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Abstract

The amygdala plays an important functional role in fear and anxiety. Abnormalities in the

amygdala are believed to be involved in the neurobiological basis of panic disorder (PD).

Previous structural neuroimaging studies have found global volumetric and morphological

abnormalities in the amygdala in patients with PD. Very few studies, however, have

explored for structural abnormalities in various amygdala sub-regions, which consist of vari-

ous sub-nuclei, each with different functions. This study aimed to evaluate for volumetric

abnormalities in the amygdala sub-nuclei, in order to provide a better understanding neuro-

biological basis of PD. Thirty-eight patients with PD and 38 matched healthy control (HC)

participants underwent structural MRI scanning. The volume of the whole amygdala, as well

as its consistent sub-nuclei, were calculated using FreeSurfer software. Relative volumes of

these amygdala sub-regions were compared between the two groups. Results showed sig-

nificantly smaller volumes in the right lateral and basal nuclei in the patients with PD com-

pared with the HC. Lateral and basal nuclei are thought to play crucial role for processing

sensory information related with anxiety and fear. Our results suggest that these particular

amygdala sub-regions play a role in the development of PD symptoms.

Introduction

Panic disorder (PD) is an anxiety disorder characterized by recurrent panic attacks. It has a

lifetime prevalence of about 3%, and typically shows a chronic course. PD has been associated

with both decreased social functioning and lower quality of life, both of which have been

closely associated with symptom severity [1, 2]. Elucidating the neurobiological basis of PD is

thus an important endeavor as it could provide a target for the development of more effective

treatments.

Recent neuroimaging studies have provided evidence that patients with PD show functional

and structural abnormalities in limbic regions, frontal regions, and brainstem regions (see

reviews of [3] and [4]). The amygdala has been particularly heavily implicated, consistent with
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its established role in fear and anxiety. For example, a previous single photon emission com-

puted tomography study reported higher levels of glucose uptake in the amygdala in patients

with PD compared with healthy control (HC) participants [5]. A positron emission tomogra-

phy study reported that presynaptic and postsynaptic monoamine neurotransmitter serotonin

(5-HT) 1A receptor binding was reduced in the amygdala in untreated patients with PD com-

pared to HC [6]. Moreover, recent functional magnetic resonance imaging (MRI) studies have

demonstrated abnormalities in blood oxygenation level dependent (BOLD) activation in the

amygdala in patients with PD relative to HC [7–10].

In terms of structural neuroimaging studies, most previous region-of-interest (ROI)-based

analyses (which used manual tracing) have demonstrated either significant or trend level

smaller volumes of the amygdala in patients with PD compared with HC [11–13]. A whole-

brain voxel-based morphometry (VBM) analysis has also shown significantly smaller volumes

in amygdala in patients with PD relative to HC [14]. There are, however, some whole brain

VBM analyses that found no group differences in the volume of amygdala [15, 16]. In light of

this ambiguity, we thought it important to provide more evidence regarding the presence (or

absence) of structural abnormalities in the amygdala in patients PD using the most recent

technology.

The amygdala consists of several nuclei, including the lateral nucleus, basal nucleus, and

central nucleus. Each of these nuclei are connected with various other brain regions, as well as

other nuclei in amygdala. There is evidence to suggest that these nuclei each have discrete

functions [17]. According to the dominant neuroanatomical hypothesis of PD [18], the activity

of the amygdala is regulated by the medial prefrontal cortex (PFC), which includes the anterior

cingulate cortex, insula, and thalamus. Signals from the amygdala (modulated by the PFC) are

send to target brain regions including the hypothalamus and brainstem, and these signals pre-

cipitate the symptoms of PD. According to this hypothesis, the amygdala—particularly the lat-

eral nucleus, basal nucleus, and central nucleus—plays a crucial role in the genesis of PD

symptoms.

The present study aimed to evaluate whether structural abnormalities in amygdala, which

have previously been observed at a global level, were also observable at a finer-grained level, in

the various amygdala sub-nuclei. A previous study, from our laboratory, has detected a smaller

volume in the corticomedial nucleus in patients with PD compared with HC, using an ROI-

defined VBM analysis [13]. A previous morphometric (i.e., shape-based) analysis has also

found minute structural abnormalities in the amygdala in patients with PD. Specifically, the

PD patients demonstrated inward deformation in laterobasal and centromedial nuclei in the

amygdala compared with HC [19]. However, to the best of our knowledge, these are the only

two studies which have investigated for minute structural abnormalities in amygdala; there are

no previous studies which have calculated the volume of the amygdala sub-nuclei in patients

with PD.

In the present study, we calculated the volume of each nucleus of amygdala using state-of-

the-art analysis techniques, and conducted group comparisons between patients with PD and

HC. We speculated that smaller volumes would be confirmed in lateral nucleus, basal nucleus,

and central nucleus of the amygdala in PD patients relative to HC.

Material and methods

Subjects

Thirty-eight patients with PD (25 female and 13 male) and 38 HC (25 female and 13 male) par-

ticipated in this study. These participants were the same as those described in our previous

report [20], where demographic information is provided. Briefly, participants’ mean age was
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(mean ± standard deviation, [range]) 39.7 ± 9.9 [19–56] years old in the patients with PD and

39.0 ± 11.1 [22–58] years old in the HC. Participant’s/parental socioeconomic status (SES) [21]

score was 2.7 ± 0.9 / 2.8 ± 0.8 in the patients, and 2.5 ± 0.8 / 2.4 ± 0.9 in the HC. There were no

significant differences between the two groups in age, gender ratio or parental SES. In the PD

group, patients’ mean duration of illness was 4.7 ± 5.8 years, their mean score on the Panic

Disorder Severity Scale (PDSS) was 12.3 ± 5.5, and their mean score on the Global Assessment

of Functioning (GAF) was 61.0 ± 9.3. Patients were recruited from inpatient and outpatient

units of Yokohama City University Hospital, and all the patients were currently taking antide-

pressant and/or benzodiazepine medications [20]. HC were recruited from the community

and hospital staff. This study was approved by the Medical Research Ethics Committee of

Yokohama City University. After providing a complete description of the study, we obtained

written informed consent from all participants.

Image processing and volume comparison

MR images were acquired with a 1.5-T Magnetom Symphony system (Siemens Medical Sys-

tem, Erlangen, Germany) at Yokohama City University Hospital. A series of 128 contiguous,

sagittal T1-weighted slices were acquired [20, 22]. A series of 128 contiguous T1-weighted

slices in sagittal images was acquired with a Turbo FLASH sequence with the following param-

eters: echo time = 3.93 ms, repetition time = 1960 ms, inversion time = 1100 ms, flip angle =

15, field of view = 24 cm, matrix = 256x256x128, and voxel dimensions = 0.9375x0.9375x

1.5 mm.

Image analysis was employed using the FreeSurfer software (ElCapitan-development ver-

sion; http://surfer.nmr.mgh.harvard.edu/). The technical details of the procedures have been

described elsewhere [23]. In short, the image procedure included motion correction, intensity

normalization, skull stripping, segmentation of white matter, tessellation of the grey/white

matter boundary, automated topology correction, and surface deformation. The volume of

whole amygdala, as well as the volumes of its nine constituent nuclei were calculated for each

hemisphere. The nine nuclei were: lateral nucleus, basal nucleus, central nucleus, medial

nucleus, cortical nucleus, accessory basal nucleus, corticoamygdaloid transition, anterior

amygdaloid area, and paralaminar nucleus [24] (Fig 1). Intracranial content volumes were

obtained via a MATLAB function, and relative volumes of these regions were calculated.

To assess group differences between the patients with PD and HC in the volume of the

whole amygdala and each of its constituent nuclei, univariate covariance analyses controlling

for age and sex were employed. Significance threshold was set at P< .025 for volume compari-

son of the whole amygdala. For the comparison of each nucleus, P< .008 (i.e., .05/ 6 regions)

was adopted for the lateral, basal, and central nuclei because of the hypothesis-driven nature of

these analyses, and P< .0028 (i.e., .05/ 18 regions) was used for the other nuclei. For any

region in which volumetric differences were observed, Pearson correlation analyses were con-

ducted between the volume of the structure(s) in question and patients’ scores on the PDSS

and GAF. A critical p-value of p< .05 was used for the correlational analysis.

Results

The patients with PD showed a significantly smaller volume in the right whole amygdala com-

pared with the HC. In the sub-nuclei analysis, significant smaller volumes in the right lateral

nucleus and the basal nucleus were demonstrated in the PD patients compared to the HC

(Table 1). There were no group differences in the volume of the central nucleus, or any other

nuclei. Correlation analyses showed no significant associations between volumes of the right

lateral and basal nucleus and scores of the PDSS or GAF in the patients with PD.

Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0207163 November 7, 2018 3 / 8

http://surfer.nmr.mgh.harvard.edu/
https://doi.org/10.1371/journal.pone.0207163


Discussion

To the best of our knowledge, this is the first study to evaluate the volume of the amygdala

sub-nuclei in patients with PD. The results demonstrated that the PD patients exhibited signif-

icantly smaller volumes in the right lateral nucleus and basal nucleus of the amygdala, com-

pared with the matched HC participants.

In the current study, we first confirmed that the patients with PD exhibited significantly

smaller volumes of the right (whole) amygdala, relative to the HC. This result is in line with

previous volumetric studies which have used manual tracing methods and observed smaller

global volumes of the amygdala in PD patients [11–13], as well as one automated study which

used a whole brain VBM analysis [14]. Given the consistency of this finding, it is possible that

volumetric deficits may represent the structural basis of the functional abnormalities in the

Fig 1. Nuclei of the amygdala. a) 3D image was constructed using 3D-Slicer. b) Coronal images of the nuclei in the right amygdala.

https://doi.org/10.1371/journal.pone.0207163.g001
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amygdala that have consistently been reported in PD patients in the neuroimaging literature

[5–10].

Our sub-regional analyses revealed significantly smaller volumes in the right lateral nucleus

and the basal nucleus of the amygdala in the patients with PD compared with the HC. This

result is in line with the previous finding that patients with PD showed inward shape deforma-

tion in the laterobasal nuclei of the right amygdala compared with HC [19]. Our result is also

consistent with previous functional imaging studies which have reported activations in the

basolateral amygdala in response to fear-related stimuli in the healthy volunteers [25, 26].

Anatomically, the lateral nucleus in amygdala is believed to share connections with the sen-

sory thalamus, medial PFC, anterior cingulate cortex, and superior temporal gyrus, and to

receive sensory information from these brain regions [17]. According to Whalen and Phelps

(2009), this sensory information is then transmitted to both the basal nucleus and intercalated

nucleus in the amygdala. The basal nucleus also receives input from medial PFC and orbito-

frontal cortex, in addition to the lateral nucleus, and is thus believed to play an important role

in regulating cognition and emotion. Next, the sensory information is transferred to the cen-

tral nucleus. The central nucleus has anatomical projections to brainstem regions and the

hypothalamus. The theory posits that anxiety and fear-related responses are provoked by the

information conveyed to these brain regions from the amygdala nuclei. In addition to these

anatomical networks, the lateral and basal nuclei are believed to be connected with other brain

regions related with anxiety and fear responses; for example, these nuclei have reciprocal

Table 1. Relative volume of whole amygdala and each amygdala nucleus.

PD (n = 38) HC (n = 38)

region mean a SD mean a SD F p

rt. whole amygdala 4.21 0.28 4.40 0.25 9.44 .003�

rt. lateral nucleus 1.58 0.11 1.66 0.11 8.86 .0040��

rt. basal nucleus 1.07 0.09 1.13 0.09 10.50 .0018��

rt. accessory basal nucleus 0.66 0.06 0.68 0.06 3.07 .084

rt. anterior amygdaloid area 0.15 0.02 0.15 0.02 .70 .406

rt. central nucleus 0.11 0.02 0.12 0.018 .08 .780

rt. medial nucleus 0.055 0.013 0.056 0.013 .08 .777

rt. cortical nucleus 0.068 0.008 0.070 0.009 1.72 .194

rt. corticoamygdaloid transitio 0.41 0.04 0.43 0.04 3.23 .076

rt. paralaminar nucleus 0.12 0.01 0.12 0.01 .08 .784

lt. whole amygdala 4.12 0.35 4.22 0.25 1.96 .165

lt. lateral nucleus 1.63 0.15 1.68 0.14 2.19 .143

lt. basal nucleus 1.02 0.10 1.04 0.06 1.13 .290

lt. accessory basal nucleus 0.61 0.06 0.62 0.05 1.41 .239

lt. anterior amygdaloid area 0.14 0.02 0.13 0.01 1.41 .240

lt. central nucleus 0.11 0.02 0.11 0.02 .04 .894

lt. medial nucleus 0.053 0.015 0.051 0.012 .37 .543

lt. cortical nucleus 0.062 0.008 0.063 0.008 .56 .458

lt. corticoamygdaloid transitio 0.39 0.03 0.40 0.04 4.23 .043

lt. paralaminar nucleus 0.11 0.01 0.12 0.01 3.43 .068

Abbreviations: PD, panic disorder; HC, healthy control subject; rt, right; lt, left
a relative volume [= (absolute volume / intracranial content volume) x 100] (%) x 1000

� P < .025

�� P < .008

https://doi.org/10.1371/journal.pone.0207163.t001

Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0207163 November 7, 2018 5 / 8

https://doi.org/10.1371/journal.pone.0207163.t001
https://doi.org/10.1371/journal.pone.0207163


connections with the insula, which is involved in the regulation of autonomic functions. The

neural pathway from the basal nucleus to the ventral striatum is also believed to be related with

regulation of fear-related behaviors [17].

As hypothesized by Whalen and Phelps (2009) [17], in light of the anatomical connections

between the lateral, basal, and central nuclei, and other brain regions, sensory information

related with anxiety and fear may be processed as follows. Sensory information, provoked by

environmental stimuli, is first conveyed to the lateral nucleus of the amygdala, where an evalu-

ation occurs as to whether the environmental stimuli are already known (or not), and whether

the stimuli represent a threat to life (or not). Once a decision has been made that the stimuli

do represent a threat to life, this information is conveyed to various brain regions, including

the brainstem, via the central nucleus, where a general response is provoked. However, the

general responses are only provoked in the situation in which the environmental stimuli are

recognized, and this judgement is made in the basal nucleus. The basal nucleus receives input

not only from the lateral nucleus of the amygdala, but also from the orbitofrontal cortex. The

basal nucleus works as coincidence detector. If a potential crisis is detected, and the individual

is judged as being in a dangerous situation, the basal nucleus activates the central nucleus. If,

however, the individual is judged as being a safe situation, the signal of fear is caught by the fil-

ter of basal nucleus and is not conveyed to central nucleus.

The current study demonstrated smaller volumes in the lateral and basal nuclei of the amygdala

in patients with PD. These structural deficits may represent the neurobiological basis of the PD

symptoms; specifically, as speculated above, the lateral nucleus may misjudge sensory information

to include a threat to the participant’s life, while the basal nucleus may midjudge the dangerous-

ness of the situation. This misprocessed information may then be conveyed to the brainstem and

hypothalamus, via the central nucleus, resulting in the occurrence of the PD symptoms.

In the correlation analyses, volumes of the right lateral and basal nuclei showed no relation-

ships with scores of the PDSS. The PDSS evaluated patient’s symptom severity and degree of social

and occupational dysfunction, and thus it might be predicted that the PDSS would be associated

with brain regions which were related to occurrence of PD symptoms directly (e.g., brain stem

regions), or regions associated with higher cognitive functioning, such as the prefrontal cortex.

Indeed, previous studies from our laboratory have shown relationships between scores of the

PDSS and volumes of the midbrain [27] and cortical thickness in the middle frontal cortex [20].

This study has some limitations worth noting. Firstly, the current study showed significant

smaller volumes of the right lateral and basal nuclei in the patients with PD in the hypothesis

driven analysis with cut-off P< .008. However, volume difference in the right lateral nucleus

was not significant in the stricter threshold of the Bonferroni correction with P< .0028, neces-

sitating further confirmation and limiting the interpretation of the findings. Second, all

patients were receiving antidepressant and/or benzodiazepine medication at the time of scan-

ning. Previous studies about PD have reported gender differences in both the epidemiology

and symptom profile [1], as well as gender-related differences in the level of volumetric abnor-

malities of amygdala [14]. Thus, studies with drug naïve patients in a larger patient sample

would be worthwhile in the future. Finally, this analysis was conducted using relatively low-

resolution images (1.5T-MRI data); and it would be worthwhile confirm our results using

higher resolution data (e.g., 3T-MRI data) in the future study.

Conclusion

In conclusion, our volumetric analysis of the sub-nuclei of the amygdala detected significantly

smaller volumes in the lateral and basal nuclei in patients with PD. These regions may play an

important role in the genesis of PD symptoms.
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