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Metals can transmit light by tunnelling when they possess skin-depth thickness. Tunnelling can be
resonantly enhanced if resonators are added to each side of a metal film, such as additional dielectric layers
or periodic structures on a metal surface. Here we show that, even with no additional resonators, tunnelling
resonance can arise if the metal film is confined and fractionally thin. In a slit waveguide filled with a
negative permittivity metallic slab of thickness L, resonance is shown to arise at fractional thicknesses (L 5
Const./m; m 5 1,2,3,…) by the excitation of ‘vortex plasmons’. We experimentally demonstrate fractional
tunnelling resonance and vortex plasmons using microwave and negative permittivity metamaterials. The
measured spectral peaks of the fractional tunnelling resonance and modes of the vortex plasmons agree with
theoretical predictions. Fractional tunnelling resonance and vortex plasmons open new perspectives in
resonance physics and promise potential applications in nanotechnology.

R
esonance is a fundamental property of electromagnetic waves which plays a key role in numerous photonic
applications such as optical filters1,2, nanosensors3–5, non-classical light sources6,7, nanolasers8–12, metama-
terials13,14, and photovoltaic cells15. Light transmission through a dielectric slab in a waveguide for instance

can be resonantly increased by the constructive interference of multiply reflected waves inside the dielectric slab.
Metals, or materials possessing negative permittivity, admit only evanescent waves so that light transmission
occurs through tunnelling and resonance is in general suppressed. Similar to the resonant tunnelling of electrons
through double potential barriers16, photon tunnelling can be resonantly enhanced with the help of additional
resonance structures such as high-index dielectric layers17,18, periodic structures on a metal surface19–21 causing the
constructive interference of surface plasmon waves, grating structures for broadband transmission22,23 or even a
split-ring-resonator24. An immediate question is whether these additional resonance structures are essential for
the resonant photon tunnelling. Surprisingly, the answer is no.

Here, we introduce a resonant photon tunnelling with no additional resonance structures, so called fractional
tunnelling resonance (FTR), that occurs in a slit waveguide filled with a negative permittivity slab. FTR is a
structural resonance in which the slab thickness must be a fractional multiple of a unit thickness, in contrast to the
integer multiple thicknesses of Fabry–Perot resonators. We show that FTR arises from vortex plasmons that
channel circulating energy flows in the form of optical vortex pairs. To demonstrate FTR experimentally, we
conducted microwave measurement of near and far fields by using metamaterial samples of relatively low
negative permittivity and little loss. The Drude-type frequency dispersion of the metamaterials allows spectral
representation of FTR at a fixed thickness. We measured the spectral peaks of FTR and the resonance modes of
vortex plasmons, which agree well with theoretical predictions.

Results
Fractional tunnelling resonance and vortex plasmons. For a better understanding of FTR and vortex plasmons,
we consider a waveguide cavity formed by a slit in a perfect electric conductor, as shown in Fig. 1. We investigate
the behaviour of light passing through the slit by solving Maxwell’s equation numerically using the finite-
difference time-domain (FDTD) method. When filled with a dielectric medium of positive permittivity, the slit
in Fig. 1a exhibits Fabry–Perot resonance when the optical path length is roughly an integer multiple of the half-
wavelength. If the length L of a slit waveguide is much smaller than a half-wavelength, or if the filling medium has
negative permittivity so that light becomes attenuated, one generally expects no resonance in either case. However,
the numerical results in Fig. 1b exhibit a surprising occurrence of resonances in a negative permittivity slab of
thickness L much smaller than a half-wavelength. Resonances appear at fractional thicknesses Lm 5 L1/m (m 5 1,
2, 3,…), where the unit thickness L1 is much smaller than the wavelength. Numerical results show that the
resonance mode indicated by an integer m consists of m pairs of optical vortices of opposite circulation. In
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Fig. 1c, the time-averaged energy flow and electric field profiles
obtained by the FDTD method are given explicitly for the m 5 1
resonance mode. These optical vortices form through highly localized
excitation of plasmonic currents and induced charges that guide the
electromagnetic energy so that energy flows as paired vortices.

Coupled mode theory for fractional tunnelling resonance. FTR can
be predicted analytically by a coupled-mode diffraction theory25,26.
When transverse magnetic light is incident normally onto a slit in a
perfectly conducting plate of thickness L filled with a negative
permittivity medium, we may express the magnetic field in three
regions—below (region I), inside (region II), and above (region III)
the slit—in the following form with the time harmonic term
suppressed,
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Figure 1 | Fabry–Perot resonance and FTR by a single slit in a perfect electrical conductor. (a) Electric field intensity profiles inside slit waveguides with

an incident wave polarized vertically to the slit direction. Slit is filled with either a dielectric material having positive permittivity e 5 3 or a metallic

material with e 5 23 1 0.001i. Slit width a is 0.04l, where l is the wavelength. (b) Intensity profiles inside very thin slit waveguides. Resonance arises

when the slit is filled with a metallic material of thickness L which is a fraction of the unit thickness L1, i.e., L 5 (1/m)L1 for m 5 1,2,3,…. (c) Vector field

maps for the m 5 1 vortex plasmon obtained by FDTD numerical calculation. The time-averaged Poynting vector (left) represents circulating energy

flows, whereas electric vectors (right) show localized plasmonic currents and local fields generated by induced charges. (d) Vortex plasmon vs. slab

plasmon. Vortex plasmon is a coupled state between an incident plane wave passing through a slab and a slab plasmon. Arrows are time-averaged

Poynting vectors; colour maps represent electric field intensities. Slab plasmon has zero time-averaged energy flow.
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where e0, m0 are the vacuum permittivity and permeability,
respectively, k0~2p=l is the wave number, um xð Þ: cos 2mpx=að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2{dm0ð Þ=a
p

are normalized slit mode functions, and hm:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ek2

0{ 2mp=að Þ2
q

correspond to the longitudinal momenta. By

requiring the continuity of the tangential magnetic field component
Hy at the interface, z~+L=2, we obtain
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where we used the orthogonality of modes um(x). Likewise, the
continuity of the tangential electric field component Ex yields after
the inverse Fourier transformation,
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Combining (2) and (3), one can readily obtain a matrix equation for
unknown coefficients Am and Bm in the form MC~E with the matrix
components given by
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and H 1ð Þ
0 is the Hankel function of the first kind. Truncating the

infinite-dimensional matrix equation to a finite-dimensional one of
order N, we may solve the matrix equation approximately for
coefficients Am and Bm and subsequently obtain r(k) and t(k) from
(3).

Because the mode coefficients Am and Bm are obtained from the
matrix inversion C 5 M21E, their maximum values arise around the
minimum of the determinant of matrix M. Matrix M is dominated by
2 3 2 block diagonal elements, so the leading-order approximation
of the determinant of M becomes the product of the determinants of
2 3 2 matrices Q(mm) such that
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In particular, the m-th-order resonance is obtained by minimizing
the absolute value of the determinant of Q(mm), which becomes
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Figure 2 | Resonance characteristics of a vortex plasmon. Coupled-mode theory calculation of electric field amplitude plotted varying the frequency and

slit waveguide length for a Drude-type dispersive filling medium with permittivity e(v)~1{v2
p=(v2zicv), where vp 5 16p GHz and c 5 0.211 GHz. A

horizontal crosscut at a fixed frequency shows fractional behaviour, whereas a vertical crosscut at a fixed thickness produces spectral behaviour of

vortex plasmon modes. All these theoretical predictions based on coupled mode theory agree nicely with the rigorous FDTD numerical results (filled

squares). We set the slit width a 5 2 mm and approximated the coupled mode theory by keeping the waveguide modes up to m 5 5. Electric field

amplitudes are the magnitude of the x component of the electric field calculated at the centre of the slit (x 5 a/2, z 5 L/2) by taking the incident field as the

unit strength. This specific field component and measurement position were chosen because they conveniently describe vortex plasmon resonances.
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tanh ( hmj jL)~{
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For a narrow slit (a , l), we find that Zmm<2Si 2mpð Þ=(pe), where
Si xð Þ:

Ð x
0 dt sin tð Þ=t and hm<i2mp=a. Consequently, the res-

onance condition can be written as
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Thus, resonance arises at each fraction length Lm if the medium
possesses negative permittivity, where the integer m corresponds to
the m-th order waveguide mode. The m-th-order resonance arises
from the excitation of a vortex plasmon, which is a coupled state
between an m-th-order waveguide mode, in the form of a standing
anti-symmetric slab plasmon, and an incident plane wave, as
depicted in Fig. 1d (see the details on vortex plasmons in the
Supplementary Information). The coupling between the incident
wave and the slab plasmon creates channels for the circulating energy
flow, thereby forming optical vortex–antivortex pairs. FTR arises
from a resonant buildup of energy in the vortex plasmons, whereas
the fractional behaviour results from the 1/m-dependence of the skin
depth corresponding to the m-th order evanescent waveguide mode.

Figure 2 shows theoretical predictions of vortex plasmon res-
onance obtained by the analytic coupled mode theory as well as
the rigorous numerical FDTD calculation. Because materials posses-
sing negative permittivity are generally dispersive, and the fractional
lengths Lm are inversely proportional to the permittivity, vortex
plasmon resonance in a Drude-type dispersive material manifests

itself as the spectral resonance. This is shown clearly in Fig. 2 where
enhanced local electric fields are plotted as a function of the thickness
L and frequency f. Curved dashed lines indicate the approximate
resonance conditions in (9), which show good agreement with the
full calculation of the coupled mode theory. Crosscuts obtained by
fixing L or f at specific values are drawn separately in Fig. 2. The
crosscut obtained at a constant f as a function of thickness clearly
shows the fractional nature of the resonance, whereas that obtained
at a fixed L as a function of frequency shows a resonance spectrum of
vortex plasmons. Both crosscuts agree nicely with rigorous numer-
ical results obtained using the FDTD method.

So far, we have discussed the resonance of locally excited vortex
plasmons. To understand the resonant tunnelling behaviour, we
consider the transmission of light into the far-field, which is given
by the time-averaged total energy flux through the slit:
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where the approximation in the last step holds since Am<{Bm

(m§1) in the configuration of vortex plasmons (see the Supple-
mentary Information).

In Fig. 3, magnitudes jAmj and transmission Szh itotal are plotted
varying the thickness L. Note that, at the m-th order resonance in
Fig. 3a, the mode coefficients (A0, B0) and (Am, Bm) are dominantly
excited due to the excitation of the m-th order vortex plasmon which
reflects the fact that the vortex plasmon is a coupled state between the
m-th order slab plasmon and the incident wave. It should be noted
that transmission is also governed by A0 as in (11). In Fig. 3b, the full
calculation of transmission without approximation shows nearly the
same resonance behaviour as A0. Subsequently, resonant light tun-
nelling also occurs at fractional lengths, thereby justifying the name
fractional tunnelling resonance (FTR).

Experimental verification. To confirm FTR and the occurrence of
vortex plasmons experimentally, we performed a microwave
measurement using the experimental setup shown in Fig. 4a. With
a hairpin monopole antenna, we measured the local electric field
components near a slit 65 mm wide in an aluminium plate
2.4 mm thick. The slit was filled with a negative permittivity
medium; we used a metamaterial made of staples embedded in a
StyrofoamTM board, as specified in Fig. 4b. The staples were
arranged in a periodic split rectangle pattern inside a StyrofoamTM

board that possessed an air-like permittivity (e<1:03). This
metamaterial was chosen because it exhibits almost lossless
behaviour at microwave frequencies of 2.6–3.9 GHz. The
permittivity in this frequency range possesses a relatively small
negative real part and a negligible imaginary part, as shown in
Fig. 4c, and the material’s spectral behaviour is fitted well by the
Drude model. These features of the permittivity make it easy to
measure the FTR and vortex plasmon modes with a relatively thick
fractional thickness Lm and sharper resonance peaks.

Figure 5 shows a spectral map of the measured electric near fields,
where the vertical crosscut describes a vortex plasmon mode across
the slit at a fixed frequency. Vortex plasmons are excited by normally
incident light polarized perpendicular to the slit direction (only the
electric field component Ex is nonzero). The x component of the local
electric field was measured using a hairpin monopole antenna across
the slit at a distance of 5 mm from the aluminium plate. The local
enhancement factor, defined as the ratio between the local electric
field and the incident field, is expressed in a two-dimensional plot
with spatial mode profiles on the vertical axis and frequencies on the
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Figure 3 | FTR theory. (a) Coupling coefficients Am of waveguide modes

are plotted varying the thickness L. At the m-th order fractional tunnelling

resonance, coefficients A0 and Am become resonantly excited. (b) The

time averaged energy flux passing through the slit is plotted varying the

thickness L. It shows nearly the same resonance behaviour asA0. Here, we

set the frequency of incident to 3.0 GHz, slit width to 1 mm, and e to 23 1

0.001i. Red square dots represent the magnitude of a local electric field Ex

in the far-field region. Both the time averaged energy flux, i.e. transmission,

and the far-field Ex exhibits the same resonance features according to the

optical theorem.
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horizontal axis. The experimentally measured enhancement factor is
given in Fig. 5a and agrees well with the FDTD numerical result in
Fig. 5b. The horizontal cut (blue dashed line) represents the spectrum
of a local electric field at the centre of the slit. It clearly shows res-
onant spectral peaks corresponding to the first four vortex plasmon
modes (m 5 1,2,3,4). Vertical cuts also show the 2 m 1 1 nodes of the
m-th-order vortex plasmon. These results may be compared with the
theoretically calculated spectral map in Fig. 5c for the homogeneous
case, where we assumed that the slit was filled with a homogeneous
material possessing the effective permittivity of the metamaterial
described above.

In order to confirm FTR experimentally, we conducted a far-field
measurement of local Ex field which faithfully reproduces transmis-
sion resonances as described in Fig 3b. This agreement arises from
the optical theorem27 which relates the transmission as a total scat-
tering cross-section to the forward-scattered field. By using a 20-
millimeter-long straight monopole antenna, Ex field was measured
at the location 100 mm away from the centre of metamaterial filled

slit. Figure 6 shows experimentally measured and numerically calcu-
lated FTRs. In Fig. 6a, experimentally measured far-field transmis-
sion resonances are compared with resonances of near-field vortex
plasmons. The first three FTR peaks (m 5 1,2,3) are clearly shown
and they exhibit a good agreement with the FDTD numerical results
shown in Fig. 6b. Analytically calculated FTR from the slit filled with
a homogeneous negative permittivity material is given in Fig. 6c,
which also show a good qualitative agreement with the metamaterial
case.

Discussion
We note that the finite size of a staple in the metamaterial limits the
spatial resolution required for higher vortex plasmon modes and
FTR, and shifts the resonance peaks compared to the homogeneous
case. Despite the limited spatial resolution, it is remarkable that our
metamaterial sample faithfully resolves the first four vortex plasmon
modes and three FTR peaks, which also appear for the homogeneous
material. The fourth-order FTR peak is barely visible in the experi-
mental measurement because of background noise.
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Excitation of vortex plasmon modes strongly enhances the local
electric field, by a factor of 150 in Fig. 2 and 10 in Fig. 5, where a
narrower slit exhibits a stronger enhancement due to the capacitative
coupling of light to the slit28,29.

In conclusion, we have shown that resonant tunnelling can arise in
fractionally thin metals. We have also demonstrated fractional tun-
nelling resonance and vortex plasmons experimentally in the micro-
wave regime using metamaterials. Fractional tunnelling resonance
can be directly applied to the communication antenna technology30

and the strong amplification of local electromagnetic fields28,29,31.
Fractional tunnelling resonance provides a new paradigm for the
ultra-thin metal resonator.

Methods
To confirm the vortex plasmon modes and FTR experimentally, we prepared a
microwave near and far-field measurement system as shown in Fig. 4a. We prepared
two 1:2 m|0:6 m aluminium plates, which stood separated by a gap of 65 mm to
form a 65 mm|0:6 m slit. A Hewlett-Packard 8719C network analyser and SGH 260
standard gain horn antenna were used to generate and detect the x-polarized pulse of
an electric field covering the spectral range between 2.6 GHz and 3.9 GHz. A hairpin
monopole antenna was used to detect the local electric field component Ex near the

sample, and 20-millimeter-long straight monopole antenna was used to measure Ex in
far-field. Metamaterials were made by embedding U-shaped galvanized iron staples
periodically in a StyrofoamTM board (see the Supplementary Information for details).
The effective permittivity and permeability of a material were determined by mea-
suring the transmission and reflection coefficients and using the Nicolson–Ross–
Weir method. For the numerical calculations, we used the finite-difference time-
domain method with a grid size of 0.05 mm. The dispersive materials were modelled
as Drude dispersive media and handled using the auxiliary differential equation
method.
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Figure 6 | FTR spectrum. (a) Experimentally measured FTR spectrum.

Local field amplitude Ex in the far-field region was measured at a location

100 mm apart from the slit (bottom). Near-field vortex plasmon spectrum

is also shown for comparison (top) (b) FDTD numerical results for the

same system. (c) Coupled mode theory calculation of FTR spectrum

(bottom) for the slit filled with homogeneous material possessing the

effective permittivity given in Fig. 4c.
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