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The Strong Uncorrelating Transform Complex Common Spatial Patterns (SUTCCSP) algorithm, designed for multichannel
data analysis, has a limitation on keeping the correlation information among channels during the simultaneous diagonalization
process of the covariance and pseudocovariance matrices. This paper focuses on the importance of preserving the correlation
information among multichannel data and proposes the correlation assisted SUTCCSP (CASUT) algorithm to address this issue.
The performance of the proposed algorithm was demonstrated by classifying the motor imagery electroencephalogram (EEG)
dataset. The features were first extracted using CSP algorithms including the proposed method, and then the random forest
classifier was utilized for the classification. Experiments using CASUT yielded an average classification accuracy of 78.10 (%), which
significantly outperformed those of original CSP, Complex Common Spatial Patterns (CCSP), and SUTCCSP with 𝑝-values less
than 0.01, tested by the Wilcoxon signed rank test.

1. Introduction

Noninvasivemeasurements of physiological signals including
electroencephalogram (EEG), electrocardiogram (ECG), and
electromyogram (EMG) have become widely used through-
out the biomedical industry [1–5]. Out of the various
feature engineering methods, researchers have shown that
the common spatial patterns (CSP) algorithm is a strong
feature extraction algorithm for multichannel EEG data,
yielding high performance for classification problems [6, 7].
CSP is a mathematical methodology to decompose spatial
subcomponents of multivariate signals, whose variance dif-
ference between two classes is maximized [8]. CSP designs
spatial filters for the multichannel EEG signals based on
the spatial distribution of neural activities in the cortex
areas [6, 7] and adopts a supervised learning approach,
while the other spatial filter algorithms such as principal
component analysis (PCA) and independent component
analysis (ICA) are designed in an unsupervised manner [9,
10].

Furthermore, a complex version of CSP, termed CCSP,
uses the covariance matrix that maintains the power sum
information of the real and imaginary parts of the complex-
valued data [11]. Another complex-valued CSP algorithm,
termed analytic signal-based CSP (ACSP), was proposed
by Falzon et al. to discriminate different mental tasks [12,
13]. However, given that the Hilbert transformed analytic
signals could only produce circular signals (rotation invariant
probability distribution) and that physiological signals are
improper (mismatch of power between different channel
data), the augmented complex CSP was introduced to fully
exploit the second-order statistics of noncircular complex
vectors [11, 14].

Strong Uncorrelating Transform CCSP (SUTCCSP),
which is an advanced version of the augmented complex CSP,
was applied to the two-class classification problem of motor
imagery EEG and produced a minimum of 4% improvement
over the conventional CSP, ACSP, and augmented CSP [11].
This is due to the power difference information preserved
in the pseudocovariance matrix, accompanied with the sum
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of power maintained in the covariance matrix. However,
during the simultaneous diagonalization process of the
covariance and pseudocovariance matrices, the correlation
term vanishes owing to the process of applying the strong
uncorrelating transform [11, 15, 16]. Such effort to preserve
correlation has not been made so far for the CSP algorithm,
and the correlation assisted version of SUTCCSP is newly
proposed in this paper.

The basic terminologies and procedure of SUTCCSP and
the proposed method are explained in Section 2, followed
by extensive simulation results on the benchmark motor
imagery dataset of 105 subjects in Section 3. Finally, the
concluding remarks are given in Section 4 with additional
discussions in terms of the performance difference of distinct
channel pairs that have less correlation compared with results
of Section 3.

2. Proposed Method

Here we explain SUT based on the terminologies used in [9,
14] and show how the correlation information is utilized with
CSP algorithms [11, 16].

Let 𝑥 be a complex-valued random vector such as

𝑥 = 𝑥𝑟 + 𝑗𝑥𝑖, (1)

where 𝑗 is √(−1), 𝑥𝑟 is the real part, and 𝑥𝑖 is the imaginary
part of a complex random vector.X𝑘 is a zero-mean complex-
valued matrix consisting of values with the form of (1), where𝑘 denotes the two different classes, 𝑘 ∈ {1, 2}. X𝑘 has the
dimension of the number of channels by the number of
samples. Then the covariance (C) and pseudocovariance (P)
matrices are defined as follows:

C𝑘 = 𝐸 [X𝑘XH
𝑘 ] ,

P𝑘 = 𝐸 [X𝑘XT
𝑘 ] , (2)

where 𝐸(⋅) is the statistical expected value operator and (⋅)H
is the conjugate transpose.Then, we can define the composite
covariance (C𝑐) and pseudocovariance (P𝑐) matrices as fol-
lows:

C𝑐 = ∑
𝑘

C𝑘 = 𝐸 [X1XH
1 ] + 𝐸 [X2XH

2 ]
P𝑐 = ∑

𝑘

P𝑘 = 𝐸 [X1XT
1 ] + 𝐸 [X2XT

2 ] . (3)

Here C𝑐 can then be decomposed intoΘ𝑐 and Λ𝑐 as follows:

C𝑐 = Θ𝑐Λ𝑐ΘH𝑐 = Θ𝑐Λ1/2𝑐 Λ1/2𝑐 ΘH𝑐 , (4)

where Θ𝑐 has eigenvectors in each column for the corre-
sponding diagonal eigenvalues of Λ𝑐. Note that Θ𝑐 and Λ𝑐
consist of real elements and the nondiagonal elements of Λ𝑐
are zero. This allows C𝑐 to be whitened by the whitening
matrix Φ = Λ−1/2𝑐 ΘH𝑐 in the original CCSP algorithm,
resulting inΦC𝑐ΦH = I, where I denotes the identity matrix
[11].

Using the whitening matrix Φ = Λ−1/2𝑐 ΘH𝑐 from the
original CCSP algorithm [11], the pseudocovariance matrix
can also be decomposed using Takagi’s factorization as shown
in the following equation [17]:

ΦP𝑐Φ
T = ΔΛΔT, (5)

where Δ and Λ are yielded by symmetric matrices. This leads
to a derivation of the strong uncorrelating transform matrix
S as follows:

S = ΔHΦ. (6)

Using the matrix S, it is now possible to diagonalize the
covariance and pseudocovariance matrices simultaneously.
Firstly, the composite covariance matrix can be diagonalized
as follows:

SC𝑐S
H = SC1S

H + SC2S
H = M1 +M2

= I (∵ M𝑘 = SC𝑘S
H, 𝑘 ∈ {1, 2})

Y−1M𝑘Y = Λ𝑘, ∑
𝑘

Λ𝑘 = I,
(7)

where Y and Λ are the estimations of eigenvectors and
eigenvalues of M, respectively. Next, the composite pseudo-
covariance can also be diagonalized as follows:

SP𝑐S
H = SP1S

H + SP2S
H = Λ

Ŝ = Λ−1/2ΔHΦ
M̂𝑘 = ŜP𝑘Ŝ

T

ŜP𝑐Ŝ
T = ∑
𝑘

M̂𝑘 = I

Ŷ−1M̂𝑘Ŷ = Λ̂𝑘, ∑
𝑘

Λ̂𝑘 = I,

(8)

where Ŝ is the strong uncorrelating transform matrix for the
pseudocovariance and Ŷ and Λ̂ are the estimations of the
eigenvectors and eigenvalues of M̂, respectively. Therefore,
the two spatial filters W and Ŵ can be designed as fol-
lows:

W = Y−1S

Ŵ = Ŷ−1Ŝ. (9)

Finally, the spatially filtered vector, Z, is calculated as
follows:

Z = WX. (10)
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Let 𝑁 be the number of data channels, and 𝑧𝑝 the 𝑝th row
vector in Z;

Z=
[[[[[[[[[[[[
[

𝑧1...
𝑧𝑚𝑧𝑁−𝑚+1...𝑧𝑁

]]]]]]]]]]]]
]

= [[[[
[

𝑧1...
𝑧2𝑚

]]]]
]
, (11)

where 𝑧𝑝 corresponds to each row of the newmatrix Z. Now
the final subfeatures, 𝑓𝑝 and 𝑓𝑝, by SUTCCSP are calculated
as follows:

𝑓𝑝 = log( var (R [𝑧𝑝])∑𝑝 var (R [𝑧𝑝]))

𝑓𝑝 = log( var (I [𝑧𝑝])∑𝑝 var (I [𝑧𝑝])) ,
(12)

where 𝑝 varies between 1 and 2𝑚 and var(⋅) is the variance of(⋅). Here, selecting one pair of filter is equivalent to choosing
the first and last rows in each real and imaginary part of
the covariance and pseudocovariance matrices, separately.
The number of filter pairs was chosen to maximize the
performance for each subject. Such consideration of selecting
the appropriate number of filter pairs could be important in
real time applications. Next, Pearson’s correlation coefficient
for 𝑥𝑟 and 𝑥𝑖 is calculated as follows [17]:

𝜌𝑥𝑟,𝑥𝑖 = 𝐸 [(𝑥𝑟 − 𝜇𝑥𝑟) (𝑥𝑖 − 𝜇𝑥𝑖)]
std (𝑥𝑟) std (𝑥𝑖) , (13)

where std(⋅) is the standard deviation of (⋅) and 𝜇𝑥 is the
mean of 𝑥. The maximum number of correlation coefficients
between the real and imaginary parts of (1) is equal to the
number of channel pairs due to the multichannel attribute of
the data. The high dimension of the number of channel pairs
should be reduced owing to the curse of dimensionality. PCA
is applied to reduce the high dimension in this paper, due to
its simple implementation and fast speed [18, 19].

Let Γ be the matrix containing 𝜌𝑥𝑟 ,𝑥𝑖 for 𝑁(𝑁 − 1)/2
channel pairs, where𝑁 is the number of channels. By apply-
ing PCA to the correlation coefficient matrices, the principal
component coefficients, known as loadings, are estimated
[20]. Here we will defineΨ as an𝑁-by-𝐿matrix of loadings,
where L is the reduced number of dimensions. An additional
subfeature 𝑓𝑞 containing the correlation information of two
data channels is calculated as follows:

𝑓𝑞 = ΓΨ (𝑞 = 1, . . . , 𝐿) . (14)

The final feature matrices for two different classes are𝑓𝑝, 𝑓𝑝, and 𝑓𝑞 for each class. In this paper, the covariance
matrix information from the original CSP is added to the

feature matrices of CCSP, SUTCCSP, and CASUT, which
could provide a fair test to compare CSP with these three
algorithms. Accordingly, the featurematrices of CASUTwere
designed to contain the information of variance, power sum,
and difference, as well as the correlation information lost due
to the strong uncorrelating transform.

3. Experiments

3.1. Data Acquisition. As Park et al. used the Physiobank
Motor Mental Imagery (MMI) database to test the perfor-
mance of SUTCCSP, this study uses the same dataset in
order to compare the proposed CASUT with the former
CSP algorithms including SUTCCSP [11, 21–23]. Out of
the 109 subjects who conducted the left- and right-hand
motor imagery tasks, three subjects (S088, S092, and S100)
had damaged recordings, and one subject (S104) had an
insufficient amount of data [15, 24]. For these reasons, 105
subjects were used to examine the classification accuracy of
CASUT. All subject data consist of 45 trials of performing
the left- and right-hand tasks, which were recorded using 64
channel electrodes with the 10-10 EEG system and sampled
by 160Hz [25].

In order to verify the performance of CASUT in pre-
serving the correlation information, the channel pairs that
yield high correlation coefficients were selected (values over
0.9 and less than or equal to 1). All trials for the left-hand
motor imagery task of 105 subjects were combined into one
single trial set, and the correlation coefficients of the all
possible distinct 2016 pairs among the 64 channels were
calculated. Then the average of the correlation coefficient
values over all trials of the left-hand task was calculated, in
order to determine which channel pair has a high correlation
coefficient. The same calculation was conducted on the
trials of the right-hand motor imagery task. The channel
pairs, whose correlations were in the range of the following
equation, were denoted as

𝑟𝑡 = {(𝑥, 𝑦) | 𝑡 ⋅ 10−1 < 𝜌𝑥𝑟,𝑥𝑖 ≤ (𝑡 + 1) ⋅ 10−1} , (15)

where (𝑥, 𝑦) is a pair of two distinct channels 𝑥 and 𝑦, 𝜌𝑥𝑟 ,𝑥𝑖
are the correlation coefficients between 𝑥 and 𝑦, and 𝑡 is a
number in the range of 0 ≤ 𝑡 ≤ 9.

The EEG recordings were preprocessed using the fifth-
order Butterworth IIR bandpass filter extracting the fre-
quency components into 8–25Hz [6, 26, 27]. Such pre-
processing techniques were identical to the preprocessing
techniques used by Park et al. [11].

3.2. Classification Results

3.2.1. Analysis of 105 Subjects. The average classification
accuracies over all 105 subjects were calculated in order
to compare the proposed algorithm with CSP, CCSP, and
SUTCCSP. Table 1 shows the average classification rates with
the standard deviations for each algorithm. Note that the
classification rate of CASUToutperforms those of CSP, CCSP,
and SUTCCSP.

The normality was tested to determine whether to use
the parametric or nonparametric version of a statistical test
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Table 1: Average classification accuracies of CSP, CCSP, SUTCCSP, and CASUT across 105 subjects.

CSP method CSP CCSP SUTCCSP CASUT
Classification accuracy (%) 70.62 ± 1.35 70.60 ± 1.41 73.05 ± 1.32 73.69 ± 1.30

Table 2: The resulting 𝑝-values of the KS test for each CSP algorithm for 105 subjects.

CSP method CSP CCSP SUTCCSP CASUT𝑝-values 0.1784 0.1568 0.0777 0.2533

Table 3: Results of the Wilcoxon signed rank test conducted on
performance accuracies of CASUT compared with those of CSP,
CCSP, and SUTCCSP using 105 subjects.

𝑝1 𝑝2 𝑝3𝑝-value <10−7 <10−10 <0.05

such as ANOVA. Accordingly, the resulting 𝑝-values of the
Kolmogorov-Smirnov goodness-of-fit hypothesis test (KS
test) in Table 2 show that the classification accuracies of CSP
algorithms could not always satisfy the normality assumption
[28]. Therefore, the nonparametric Friedman test was used
instead of the parametric ANOVA, to compare three or more
matched groups regardless of their normality [29, 30].

The 𝑝-value for the Friedman test, which was less than
10−15, indicates that it is safe to perform the post hoc
test. Instead of the parametric paired Student’s 𝑡-test, the
Wilcoxon signed rank test, which can be used regard-
less of the normality, was conducted as the post hoc test
[28]. Although the average classification accuracy difference
between CASUT and SUTCCSP looked small, the Wilcoxon
signed rank test performed on the accuracies of the two
algorithms yielded significant 𝑝-values (<0.05), as shown in
Table 3. The 𝑝-values, 𝑝1, 𝑝2, and 𝑝3, indicate the results of
theWilcoxon signed rank test conducted on the classification
accuracies of CASUT compared with those of original CSP,
CCSP, and SUTCCSP, respectively.

3.2.2. Analysis of Significant Subjects. For a thorough valida-
tion of the classification performances of the CSP algorithms,
an additional analysis that was conducted by Park et al. was
adopted by selecting the significant subjects prior to any
further analysis [11]. This is crucial due to the possibility of
little brain network information in the recorded EEG and
activities of poorly performed subjects, based on the study
of Ahn and Jun [31]. For these reasons, the subjects were
categorized as significant, when the performance of each
subject exceeded the minimum classification accuracy of
64%, defined using the confidence limit of 95% [32]. Figure 1
shows the number of significant subjects for each CSP
algorithm. It can be observed that the number of significant
subjects using CASUT was the highest out of all four CSP
algorithms. The results throughout this chapter were based
on the histograms of Figure 1, from which the data of the
significant subjects were chosen for further analysis.
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Figure 1: Number of significant subjects of CSP, CCSP, SUTCCSP,
and CASUT. Note that the number of subjects for CASUT is the
highest out of the four CSP algorithms.

Table 4 lists the average classification accuracies over the
significant subjects and their standard deviations for CSP
algorithms. It can be also noted that the average classification
rate of CASUT outperformed those of CSP, CCSP, and
SUTCCSP.The KS test was also performed for the significant
subjects. However, the results from Table 5 indicated that
the classification accuracies of the CSP algorithm do not
follow the normal distribution. Accordingly, the Friedman
test, which can be used regardless of the normality, was
conducted. The 𝑝-value from the Friedman test yielded a
value less than 10−12, and thus the post hoc test was conducted
and shown in Table 6. Note that the low 𝑝-values (<0.01)
by the Wilcoxon signed rank test demonstrate the enhanced
performance of CASUT.

Additional plots of the error bar and whisker diagram
of the classification accuracies of CSP, CCSP, and CASUT
were illustrated in Figures 2 and 3, respectively. The blue
crosses in Figure 2 were identical to the average classification
rates shown in Table 4. The red lines in Figure 3 indicate the
median classification rates, and it can be observed that the
median of CASUT outperforms those of the other three CSP
algorithms. The superiority of CASUT over the other CSP
algorithms was also confirmed by the Wilcoxon signed rank
test results in Table 6.

In Figure 4, the scatterplots comparing classification rates
of CASUT with CSP, CCSP, and SUTCCSP were displayed.
The red dots above the dotted green lines indicate that
classification rates were higher by CASUT than the other
CSP algorithm. The black dots mean that CASUT and the
compared CSP algorithm have the same classification rates,
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Table 4: Average classification accuracies across the significant subjects of CSP, CCSP, SUTCCSP, and CASUT.

CSP method CSP CCSP SUTCCSP CASUT
Classification accuracy (%) 74.68 ± 1.33 75.06 ± 1.36 77.20 ± 1.27 78.10 ± 1.18

Table 5: The resulting 𝑝-values of the KS test for each CSP algorithm for significant subjects.

CSP method CSP CCSP SUTCCSP CASUT𝑝-values 0.2087 0.0359 0.0282 0.0418

Table 6: Results of the Wilcoxon signed rank test conducted on
the classification accuracies of CASUT compared with those of CSP,
CCSP, and SUTCCSP for significant subjects.

𝑝1 𝑝2 𝑝3𝑝-value <10−7 <10−8 <0.01
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Figure 2: Error bar of the classification accuracies of CSP, CCSP,
SUTCCSP, and CASUT. Note that CASUT produces higher classifi-
cation rates comparedwith those of the other CSP algorithms, which
is confirmed by the Wilcoxon signed rank test results of Table 6.

and blue means that the performances of CASUT are lower
than those of the compared CSP algorithm. This demon-
strates the fact that themajority of classification accuracies by
CASUT were higher than those of the other CSP algorithms.
Additionally, when two or more subjects yielded the same
classification accuracies by two of the different algorithms,
the dots for the subjects in these figures were duplicated.
Therefore, the number of selected subjects in Figure 1 and the
number of dots in Figure 4 may differ.

Lastly, the number of subjects, classified significantly
using CASUT and classified insignificantly using the other
CSP algorithms, was counted and shown in Figure 5. The bar
chart indicates the number of subjects that were classified
as significant by CASUT, but not by CSP, CCSP, and SUT,
respectively.

On the other hand, there was only one subject whose
data was classified as insignificant by CASUT, while the
other CSP algorithms classified it as significant. These results
also demonstrate the superiority of CASUT over the other
conventional CSP algorithms.

Table 7: Average classification accuracies across 105 subjects of CSP,
CASUT, CCSP, CACCSP, SUTCCSP, and CASUT.

CSP method Classification accuracy (%)
CSP 74.06 ± 1.30
CACSP 75.11 ± 1.33
CCSP 74.18 ± 1.38
CACCSP 74.83 ± 1.30
SUTCCSP 76.45 ± 1.27
CASUT 77.36 ± 1.19
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Figure 3: Whisker diagram of the classification accuracies of CSP,
CCSP, SUTCCSP, and CASUT. The median of CASUT is highest
compared with CSP, CCSP, and SUTCCSP.

3.2.3. Analysis of Correlation Assisted CSP. The various ver-
sions of CSP algorithms were additionally investigated for
further interpretation of the effects of correlation information
on the features of motor imagery tasks. To this end, corre-
lation assisted CSP (CACSP) is defined as a CSP algorithm
containing the correlation information, whereas correlation
assisted CCSP (CACCSP) is defined as CCSP including
the correlation information. The benchmark tests including
CSP, CACSP, CCSP, CACCSP, SUTCCSP, and CASUT could
provide an exact interpretation of the effects of correlation
information on the features of the motor imagery tasks.

Table 7 lists the average classification rates calculated
using CSP, CACSP, CCSP, CACCSP, SUTCCSP, and CASUT
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Figure 4: Scatterplot of classification rates of CASUT with (a) CSP, (b) CCSP, (c) SUTCCSP, and (d) the overlapping results of (a), (b), and
(c). Note that most of the dots are located above the dotted green line, which indicates higher performance of CASUT.

Table 8: Results of the Wilcoxon signed rank test conducted on
performance accuracies of CASUT compared with those of CSP,
CACSP, CCSP, CACCSP, and SUTCCSP.

𝑝-value
p1 <10−7
PCACSP <10−5
p2 <10−8
PCACCSP <10−7
p3 <0.01

in the same conditions set in Table 4. Friedman test was
conducted and a 𝑝-value less than 10−15 was confirmed. In
Table 8, the Wilcoxon signed rank test was performed on
CASUT with the other CSP algorithms, including CACSP
and CACCSP. Results in bold show the results of the addi-
tional implementations of CSP and CCSP, that is, CACSP and
CACCSP, respectively. Note that all 𝑝-values are significant,
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Figure 5: Number of subjects that were classified as significant with
CASUT, but not with CSP, CCSP, and SUT, respectively.

indicating the enhanced performance of CASUT over the
others. Since CCSP contains the power sum information,
additional to the CSP features, and SUTCCSP preserves the
power difference information, supplementary to CCSP, the
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Figure 6: Number of channel pairs for each correlation range (𝑟0 to𝑟9).

gradually increasing classification rates could be expected as
shown in Table 4.

Similarly, the performances of CSP and CCSP increase as
the correlation information is added to their original features.
Additionally, the highest classification accuracy in these
benchmark tests was yielded using CASUT, indicating that
CASUT outperforms all former CSP algorithms introduced
so far.

4. Discussion and Conclusion

The correlation range chosen to evaluate the performance
of CASUT was 𝑟9, based on (15). As shown in Figure 6,
the number of channel pairs for each correlation range (𝑟0
to 𝑟9) differs from zero to 301 channel pairs. In order to
examine the effects of the correlation information on the
CSP algorithms, the average classification accuracies over 105
subjects across different correlation ranges were calculated
based on the same analysis in Section 3. Results demonstrate
that the performance of CASUT gradually decreases as the
correlation information is degraded as shown in Figure 7.
Additionally, Figure 8 illustrates the resulting 𝑝-values esti-
mated using the Wilcoxon signed rank test on CASUT
compared with SUTCCSP, indicating less significance with
small correlation coefficients. This proves that CASUT is the
most effective feature extraction approach, when sufficient
correlation information exists among the multichannel data.

The limitations of SUTCCSP have been addressed in this
study due to the loss of the correlation information during
the simultaneous diagonalization process of the covariance
and pseudocovariance matrices. To that end, the correlation
assisted version of SUTCCSP, denoted by CASUT, has been
proposed for the first time by preserving the correlation infor-
mation among multichannel data. The proposed algorithm
was tested on the two-class motor imagery classification
problem, and its classification accuracies obtained using
the channel pairs with high correlation were significantly
improved by CASUT compared with those of CSP, CCSP,
and SUTCCSP, with 𝑝-values less than 0.01. Additional
experiments on the various ranges of correlation prove that
the correlation information is crucial to the classification of

72

74

76

78

80

Cl
as

sifi
ca

tio
n 

Ac
cu

ra
cy

 (%
)

CSP
CCSP

SUTCCSP
CASUT

r1 r2 r3 r4 r5 r6 r7 r8 r9

Correlation

Figure 7: Classification accuracies for different correlation ranges
(𝑟1 to 𝑟9) of CSP, CCSP, SUTCCSP, and CASUT.
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Figure 8: Resulting 𝑝-values of Wilcoxon signed rank tests con-
ducted on CASUT with SUTCCSP for different correlation ranges
(𝑟1 to 𝑟9).

the two-class motor imagery tasks and that CASUT yields the
highest classification accuracies comparedwith the otherCSP
algorithms.
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