supplement, is reported to posses several
pharmaological properties including antioxidant and anti-
inflammatory [49]. Interestingly, previous experimental
works have suggested luteolin to block the old SARS-CoV
viral cell entry [50, 51]. Since SARS-CoV and SARS-
CoV-2 have a higher degree of similarity and have the
same mechanisms, they enter host cell by strongly binding
to human ACE2. Our finding, like previous experimental
work, suggests luteolin could work as SARS-CoV-2 cell
entry inhibitor. In addition, the present finding further
provides insight into the mechanisms of action and supports
the use of the plant for management and controlling
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Fig. 8 Disruption of hotspot recognition by luteolin. (a) The spike
RBD and hACE2 distance before and after binding of luteolin, (b)
unbinding free energy of luteolin measured by monitoring heavy
atoms from ligand and each residue as the function of CV1, (c–d) the

binding and interaction of luteolin at the interface, and (e) 2D free
energy for luteolin unbinding and protein-protein dissociation as a
function of CV1 and CV2

COVID-19. The possession of anti-inflammatory activities
provides benefits on the treatment of the diseases.

Conclusions

The present work provides insights into the possible mech-
anisms of the active compounds isolated from Tetrade-
nia riparia as potent SARS-CoV-2 inhibitors. Results
obtained from RCS, classical MD simulation, and metady-
namics simulations suggest luteolin as blocker of SARS-

CoV-2 cell entry. Although there is lack of experi-
mental work on luteolin as SARS-CoV-2, previous exper-
iments showed that luteolin inhibited viral cell fusion of
old SARS-CoV with human receptors. Our present finding
to some extend supports the use of the plant in manag-
ing and controlling COVID-19 and suggests luteolin as
a cell entry inhibitor. Possession of antioxidant and anti-
inflammatory activities also provides great opportunity of
luteolin as inhibitor of SARS-CoV-2. However, other exper-
imental works are still needed to expand our understanding
on the other possible mechanisms of action.
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