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Most hosts contain few parasites, whereas few hosts contain many. This

pattern, known as aggregation, is well-documented in macroparasites

where parasite intensity distribution among hosts affects host–parasite

dynamics. Infection intensity also drives fungal disease dynamics, but we

lack a basic understanding of host–fungal aggregation patterns, how they

compare with macroparasites and if they reflect biological processes. To

begin addressing these gaps, we characterized aggregation of the fungal

pathogen Batrachochytrium dendrobatidis (Bd) in amphibian hosts. Using

the slope of Taylor’s Power law, we found Bd intensity distributions

were more aggregated than many macroparasites, conforming closely

to lognormal distributions. We observed that Bd aggregation patterns

are strongly correlated with known biological processes operating in

amphibian populations, such as epizoological phase (i.e. invasion, post-

invasion and enzootic), and intensity-dependent disease mortality. Using

intensity-dependent mathematical models, we found evidence of evolution

of host resistance based on aggregation shifts in systems persisting with Bd

following disease-induced declines. Our results show that Bd aggregation

is highly conserved across disparate systems and contains signatures of

potential biological processes of amphibian–Bd systems. Our work can

inform future modelling approaches and be extended to other fungal

pathogens to elucidate host–fungal interactions and unite host–fungal

dynamics under a common theoretical framework.
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1. Introduction
One of the few general laws of parasitology is that many hosts have few parasites, and few hosts have many parasites [1].

Known as ‘aggregation’, this pattern has important implications for the dynamics of host–parasite systems and our ability to

infer the dominant processes operating within them [2–4]. For example, somemacroparasites cause intensity-dependent parasite-

induced mortality, and the severity of this process can be reflected in the intensity distribution of parasites across hosts [5,6]. In

wildlife–macroparasite systems, such as nematodes, trematodes and ectoparasitic arthropods, the nature of aggregation has been

extensively quantified [7,8]: the distribution of macroparasites among hosts is often well-described by a negative binomial distri-

bution, and variance-to-mean relationships are significantly different from Poisson expectations. While we have long been able to

quantify the intensity of macroparasites (e.g. by counting parasites following dissection), we can now quantify infection intensity

of microparasites by applyingmodernmolecular techniques. Microparasites are organisms such as bacteria, viruses, protozoa and

fungi that have high replication rates within a host and often induce host immune responses [9]. While studies on microparasites

now regularly report quantitative measures of infection (e.g. viral titres or fungal intensity within a host), we have few baseline

expectations regarding what the intensity distributions of microparasites look like and the mechanisms shaping them.

Here, we focus on fungal parasites. Fungal parasites are a global threat to wildlife populations [10]: e.g. Batrachochytrium den-

drobatidis (Bd), Batrachochytrium salamandrivorans,Ophidiomyces ophiodiicola and Pseudogymnoascus destructans have led to dramatic

declines and extinctions in hundreds of wildlife species [11–14]. Like macroparasites, animals infected with fungal parasites suffer

intensity-dependent parasite-induced mortality [15,16]. This means that accounting for the distribution of fungal parasite inten-

sity within a population is critical for predicting population-level outcomes following fungal invasion [17,18]. However, despite

modelling work increasingly accounting for fungal infection intensity [17,19], we still lack a general understanding of the quanti-

tative patterns of aggregation in host–fungal parasite systems. Quantifying these patterns is important because (i) different levels

of aggregation change system dynamics and can significantly affect model predictions [20], and (ii) patterns in fungal intensity

distributions may reflect dominant mechanistic processes structuring the host–parasite system [21]. The latter is particularly im-

portant for parasites like Bdwhere cryptic disease-inducedmortalitymay drive ongoing declines [22], but detecting these declines

is difficult. Aggregation patterns in fungal intensity distributions could potentially provide a mechanism to detect signatures of

disease-induced mortality, as has been done in host–macroparasite systems [6].

Describing the distribution of fungal parasite intensity requires a different statistical and conceptual treatment than traditional

macroparasite models. Macroparasite infection intensity is typically described by parasite counts—in other words, how many

parasites are found within a host, ranging from zero to some large number. As such, macroparasite counts are discrete and can be

described by distributions such as Poisson or negative binomial distribution [8]. By contrast, fungal parasite intensity is typically

quantified bymolecular approaches such as quantitative PCR (qPCR; [23]). The qPCR techniquemeasures the amount of a specific

DNA sequence in a sample by amplifying the sequence while simultaneously detecting and quantifying the fluorescence of the

product in real-time as the reaction proceeds. Because the amount of fluorescence generated is directly proportional to the amount

of starting DNA, qPCR values correlate with fungal intensity. The resulting measurement of ‘infection intensity’ is a continuous

variable ranging from zero to some arbitrarily large number.

Using infection intensity as a continuous quantity computed by qPCR presents two methodological challenges. First, qPCR

measures of infection intensity are subject to substantial measurement error [24,25]. Measurement error can occur when the sam-

ple of infection intensity is collected (e.g. the skin of amphibians infected with Bd is swabbed) or when the sample is processed

with qPCR [25]). For example, the qPCR process often fails to detect very low quantities of genetic material and can miss low lev-

els of infection [25]. Generally, increasing the noise in a sample owing to measurement error might decrease our ability to detect

biological signals. Thus, we might expect measurement error to play a more significant role in affecting the patterns of aggrega-

tion in fungal intensity distributions than typical macroparasite distributions, obscuring mechanistic signatures of host–parasite

processes on fungal intensity distributions.

Second, discrete distributions that are typically used to describe macroparasite counts are not technically applicable to con-

tinuous molecular infection intensity data. In amphibian–Bd systems, there has been some previous discussion on reasonable

assumptions for the distribution of infection intensity (particularly with regards to the random component of generalized linear

models; [24]) and how approximating a continuous random variable with a discrete random variable (e.g. using a negative bino-

mial distribution to describe infection intensity [24]) can affect the conclusions one draws. However, there has been no systematic

examination of the distribution that most consistently describes observed amphibian–Bd distributions or parasitic fungal distribu-

tionsmore broadly.Aswe continue to developmodels for predicting the dynamics of fungal outbreaks, a systematic quantification

of the nature of fungal intensity distributions can help direct these modelling efforts, as it has done in traditional macroparasite

systems [7,8].

In addition to these statistical differences, there are key biological differences between fungal parasites andmacroparasites that

may affect observed patterns of aggregation. Fungal parasites grow within/on a host leading to increases in infection intensity.

Typically (though not always), macroparasite infections increase in intensity through ‘immigration processes’ rather than ‘birth

processes’—hosts accrue parasites through repeated encounters in the environment. Birth processes such as the within-host re-

production of parasites are known to increase the aggregation of macroparasite distributions [26]. An initial expectation might be

that fungal distributions are typically more aggregated than macroparasite distributions. However, this prediction is complicated

by the speed and mode of transmission of fungal parasites, which can be faster than many macroparasites. For example, Bd can

complete its life cycle in 4–10 days, whereas a trematode parasite with multiple intermediate hosts might take months to complete

its life cycle [27,28]. This could lead to faster spread, more homogenization and lower levels of aggregation for fungal parasites

like Bd compared with macroparasites.
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Here, we used 56 912 skin swab samples from 93 amphibian species to ask twomain questions: (i) what is the general structure

of these Bd fungal intensity distributions, and (ii) do they reflect biological processes? First, we examinedwhether we see aggrega-

tion in host–Bd systems, how these patterns compare with those of macroparasites, and what statistical distribution best describes

these fungal intensity distributions. We hypothesized that (i) fungal distributions will be aggregated, (ii) they will show higher

levels of aggregation than most macroparasite distributions, and (iii) they will generally conform to a lognormal distribution.

Our prediction of a lognormal distribution stems from theoretical work showing that lognormal distributions robustly describe

population densities subject to demographic and environmental stochasticity, as well as measurement error [29]. To address our

second question, we compared aggregation patterns among amphibian–Bd systems in different epizoological states (e.g. invasion,

post-invasion and enzootic) to see if they reflect underlying biological processes. To complement data analysis, we employed an

integral projectionmodel to gain insight into the possible mechanisms driving the observed aggregation patterns. Given intensity-

dependent disease dynamics in amphibian–Bd systems, we expected reduced aggregation in populations experiencing significant

disease-induced mortality, such as those in post-invasion, epizootic states. Similarly, we expected disease-induced mortality to be

a critical model parameter in reproducing these patterns.

2. Material and methods

(a) Amphibian–Bd infection intensity data
We analysed four datasets of Bd infection intensities (henceforth ‘intensity’ or ‘load’) obtained from amphibian skin swabs col-

lected in the field (see ethics statement for list of permits and approvals for each project). Bd loads were obtained through DNA

extraction and qPCR, which detects the number of genomic equivalents or ITS1 copy number of Bd on amphibian skin. These

procedures were standardized within but not across datasets. As such, it is important to note that our analysis does not aim to

compare absolute values of fungal intensities across datasets or even among disparate sites within datasets. Variations in tech-

niques between laboratories and calculations of Bd intensity (e.g. multiplying by different scaling factors) as well as differences

in ITS copy numbers for different strains of Bd in different sites (e.g. [30]), could make comparisons challenging. Instead, we use

measures of aggregation (described below) that are scale invariant, thus providing robust measures to analyse aggregation pat-

terns. However, if individuals of the same species of amphibian in the same site in the same season are co-infected with different

strains of Bd that vary in their ITS1 copy number (e.g. [31]), then the aggregation metrics we estimate could suffer bias.

The first dataset we included was from Brazil (henceforth the Brazil dataset) which contained 4365 swabs from 41 amphibian

species collected primarily within the state of São Paulo (see the electronic supplementary material for details on sampling meth-

ods for collection years 2020−2023 and [32] for 2018−2019; and see the electronic supplementary material, figure S1 for general

locations of research sites for all datasets). Our second dataset comes from the East Bay region of California (henceforth the East

Bay dataset) and contains 10 490 swabs from 11 host species [33]. The third dataset contains 12 457 Bd swabs from amphibians

collected from 2016 to 2019 on 43 amphibian species across 31 research sites in four states—Louisiana, Pennsylvania, Tennessee

and Vermont [34]. Although collected across a wide geographical range, swabs from this study were all processed at a central-

ized location using a consistent methodology. Therefore, we will refer to this dataset broadly as the eastern US dataset. Our final

dataset is from the Sierra Nevada mountains of California (henceforth the Sierra dataset) and contains 29 600 samples collected

frommountain yellow-legged frogs (MYL frogs; composed of sister species Rana muscosa and Rana sierrae) at high elevation lakes,

ponds and wetlands [15,17].

Samples within each dataset were grouped based on host species, life stage (larva (i.e. tadpole in anuran species), subadult

or adult), research site, season (Brazil: wet or dry; East Bay and Sierra: summer; eastern US: winter, spring, summer or autumn)

and year (see the electronic supplementary material, table S1 for more detailed composition of each dataset). Moving forward, we

will refer to a particular combination of species, life stage, research site, season and year as a ‘group’. Examining specific ‘groups’

allows us to quantify the patterns of Bd aggregation in a biologically relevant temporal period at a particular location. In total, the

Brazil dataset had 109 candidate groups for analysis, East Bay had 714, eastern US had 391 and the Sierra had 647.

(b) Question 1a: are fungal intensity distributions aggregated and how do these compare with aggregation patterns in
macroparasite systems?

To address this question, we analysed aggregation in the fungal intensity distributions using Taylor’s Power Law (TPL) which

relates the log mean and log variance in fungal intensity, calculated for each group. This metric allows for direct comparison to

the macroparasite literature. Specifically, we focused on the slope of TPL as a metric of aggregation, where a greater slope indi-

cates greater aggregation [3,26]. Across all datasets, we only included groups with at least three infected individuals, yielding 961

groups across all four datasets (electronic supplementary material, table S1).

We first fitted a linear regression to the logmean versus log variance relationship for each of the four datasets and calculated the

slope. We compared the slopes with the empirical relationship previously seen in many macroparasite populations (slope = 1.55,

95% confidence interval (CI): [1.48,1.62]) [7]. Notably, this slope represents the trend for many but not all macroparasite systems

[21,26], and because fewer studies have examined microparasite aggregation (but see [35,36])—particularly on a large scale—we

did not compare Bd patterns with those of other microparasites. Nonetheless, we explored their relationship to a Poisson distribu-

tion (mean-variance slope equal to 1), which is generally considered the null distribution in many host–macroparasite studies [2].

However, the continuous nature of Bd load data also suggests considering the alternative null with a TPL slope of 2. A baseline
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of TPL slope of 2 has been used to describe the aggregation of free-living organisms in space and time [37,38]. Moreover, given

our expectation of a lognormal distribution of Bd intensity across hosts, we would expect a TPL slope of 2 based on the simple

definitions of the mean and variance for a lognormal distribution. Note that for this analysis, the log mean and the log variance

for each group were computed using both infected and uninfected individuals, consistent with macroparasite studies.

Second, to explore variability in the slope of TPL across the 36 species with sufficient sampling, we ran a linear mixed ef-

fect model (i.e. Gaussian error) with random effects of amphibian species and subregion on the intercept and slope. Specifically,

the model we fitted was log(variance) ∼ log(mean) + (1 + log(mean)|subregion) + (1 + log(mean)|species), where subregion was

a factor with the following levels: East Bay, Sierra, Pennsylvania, Tennessee, Vermont, Louisiana and Brazil. We then examined

the species-specific TPL slopes and compared themwith the macroparasite slope from Shaw & Dobson [7], the Gyrodactylus slope

from Lester & McVinish [21] and the Oxyuridae slope from Grear & Hudson [26].

(c) Question 1b: what distribution best describes fungal intensity distributions?
To characterize the shape of fungal intensity distributions conditional on infection, we considered continuous distributions of

non-negative real numbers: gamma, exponential, lognormal andWeibull. We did not consider Poisson and negative binomial dis-

tributions because fungal intensity, as assessed using qPCR, is a continuous measure. Although qPCR results can be transformed

into integer values and analysed using standard generalized linear models [39], we opted to keep the data on the continuous scale,

consistent with previous models [19]. Each of the continuous distributions can capture a strong right skew in intensity distribu-

tions, consistent with canonical patterns in host–macroparasite systems. The gamma distribution is the continuous analogue to

the negative binomial distribution, a distribution that describes many macroparasite populations [8]. Similarly, the exponential

is a special case of the gamma distribution that is represented by only one parameter and is analogous to the discrete geometric

distribution which has been proposed as a potential null distribution in host–macroparasite systems [40,41]. Lognormal distri-

butions are found throughout natural systems empirically and theoretically [29] and are representative of non-negative metrics

with relatively low means but large variance. Finally, we considered the Weibull distribution, which is typically used to model

‘time-to-failure’ or survival analyses but has been used to describe macroparasite aggregation data [42].

For this analysis,we only considered groupswith at least 10 infected individuals to ensurewehadpower to distinguish between

competing distributions. This resulted in 525 groups. We used the fitdistrplus package in R to fit exponential, lognormal, Weibull

and gamma distributions usingmaximum-likelihood estimation (MLE) ormoment-matching estimation, if theMLEmodel would

not converge. We compared Akaike information criterion (AIC) values across distributions to find the best predictive model,

assuming no notable difference in performance when AIC values were within ±2.

(d) Question 2: do patterns of aggregation in Bd intensity reflect biological processes, such that there are quantifiable
differences in aggregation between epizoological states?

To address this question, we used a metric that can be applied to a single group (unlike TPL) known as Poulin’s discrepancy

index, or simply Poulin’s D [4,43]. Poulin’s D is bounded from 0 to 1 and is a proportional measure of the difference between an

observed distribution and a uniform distribution. A higher value indicates greater discrepancy from a uniform distribution and is

suggestive of higher aggregation. The equation for Poulin’sD isD= (
∑n

i=1

∑n

j=1 |xi − xj|)∕(2n2x̄), where x is the fungal load of host i

or j, n is the total number of hosts and x̄=
∑n

i=1 xi∕n (we use the equation given in [44], which is the Gini index). We also calculated

the coefficient of variation (CV) on the natural scale and other related metrics—log10-transformed CV on the natural scale and CV

on the log10 scale—which should provide comparable results to Poulin’s D [44]. We calculated CV on the log10-transformed data

to determine if trends remained similar on different scales. When calculating our aggregation metrics, we excluded uninfected

individuals to remove the effect of prevalence on the observed patterns. We only included groups that had at least two infected in-

dividuals—theminimum number for ameaningful value of ourmetrics. We also explored only including groups with aminimum

of 10 infected individuals, and our results were unchanged.

For this question, we focused on the Sierra dataset. Of the datasets used in this study, the Sierra dataset is unique because,

for many southern populations in the Sierra Nevada, we know when Bd invaded, when epizootics ensued and when populations

declined [15,34]. Moreover, for more northern populations, such as those in Yosemite National Park, we know that populations are

past the invasion–epizootic–declining phase and are persisting enzootically with Bd [17,45]. Thus, we have three clearly definable

epizoological phases for MYL–Bd populations in the Sierra Nevada: (i) invasion stage (when Bd prevalence is less than 50% in

a population; [46]) (ii) post-invasion phase (consisting of epizootic host declines or recent declines), and (iii) enzootic phase (Bd

invaded before the early 2000s and amphibian populations are persisting in the presence of Bd). Moreover, from targeted field

surveys and laboratory experiments, we know that there is strong intensity-dependent mortality in MYL frogs [15,19]. If patterns

of Bd aggregation contain information about intensity-dependent mortality, we would expect a notable reduction in Bd aggre-

gation for higher mean infection intensity in MYL frog populations [3]. In other words, mortality in highly infected individuals

would effectively reduce the tail of the right-skewed distribution characteristic of aggregated populations, thereby decreasing

aggregation.

To explore signatures of epizoological phase on Bd aggregation, we first plotted each metric—Poulin’s D, CV, log CV and CV

of log-scale data—against mean log10-transformed Bd intensity and asked whether populations in known epizoological phases

clustered in mean intensity-aggregation space (henceforth intensity-aggregation space) and whether there were notable reduc-

tions in aggregation at high infection intensities (note that epizoological phases were determined independently of aggregation
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Figure 1. The relationship of log mean and log variance fungal intensity for all groups. Regression lines were fitted to each dataset (slopes and 95% CIs in legend). For ref-
erence, the slope is typically seen in macroparasites (1.55, 95% CI [1.48−1.62]) [7] (solid black), a slope of 1 expected in a Poisson—or macroparasite null—distribution
(dotted) and a slope of 2 expected for a lognormal distribution (dashed) are provided.

or mean infection intensity). We used beta regression [4] to test for a quadratic effect of mean infection intensity on aggregation

metrics, where a strong quadratic effect is indicative of aggregation being reduced at high infection intensity.

Finally, to better understand how mechanisms such as intensity-dependent mortality and epizoological phase could theoreti-

cally affect patterns of aggregation in host–fungal systems,we adapted an integral projectionmodel (IPM) that has been previously

developed for amphibian–Bd systems [19]. In short, IPMs provide an approach for modelling intensity-dependent infection dy-

namics of host–fungal interactions by specifically modelling the entire distribution of fungal intensities within a population (see

the electronic supplementary material for more detail). Hosts are born uninfected, and in the absence of disease, the host pop-

ulation grows logistically towards a carrying capacity. In one time step of the model, hosts may become infected by encounters

with environmental pathogens and gain some initial log number of parasites (infection load). Parasites grow within hosts, with

some stochasticity, towards a within-host carrying capacity. In each time step, infected hosts have a probability of recovery from

infection and a probability of survival, both of which decline with infection load. Infected hosts shed parasites back into the en-

vironment proportional to the number of parasites they currently hold. We simulated disease invasion for 1 year to represent the

effects of disease spread without host evolution. We then added simulations where we included multiple host genotypes with

different traits to simulate evolution over 30 years (a relevant timescale for the MYL–Bd system). Specifically, we focused on host

evolution of resistance that lowers pathogen growth rate, an important mechanism in the MYL–Bd system [39,45]. We performed

simulations at parameter values from laboratory experiments for the MYL–Bd system (see the electronic supplementary mate-

rial, table S2) and then explored how varying certain parameters impacted the intensity-aggregation patterns in our simulations.

We calculated the same four aggregation metrics in our simulations as were calculated from field data to determine intensity-

aggregation patterns. We did this to investigate the patterns that could emerge in intensity-aggregation space for the different

metrics and if they are indicative of specific biological mechanisms.

3. Results

(a) Question 1a: are fungal intensity distributions aggregated and how do these compare with aggregation patterns in
macroparasite systems?

Based on TPL, Bd showed a greater degree of aggregation compared with the macroparasites presented by Shaw and Dobson

(slope: 1.55, 95% CI [1.48−1.62]) [7]. The slopes of TPL across the groups for each dataset ranged between 1.90, 95% CI [1.86−1.94]

(Sierra) and 2.06, 95% CI [1.99−2.12] (Brazil) (figure 1). Therefore, the variance of Bd infection intensity increases to a greater de-

gree with respect to average fungal load than many macroparasites. However, some macroparasites have comparable or notably

higher slopes than what we found in Bd (e.g.Gyrodactylus spp. 2.08, 95% CI [1.66−2.44] [21];Oxyuridae spp. 2.80, 95% CI [2.40−3.20]

[26]).

We examined how the slopes of TPL varied among amphibian species, host life stages and epizoological phase. We found that

including slope as a random effect among host species yielded a better predictive model than a model without this effect (∆AIC
= 13.6). Though these slopes vary enough to impact the model’s predictive capabilities, they are relatively clustered and all more

aggregated than the macroparasites presented by Shaw and Dobson (see the electronic supplementary material, figure S2) [7].

These slopes fell within the 95% CI for Gyrodactylusmacroparasite species [21] and are significantly lower than the slopes seen in
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Figure 2. Comparison of log10(∆AIC + 1) values across four continuous distributions that were fitted to 525 amphibian groups’ fungal intensity data across four
datasets. Each data point is a host group with at least 10 infected individuals.

Oxyuridae [26].We found a similar pattern across host life stage, showing slopes greater than that of Shaw andDobson’smacropar-

asite slope. However, the slopes for each life stage were statistically distinct: larval (1.85, 95% CI [1.82−1.89]), subadult (1.93, 95%

CI [1.91−1.95]) and adult (2.03, 95%CI [2.00−2.05]).We also applied these analyses to the Sierra dataset and compared across epizo-

ological phases. We found that the slope for populations considered to be enzootic was statistically steeper (i.e. more aggregated;

2.08 95% CI [2.00−2.16]) than those in a post-invasion epizootic state (1.92 95% CI [1.86−1.99]) (see the electronic supplementary

material, figure S3).

(b) Question 1b: what distribution best describes fungal intensity distributions?
Of the distributions that we fitted to the Bd-positive data, the lognormal model consistently performed better than the others, as

determined by comparing AIC scores (figure 2). Assuming models perform equally well if AIC scores are within 2 units of each

other, over half of the groups (57.3%) were well-described by multiple distributions. The lognormal performed best or just as well

as another model in 76.7% of the groups, the Weibull in 58.8%, the gamma in 35.2% and the exponential in 25.7%. The lognormal

model also fitted 38.0% of groups better (>2AIC units) than any of the other models, whereas theWeibull, gamma and exponential

models performed better than all others in 4.4%, 0.4% and 0% of the groups, respectively.

With the lognormal model outperforming the other distributions, we sought to determine if the lognormal is objectively a good

fit to the data. We used a Shapiro–Wilk’s test of normality on the log-transformed data, after adjusting the p-values for multiple

tests to account for false-discovery rate (using the p.adjust function in R with method fdr). For 96.7% of sampled groups, we fail

to reject the null hypothesis that the data follow a normal distribution (electronic supplementary material, figure S4, at an ad-

justed significance level of � = 0.05). Cognizant that failure to reject the null is not proof of the null, we conclude there is no strong
evidence that distributions deviate from a lognormal distribution.

(c) Question 2: do patterns of aggregation in Bd intensity reflect biological processes, such that there are quantifiable
differences in aggregation between epizoological states?

(i) Empirical results

To gain mechanistic intuition on the broader results in this section, we first examined seven specific populations from the Sierra

dataset that (i) were repeatedly surveyed during Bd invasion and declines, and (ii) had sufficient samples of infected adults or

subadults at a minimum of three time points to compute Poulin’s D (n≥ 2). Figure 3A shows the abundance trajectory of adult

frogs in these populations through time, including the well-known pattern of dramatic population declines following Bd invasion.

In figure 3B, we plot these same populations in intensity-aggregation space and see a consistent counterclockwise pattern emerge.

Upon invasion,mean infection intensity is low, and aggregation is low. Once the population transitions to the post-invasion phase,

mean intensity is high, but aggregation remains relatively low.As the population progresses through the epizootic, mean intensity

declines and aggregation increases. These patterns suggest that there is a signature of epizoological phase on observed patterns

of aggregation.

To examine this pattern more broadly, we plotted 313 Sierra groups in intensity-aggregation space and observed a strong clus-

tering of invasion, post-invasion and enzootic groups (figure 4A–D) that was consistent with what we saw in our seven focal

populations with time-series data (figure 3B). Namely, the invasion stage was characterized by low mean intensity and low ag-

gregation, the post-invasion phase was characterized by medium to high intensity and high to low aggregation and the enzootic

phasewas characterized by intermediatemean intensity and high aggregation. These groupings of phases in intensity-aggregation
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Figure 3. (A) The adult abundance trajectories of seven focal MYL frog populations through time. Black points show each time the population was surveyed and coloured
points indicate when a sufficient number of infected individuals (n≥ 2) were sampled to compute Poulin’s D, with a higher value indicating more aggregation. The inva-
sion phase was delineated when prevalence was less than 0.5 [46]. (B) The same seven populations with trajectories plotted in intensity-aggregation space. The coloured
dots in (B) correspond to those in (A).

Figure 4. Groups in different epizoological phases plotted as a relationship between mean log10 Bd intensity and different aggregation metrics. (A) Soon after Bd inva-
sion, mean loads and aggregation (Poulin’s D) are low (yellow points). Later, post-invasion, mean loads are high and aggregation is still relatively low (blue points). Then
much later, mean loads are intermediate and aggregation is higher (purple points), leading to an overall unimodal shape. This same pattern holds for other aggregation
metrics including (B) log10 of CV (coefficient of variation) on the natural scale, (C) CV on the natural scale and (D) CV on the log10 scale. The unimodal trend for all em-
pirical results is emphasized through a best-fit spline (black, 95% CI shaded grey). A parameterized IPM model can generally reproduce these hump-shaped patterns in
all four metrics without evolution (black curve in (E–H)); we compare across each metric as the model need not necessarily produce a hump shape in every metric (see
the electronic supplementary material, figures S6 and S7). Evolution of lower pathogen growth rate (dashed black) moves populations to lower mean loads and higher
aggregation metrics, generally matching the empirical results for enzootic populations. We plot the points corresponding to sampling the model results at one week
(invasion, yellow), 1 year (post-invasion, blue) and 31 years (enzootic, purple) for comparison with the empirical results in figure 3B; low temporal resolution sampling
can create a counterclockwise pattern in intensity-aggregation space (emphasized by dotted grey line connecting coloured points in (E–H).

space align with the differences seen between enzootic and post-invasion populations based on TPL analyses (see the electronic

supplementary material, figure S3).

A distinct pattern that emerges in figure 4A–D is the notable unimodal shape of the data in intensity-aggregation space. The

downward curvature is consistent with predictions from host–macroparasite theory that intensity-dependent mortality should

reduce aggregation for high mean intensities as it truncates the tail of the Bd intensity distribution, resulting in lower variance for
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a given mean within a population. This pattern was statistically supported by a strong quadratic effect of mean intensity on ag-

gregation, with the quadratic model performing better than the linear effect-only model (∆AIC = 150.13 from comparing a model

with quadratic effect to one with only a linear relationship). Moreover, this unimodal pattern was robust to different measures of

aggregation (figure 4A–D).

Interestingly, putative enzootic populations rarely occupy the space of high mean intensity and low aggregation (figure 4).

We observed seven enzootic populations in this region of high mean intensity and lower aggregation. Although one group in the

enzootic stage was composed of adults, the rest were subadults—a life stage that still experiences substantial disease-induced

mortality even in enzootic populations [45].

(ii) Modelling results

Modelling showed that the unimodal intensity-aggregation patterns probably contain important, mechanistic information about

disease processes. The hump-shaped patterns in intensity-aggregation space found in the field data for all four metrics did not

emerge trivially from the model; depending on parameter values, the model simulations produced this hump shape for none,

some or all metrics. Simulations with parameter values based mostly on laboratory experiments [19] did not produce unimodal

patterns for any of the four metrics (electronic supplementary material, figure S6), indicating different biological processes may

occur in the field than in a laboratory setting. This possibility of a quantitative mismatch between the laboratory and the field is

also supported by the observation that the laboratory-based parameter values produced significantly lower values of intensity

and higher values of aggregation than were observed in the field. To address this possible mismatch, we explored additional pa-

rameter sets (details in the electronic supplementary material). When we weakened the negative density dependence of pathogen

growth within hosts and decreased the variance in initial infection load, our simulations produced slightly higher mean loads,

lower aggregation and a unimodal pattern in one metric, matching the field data somewhat better (electronic supplementary ma-

terial, figure S7). When we also decreased host mortality, parasite shedding rate (keeping prevalence from maxing out at one)

and stochasticity in parasite growth, the model simulations produced higher intensities and still lower aggregation. Moreover,

the model produced unimodal patterns for all four metrics (figure 4E–H). Thus, in terms of matching the intensity-aggregation

patterns from the field, we considered this our best parameter set.

From host–macroparasite theory, we might expect that this unimodal pattern depends on intensity-dependent mortality driv-

ing lower aggregation at high intensity. Changing the parameter values so that hosts could survive very high loads with no

mortality did increase aggregation somewhat, as expected, but unexpectedly did not significantly change the unimodal patterns

(electronic supplementary material, figure S9). Finally, the path our simulation results take through intensity-aggregation space

may explain observed counterclockwise motion through intensity-aggregation space for populations in figure 3B; if we sample

our simulated populations at one month, 1 year and 30 years to simulate the infrequent sampling of the field populations, we see

how a counterclockwise motion could arise (e.g. coloured points in figure 4E–H).

Ourmodelling further shows that the position of the enzootic populations in intensity-aggregation spacemay be a signal of host

evolution. Host evolution of resistance that lowers pathogen growth rate moves populations left, towards lower mean intensity

and up, towards higher aggregation, in intensity-aggregation space for all four metrics (dashed black in figure 4E–H). This posi-

tion of post-evolution populations higher and to the left of post-invasion populations that have experienced an epizootic but not

yet evolved is consistent with the field data (figure 4). If hosts evolved a different defence, e.g. tolerance of higher parasite loads

without dying, we would not observe this shift (electronic supplementary material, figure S8). Thus, the enzootic populations’

position in intensity-aggregation space may indicate the evolution of resistance rather than tolerance in the host.

4. Discussion
Parasite aggregation is a strong driver of disease dynamics within host populations [20]. Though aggregation in macroparasites

has been extensively examined, it has not been systematically explored within host–fungal parasite systems, despite the known

impact of fungal pathogen intensity on its host. In this study, we used a dataset of nearly 57 000 samples of amphibian infec-

tion intensity to show that (i) Bd is consistently more aggregated than typical macroparasites, (ii) the distribution of Bd intensity

within a population is generally consistent with a lognormal distribution, and (iii) patterns of Bd aggregation can contain consis-

tent signatures of biological mechanisms. This study demonstrates the use of fungal aggregation as a means of identifying cryptic

biological processes (e.g. disease-induced mortality or evolution of defence mechanisms) within host populations that could be

applied to other host–fungal systems.

(a) Patterns of aggregation
Both macroparasites and Bd are aggregated within hosts, and we expect this pattern to hold in other fungal systems as well.

However, the relative degree of aggregation may vary based on host and parasite. For Bd, we found high consistency in aggre-

gation levels that were generally significantly greater than those of many macroparasite systems, with some notable exceptions.

For instance, Gyrodactylus [21] flatworms and Oxyuridae pinworms [26] rapidly reproduce within their hosts and tend to aggre-

gate in levels akin to or greater than Bd TPL slopes (2.08 [1.66, 2.49] and 2.82 [2.44, 3.22], respectively). This would support the

hypothesis that fungal aggregation levels are driven—at least in part—by the parasite’s ability to reproduce on its original host.

That is, already-infected hosts can acquire additional infection faster than uninfected hosts, increasing the variance and skew in

the distribution of parasites. However, a second explanation for these TPL patterns may exist; namely, these attributes may be a
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product of statistical constraints that are independent of parasite biology (e.g. [3,41]). This has been suggested for macroparasites

as well to explain the highly conserved nature of aggregation across systems, despite the widely varying biology. We see similar

consistency in our Bd systems across host species and sites. Given that these systems tend to follow a lognormal distribution, we

would expect a TPL slope of 2, which is generally consistent with what we observe across Bd systems. Lognormal distributions

describe the spatial distribution of abundance and density of organisms in many natural systems and theoretically emerge in pop-

ulations experiencing environmental and demographic stochasticity [29]. It is possible that the lognormal distribution of Bd (and

thus the TPL slope of 2) arises because Bd dynamics, swabbing and testing are a combination of multiplicative random processes

that necessarily lead to a lognormal distribution (i.e. a central limit theorem type of argument [47]). Regardless of the exact drivers,

we found that Bd aggregation does not look like that of many macroparasites.

The fit of the lognormal distribution to the Bd data—conditional on infection—was similar across species, life stages and loca-

tions. This has importantmodelling implications, as fitting empirical data tomodels generally requiresmaking some distributional

assumptions about fungal intensity. Currently, host–fungal models in amphibian–Bd systems have assumed that Bd intensities

are approximately lognormally distributed [34,48], but this assumption has only been validated for a few focal amphibian–Bd

systems. Our results show that a lognormal assumption is broadly applicable within amphibian–Bd systems, making theoretical

and applied applications of these models robust across amphibian–Bd systems. While we only examined Bd in this study, we

expect approximate lognormal distributions to hold more broadly across host–fungal systems. Testing this expectation is an im-

portant next step for uniting host–fungal dynamics under a common theoretical framework, as has been so successfully done with

host–macroparasite dynamics.

(b) Mechanisms of aggregation
While Bd aggregation was highly consistent across amphibian species and populations, we found that there are also distinct pat-

terns that arise in fungal aggregation that reflect underlying biological processes. In the empirical data, we observed a notable

reduction in aggregation in post-invasion populations that we know were experiencing high levels of disease-induced mortality

(based on previous field observations, [15]). Moreover, we observed that the life stage in enzootic populations with the lowest

levels of aggregation tended to be juveniles, the life stage in which disease-induced mortality is still occurring at a high rate even

in enzootic populations [39]. While it is tempting to conclude that this pattern of reduced aggregation is solely driven by intensity-

dependent mortality as predicted in host–macroparasite systems [2,3], our modelling results show that reduced aggregation in

post-invasion populations can arise even in the absence of intensity-dependent mortality.

The mechanism bywhich our model can produce the observed unimodal pattern in intensity-aggregation space is described as

follows. When Bd first invades a population, the observed intensity distribution is primarily structured by the dynamics of initial

infection so that hosts have relatively similar low loads and low levels of aggregation. As the Bd outbreak proceeds, the distri-

bution of fungal intensity begins to include both older infections with higher loads structured by within-host growth dynamics

and newer infections with loads structured by initial infection dynamics. This mixture of newer and older infections increases

aggregation in the intensity distribution. Most hosts become infected as the outbreak continues, and most infections are older

and closer to the pathogen’s within-host carrying capacity. This drives a subsequent increase in mean intensity and reduction in

aggregation. Overall, the shift frommostly newer infections to a mixture of newer and older infections then finally to mostly older

infections drive a unimodal pattern in intensity-aggregation space. Ourmodel shows that while we can get the expected unimodal

pattern of reduced aggregation being driven predominantly by intensity-dependentmortality, the pattern requires that (i) all hosts

get infected essentially simultaneously, and (ii) hosts rarely lose infection during an outbreak. However, as these conditions are

violated, the effect of intensity-dependent mortality on aggregation quickly becomes dwarfed by the joint effect of initial infection

and within-host growth. Host–macroparasite theory has shown that there is not always a one-to-one mapping between aggrega-

tion patterns and biological processes [49]. Our results clearly highlight this point for fungal intensity distributions—there are two

plausible biological mechanisms that could explain and jointly contribute to the observed reduction in aggregation at high loads:

intensity-dependent mortality and the balance between initial infection and within-host growth along an epizoological trajectory.

The latter is an aggregation mechanism that, to our knowledge, has not been considered in macroparasite systems, highlighting

the need for unique theory describing the patterns and mechanisms of aggregation in host–fungus systems.

In addition to intensity-dependent mortality and the balance between initial infection and within-host growth, we found that

patterns of aggregation contained clear signatures of the epizoological stage of a host–Bd system. Empirically, we saw popula-

tions follow a characteristic counterclockwise pattern on the yearly time scale in intensity-aggregation space. Interestingly, our

modelling results illustrated that this counterclockwise pattern was probably a result of the timescale on which we observed these

MYL frog–Bd systems. Our model showed that the transition from invasion phase to post-invasion epizootic phase should ac-

tually traverse a humped curve, rather than seamlessly jumping from the left to the right side of the curve. Because these sites

were only sampled once a year, these data probablymissed the transition from invasion phase (< 50% prevalence) to post-invasion

phase (> 50% prevalence), as this often occurs rapidly withinMYL frog–Bd systems. Therefore, we could only observe the invasion

point and the post-invasion epizootic point within the intensity-aggregation space. Moreover, our model shows that the transition

back to an intermediate intensity and high aggregation state does not occur in the model without some level of evolution in host

defence; specifically, host evolution of resistance that lowers pathogen growth rate produced this pattern, while evolution of tol-

erance could not. MYL frog populations have persisted enzootically and begun to recover, probably owing to evolved resistance

to Bd [39]. As such, this is an intriguing basis for using population-level aggregation patterns to identify biologically relevant

processes in wild populations, such as the evolution of host defence.
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Examining aggregation patterns in a systemwhere epizoological phasewas known a priori enabled us to discern patterns across

the intensity-aggregation space. The full epizoological trajectory of many amphibian populations is rarely observed, and it is well

known that similar amphibian populations infected with Bd can be at different places along an epizoological trajectory or on

different trajectories altogether [50]. By substituting spatial replication across populations for temporal replication within popu-

lations, we show that intensity-aggregation space can help locate disparate populations along a common epizoological trajectory.

We expect the approach we develop to be particularly useful for species that are generally considered to be persisting enzootically

with Bd, but in reality, may be experiencing cryptic invasions and epizootics across populations (e.g. electronic supplementary

material, figure S5). Such use of aggregation patterns could be used in other host–fungal systems, such as white-nose syndrome

and snake fungal disease, and may be pivotal in our future analyses and understanding of these systems.

5. Conclusions
Beyond amphibian–Bd systems, our study is useful for understanding fungal parasite dynamics in other wildlife populations. By

extending our analyses to other host–fungal parasite systems, such aswhite-nose syndrome in bats, B. salamandrivorans in amphib-

ians, snake fungal disease or those of public health concern like aspergillosis and blastomycosis, we can elucidate broader patterns

of aggregation of fungal parasites. This comparative approach can unveil commonalities and distinctions in fungal intensity pat-

terns across different hosts and parasites. Identifying patterns of aggregation and how they reflect biological processes in diverse

systems has implications for conservation strategies, disease management and disease modelling efforts. By demonstrating the

ubiquity of aggregation, identifying distributional characteristics and deciphering the biological significance of these patterns, we

advance our understanding of host–fungal parasite ecology and pave the way for broader consideration of the implications of

microparasite aggregation in wildlife disease ecology and epidemiological theory.
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